Section 5-8
               Properties of Circles




Wed, Feb 02
Essential Questions
              • What are the relationships among parts of
                a circle?
              • What are the properties of circles and how
                do you apply them?


              • Where you’ll see this:
               • Market research, food service, art,
                  recreation, navigation

Wed, Feb 02
Vocabulary
      1. Circle:

      2. Radius:

      3. Chord:

      4. Diameter:

      5. Central Angle:

Wed, Feb 02
Vocabulary
      1. Circle: All points that are the same distance from a
          fixed center point; 360° total
      2. Radius:

      3. Chord:

      4. Diameter:

      5. Central Angle:

Wed, Feb 02
Vocabulary
      1. Circle: All points that are the same distance from a
          fixed center point; 360° total
      2. Radius: A segment whose endpoints are the center
          of a circle and on the circle
      3. Chord:

      4. Diameter:

      5. Central Angle:

Wed, Feb 02
Vocabulary
      1. Circle: All points that are the same distance from a
          fixed center point; 360° total
      2. Radius: A segment whose endpoints are the center
          of a circle and on the circle
      3. Chord: A segment where both endpoints are on the
          circle
      4. Diameter:

      5. Central Angle:

Wed, Feb 02
Vocabulary
      1. Circle: All points that are the same distance from a
          fixed center point; 360° total
      2. Radius: A segment whose endpoints are the center
          of a circle and on the circle
      3. Chord: A segment where both endpoints are on the
          circle
      4. Diameter: A chord that goes through the center of a
          circle
      5. Central Angle:

Wed, Feb 02
Vocabulary
      1. Circle: All points that are the same distance from a
          fixed center point; 360° total
      2. Radius: A segment whose endpoints are the center
          of a circle and on the circle
      3. Chord: A segment where both endpoints are on the
          circle
      4. Diameter: A chord that goes through the center of a
          circle
      5. Central Angle: An angle where the vertex is the
          center of the circle
Wed, Feb 02
Vocabulary
      6. Arc:
      7. Semicircle:

      8. Minor Arc:

      9. Major Arc:

      10. Inscribed Angle:


Wed, Feb 02
Vocabulary
      6. Arc: A section of the circumference of a circle
      7. Semicircle:

      8. Minor Arc:

      9. Major Arc:

      10. Inscribed Angle:


Wed, Feb 02
Vocabulary
      6. Arc: A section of the circumference of a circle
      7. Semicircle: An arc that is half of the circumference;
          half a circle
      8. Minor Arc:

      9. Major Arc:

      10. Inscribed Angle:


Wed, Feb 02
Vocabulary
      6. Arc: A section of the circumference of a circle
      7. Semicircle: An arc that is half of the circumference;
          half a circle
      8. Minor Arc: An arc that is less than half the
          circumference; same measure as the central angle
      9. Major Arc:

      10. Inscribed Angle:


Wed, Feb 02
Vocabulary
      6. Arc: A section of the circumference of a circle
      7. Semicircle: An arc that is half of the circumference;
          half a circle
      8. Minor Arc: An arc that is less than half the
          circumference; same measure as the central angle
      9. Major Arc: An arc that is more than half the
          circumference
      10. Inscribed Angle:


Wed, Feb 02
Vocabulary
      6. Arc: A section of the circumference of a circle
      7. Semicircle: An arc that is half of the circumference;
          half a circle
      8. Minor Arc: An arc that is less than half the
          circumference; same measure as the central angle
      9. Major Arc: An arc that is more than half the
          circumference
      10. Inscribed Angle: An angle whose vertex is on the
          circle and whose sides are chords of the circle; half
          the measure of the arc it contains
Wed, Feb 02
Circle




Wed, Feb 02
Radius




Wed, Feb 02
Chord




Wed, Feb 02
Diameter




Wed, Feb 02
Central Angle




Wed, Feb 02
Arc




Wed, Feb 02
Semicircle




Wed, Feb 02
Minor Arc




Wed, Feb 02
Major Arc




Wed, Feb 02
Inscribed Angle




Wed, Feb 02
Example 1
                            ≅ CD . Find the measures of the
                               
              In circle O, AD
                    angles of quadrilateral ABCD, when
                       =132° and mBC = 82°.
                     mAB           




Wed, Feb 02
Example 1
                            ≅ CD . Find the measures of the
                               
