Section 9-7
Factoring using the Greatest Common
            Factor (GCF)
Essential Question


• How do you factor polynomials using the Greatest
  Common Factor?


• Where you’ll see this:
    • Finance, geography, physics, modeling
Vocabulary


1. Factoring:
Vocabulary


1. Factoring: Breaking down a polynomial into two things
     that multiply to get that polynomial.
Finding the GCF
Finding the GCF


1. Find a common factor for the numbers.
Finding the GCF


1. Find a common factor for the numbers.
2. Find common factors for each variable.
Finding the GCF


1. Find a common factor for the numbers.
2. Find common factors for each variable.
3. Leave the GCF out, then determine what’s left over
  for inside the parentheses.
Example 1
                 Factor.
a. 5ab − 5bc                    2
                           b. 16h +10h




                           2        2    2   2
     3     2 2
c. 4ab + 8a b         d. 3x y − 6xy +12x y
Example 1
                  Factor.
a. 5ab − 5bc                     2
                            b. 16h +10h
  5b(



                            2        2    2   2
        3   2 2
c. 4ab + 8a b          d. 3x y − 6xy +12x y
Example 1
                     Factor.
a. 5ab − 5bc                        2
                               b. 16h +10h
  5b( a − c)



                               2        2    2   2
     3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
Example 1
                     Factor.
a. 5ab − 5bc                             2
                               b. 16h +10h
  5b( a − c)                       2h(



                               2             2   2   2
     3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
Example 1
                     Factor.
a. 5ab − 5bc                            2
                               b. 16h +10h
  5b( a − c)                       2h( 8h + 5)



                               2            2    2   2
     3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
Example 1
                     Factor.
a. 5ab − 5bc                            2
                               b. 16h +10h
  5b( a − c)                       2h( 8h + 5)



                               2            2    2   2
        3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
    2
 4ab (
Example 1
                     Factor.
a. 5ab − 5bc                            2
                               b. 16h +10h
  5b( a − c)                       2h( 8h + 5)



                               2            2    2   2
        3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
    2
 4ab ( b + 2a)
Example 1
                     Factor.
a. 5ab − 5bc                            2
                               b. 16h +10h
  5b( a − c)                       2h( 8h + 5)



                               2            2    2   2
        3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
    2
 4ab ( b + 2a)
    2
 4ab (2a + b)
Example 1
                     Factor.
a. 5ab − 5bc                              2
                                 b. 16h +10h
  5b( a − c)                         2h( 8h + 5)



                                 2            2    2   2
        3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
    2
 4ab ( b + 2a)                 3xy(
    2
 4ab (2a + b)
Example 1
                     Factor.
a. 5ab − 5bc                              2
                                 b. 16h +10h
  5b( a − c)                         2h( 8h + 5)



                                 2            2    2   2
        3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
    2
 4ab ( b + 2a)                 3xy( x − 2 y + 4xy)
    2
 4ab (2a + b)
Example 1
                     Factor.
a. 5ab − 5bc                              2
                                 b. 16h +10h
  5b( a − c)                         2h( 8h + 5)



                                 2            2    2   2
        3
c. 4ab + 8a b  2 2
                          d. 3x y − 6xy +12x y
    2
 4ab ( b + 2a)                 3xy( x − 2 y + 4xy)
    2
 4ab (2a + b)                  3xy(x + 4xy − 2 y)
Example 2
  Since a trapezoid may be divided into two triangles, the
 formula for the area of a trapezoid is obtained by adding
the areas of two triangles. Find this formula. Then factor
                       out the GCF.
Example 2
  Since a trapezoid may be divided into two triangles, the
 formula for the area of a trapezoid is obtained by adding
the areas of two triangles. Find this formula. Then factor
                       out the GCF.


           First we need the area of a triangle:
Example 2
  Since a trapezoid may be divided into two triangles, the
 formula for the area of a trapezoid is obtained by adding
the areas of two triangles. Find this formula. Then factor
                       out the GCF.