              In circle O, AD
                    angles of quadrilateral ABCD, when
                       =132° and mBC = 82°.
                     mAB           

    132°




Wed, Feb 02
Example 1
                            ≅ CD . Find the measures of the
                               
              In circle O, AD
                    angles of quadrilateral ABCD, when
                       =132° and mBC = 82°.
                     mAB           

    132°              82°




Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                        =132° and mBC = 82°.
                      mAB           

    132°               82°




              x°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                           =132° and mBC = 82°.
                         mAB           

    132°                 82°




              x°    x°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                           =132° and mBC = 82°.
                         mAB           

                                x + x +132 + 82 = 360
    132°                 82°




              x°    x°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                           =132° and mBC = 82°.
                         mAB           

                                x + x +132 + 82 = 360
    132°                 82°
                                   2x + 214 = 360



              x°    x°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                           =132° and mBC = 82°.
                         mAB           

                                x + x +132 + 82 = 360
    132°                 82°
                                   2x + 214 = 360
                                       −214 −214


              x°    x°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                           =132° and mBC = 82°.
                         mAB           

                                x + x +132 + 82 = 360
    132°                 82°
                                   2x + 214 = 360
                                       −214 −214
                                         2x =146

              x°    x°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                           =132° and mBC = 82°.
                         mAB           

                                x + x +132 + 82 = 360
    132°                 82°
                                   2x + 214 = 360
                                       −214 −214
                                         2x =146
                                          2     2
              x°    x°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                           =132° and mBC = 82°.
                         mAB           

                                x + x +132 + 82 = 360
    132°                 82°
                                   2x + 214 = 360
                                       −214 −214
                                         2x =146
                                          2     2
              x°    x°                     x = 73


Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                 x + x +132 + 82 = 360
    132°                  82°
                                    2x + 214 = 360
                                        −214 −214
                                          2x =146
                                           2     2
              73°   73°                     x = 73


Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

    132°                  82°




              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                        1       )
    132°                  82°    m∠ABC = (mAD + mCD
                                        2



              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1     )
    132°                  82°     m∠ABC = (mAD + mCD
                                           2
                                   1
                                 = (73 + 73)
                                   2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1        )
    132°                  82°     m∠ABC = (mAD + mCD
                                           2
                                   1          1
                                 = (73 + 73) = (146)
                                   2          2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1         )
    132°                  82°     m∠ABC = (mAD + mCD
                                           2
                                   1          1
                                 = (73 + 73) = (146) = 73°
                                   2          2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

    132°                  82°




              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                        1       )
    132°                  82°    m∠BCD = (mAD + mAB
                                        2



              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1     )
    132°                  82°     m∠BCD = (mAD + mAB
                                           2
                                 1
                                = (73 +132)
                                 2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1       )
    132°                  82°     m∠BCD = (mAD + mAB
                                           2
                                 1           1
                                = (73 +132) = (205)
                                 2           2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1        )
    132°                  82°     m∠BCD = (mAD + mAB
                                           2
                                 1           1
                                = (73 +132) = (205) =102.5°
                                 2           2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

    132°                  82°




              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                        1       )
    132°                  82°    m∠CDA = (mBC + mAB
                                        2



              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1     )
    132°                  82°     m∠CDA = (mBC + mAB
                                           2
                                 1
                                = (82 +132)
                                 2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1       )
    132°                  82°     m∠CDA = (mBC + mAB
                                           2
                                 1           1
                                = (82 +132) = (214)
                                 2           2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                           1        )
    132°                  82°     m∠CDA = (mBC + mAB
                                           2
                                 1           1
                                = (82 +132) = (214) =107°
                                 2           2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

    132°                  82°




              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                        1       )
    132°                  82°    m∠DAB = (mBC + mCD
                                        2



              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                            1    )
    132°                  82°     m∠DAB = (mBC + mCD
                                            2
                                 1
                                = (82 + 73)
                                 2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                            1      )
    132°                  82°     m∠DAB = (mBC + mCD
                                            2
                                 1            1
                                = (82 + 73) = (155)
                                 2            2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

                                            1       )
    132°                  82°     m∠DAB = (mBC + mCD
                                            2
                                 1            1
                                = (82 + 73) = (155) = 77.5°
                                 2            2
              73°   73°



Wed, Feb 02
Example 1
                             ≅ CD . Find the measures of the
                                
               In circle O, AD
                     angles of quadrilateral ABCD, when
                            =132° and mBC = 82°.
                          mAB           