           First we need the area of a triangle:


                            1
                         A = bh
                            2
Since we’re dealing with two triangles, we will end up
             having two bases, b1 and b2.
Since we’re dealing with two triangles, we will end up
             having two bases, b1 and b2.
              1
           A = b1h
              2
Since we’re dealing with two triangles, we will end up
             having two bases, b1 and b2.
              1                      1
           A = b1h                A = b2h
              2                      2
Since we’re dealing with two triangles, we will end up
             having two bases, b1 and b2.
              1                      1
           A = b1h                A = b2h
              2                      2
             Combine these, then factor.
Since we’re dealing with two triangles, we will end up
             having two bases, b1 and b2.
              1                      1
           A = b1h                A = b2h
              2                      2
             Combine these, then factor.
                        1     1
                     A = b1h + b2h
                        2     2
Since we’re dealing with two triangles, we will end up
             having two bases, b1 and b2.
              1                          1
           A = b1h                    A = b2h
              2                          2
             Combine these, then factor.
                        1     1
                     A = b1h + b2h
                        2     2
                       1
                      = h(b1 + b2 )
                       2
Problem Set
Problem Set


               p. 406 # 1-39, multiples of 3




  “Actions have consequences...first rule of life. And the
second rule of life is this - you are the only one responsible
           for your own actions.” - Holly Lisle

Int Math 2 Section 9-7 1011

  • 1.
    Section 9-7 Factoring usingthe Greatest Common Factor (GCF)
  • 2.
    Essential Question • Howdo you factor polynomials using the Greatest Common Factor? • Where you’ll see this: • Finance, geography, physics, modeling
  • 3.
  • 4.
    Vocabulary 1. Factoring: Breakingdown a polynomial into two things that multiply to get that polynomial.
  • 5.
  • 6.
    Finding the GCF 1.Find a common factor for the numbers.
  • 7.
    Finding the GCF 1.Find a common factor for the numbers. 2. Find common factors for each variable.
  • 8.
    Finding the GCF 1.Find a common factor for the numbers. 2. Find common factors for each variable. 3. Leave the GCF out, then determine what’s left over for inside the parentheses.
  • 9.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 2 2 2 2 3 2 2 c. 4ab + 8a b d. 3x y − 6xy +12x y
  • 10.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( 2 2 2 2 3 2 2 c. 4ab + 8a b d. 3x y − 6xy +12x y
  • 11.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y
  • 12.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2h( 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y
  • 13.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2h( 8h + 5) 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y
  • 14.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2h( 8h + 5) 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y 2 4ab (
  • 15.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2h( 8h + 5) 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y 2 4ab ( b + 2a)
  • 16.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2h( 8h + 5) 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y 2 4ab ( b + 2a) 2 4ab (2a + b)
  • 17.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2h( 8h + 5) 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y 2 4ab ( b + 2a) 3xy( 2 4ab (2a + b)
  • 18.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2h( 8h + 5) 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y 2 4ab ( b + 2a) 3xy( x − 2 y + 4xy) 2 4ab (2a + b)
  • 19.
    Example 1 Factor. a. 5ab − 5bc 2 b. 16h +10h 5b( a − c) 2h( 8h + 5) 2 2 2 2 3 c. 4ab + 8a b 2 2 d. 3x y − 6xy +12x y 2 4ab ( b + 2a) 3xy( x − 2 y + 4xy) 2 4ab (2a + b) 3xy(x + 4xy − 2 y)
  • 20.
    Example 2 Since a trapezoid may be divided into two triangles, the formula for the area of a trapezoid is obtained by adding the areas of two triangles. Find this formula. Then factor out the GCF.
  • 21.
    Example 2 Since a trapezoid may be divided into two triangles, the formula for the area of a trapezoid is obtained by adding the areas of two triangles. Find this formula. Then factor out the GCF. First we need the area of a triangle:
  • 22.
    Example 2 Since a trapezoid may be divided into two triangles, the formula for the area of a trapezoid is obtained by adding the areas of two triangles. Find this formula. Then factor out the GCF. First we need the area of a triangle: 1 A = bh 2
  • 23.
    Since we’re dealingwith two triangles, we will end up having two bases, b1 and b2.
  • 24.
    Since we’re dealingwith two triangles, we will end up having two bases, b1 and b2. 1 A = b1h 2
  • 25.
    Since we’re dealingwith two triangles, we will end up having two bases, b1 and b2. 1 1 A = b1h A = b2h 2 2
  • 26.
    Since we’re dealingwith two triangles, we will end up having two bases, b1 and b2. 1 1 A = b1h A = b2h 2 2 Combine these, then factor.
  • 27.
    Since we’re dealingwith two triangles, we will end up having two bases, b1 and b2. 1 1 A = b1h A = b2h 2 2 Combine these, then factor. 1 1 A = b1h + b2h 2 2
  • 28.
    Since we’re dealingwith two triangles, we will end up having two bases, b1 and b2. 1 1 A = b1h A = b2h 2 2 Combine these, then factor. 1 1 A = b1h + b2h 2 2 1 = h(b1 + b2 ) 2
  • 29.
  • 30.
    Problem Set p. 406 # 1-39, multiples of 3 “Actions have consequences...first rule of life. And the second rule of life is this - you are the only one responsible for your own actions.” - Holly Lisle