    132°                  82°    m∠ABC = 73°
                                 m∠BCD =102.5°
                                 m∠CDA =107°

              73°   73°
                                 m∠DAB = 77.5°



Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius

                 c. Chord                   
                                        d. mLM

                                            
                     
                 e. mLMK                f. mLJ

                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK
                 c. Chord                   
                                        d. mLM

                                            
                     
                 e. mLMK                f. mLJ

                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM

                                            
                     
                 e. mLMK                f. mLJ

                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL
                                            
                     
                 e. mLMK                f. mLJ

                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL                = 62° + 47°
                                            
                     
                 e. mLMK                f. mLJ

                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL                = 62° + 47° =109°
                                            
                     
                 e. mLMK                f. mLJ

                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL                = 62° + 47° =109°
                                            
                     
                 e. mLMK                f. mLJ
                 = 62° +180°
                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL                = 62° + 47° =109°
                                            
                     
                 e. mLMK                f. mLJ
                 = 62° +180° = 242°
                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL            = 62° + 47° =109°
                                        
                     
                 e. mLMK            f. mLJ
                 = 62° +180° = 242° = 62°
                 g. m∠LKJ               h. Central Angle

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL            = 62° + 47° =109°
                                        
                     
                 e. mLMK            f. mLJ
                 = 62° +180° = 242° = 62°
                 g. m∠LKJ               h. Central Angle
                 = 2 (62°)
                    1

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL            = 62° + 47° =109°
                                        
                     
                 e. mLMK            f. mLJ
                 = 62° +180° = 242° = 62°
                 g. m∠LKJ               h. Central Angle
                 = 2 (62°) = 31°
                    1

Wed, Feb 02
Example 2
              Identify the following for circle P.
                 a. Diameter            b. Radius
                      JK                    KP
                 c. Chord                    
                                        d. mLM
                      KL            = 62° + 47° =109°
                                        
                     
                 e. mLMK            f. mLJ
                 = 62° +180° = 242° = 62°
                 g. m∠LKJ               h. Central Angle
                 = 2 (62°) = 31°
                    1
                                             ∠JPM
Wed, Feb 02
Problem Set




Wed, Feb 02
Problem Set


                       p. 228 #1-25 odd




     “We are so accustomed to disguise ourselves to others
       that in the end we become disguised to ourselves.”
                  - Francois de La Rochefoucauld
Wed, Feb 02

Int Math 2 Section 5-8 1011

  • 1.
    Section 5-8 Properties of Circles Wed, Feb 02
  • 2.
    Essential Questions • What are the relationships among parts of a circle? • What are the properties of circles and how do you apply them? • Where you’ll see this: • Market research, food service, art, recreation, navigation Wed, Feb 02
  • 3.
    Vocabulary 1. Circle: 2. Radius: 3. Chord: 4. Diameter: 5. Central Angle: Wed, Feb 02
  • 4.
    Vocabulary 1. Circle: All points that are the same distance from a fixed center point; 360° total 2. Radius: 3. Chord: 4. Diameter: 5. Central Angle: Wed, Feb 02
  • 5.
    Vocabulary 1. Circle: All points that are the same distance from a fixed center point; 360° total 2. Radius: A segment whose endpoints are the center of a circle and on the circle 3. Chord: 4. Diameter: 5. Central Angle: Wed, Feb 02
  • 6.
    Vocabulary 1. Circle: All points that are the same distance from a fixed center point; 360° total 2. Radius: A segment whose endpoints are the center of a circle and on the circle 3. Chord: A segment where both endpoints are on the circle 4. Diameter: 5. Central Angle: Wed, Feb 02
  • 7.
    Vocabulary 1. Circle: All points that are the same distance from a fixed center point; 360° total 2. Radius: A segment whose endpoints are the center of a circle and on the circle 3. Chord: A segment where both endpoints are on the circle 4. Diameter: A chord that goes through the center of a circle 5. Central Angle: Wed, Feb 02
  • 8.
    Vocabulary 1. Circle: All points that are the same distance from a fixed center point; 360° total 2. Radius: A segment whose endpoints are the center of a circle and on the circle 3. Chord: A segment where both endpoints are on the circle 4. Diameter: A chord that goes through the center of a circle 5. Central Angle: An angle where the vertex is the center of the circle Wed, Feb 02
  • 9.
    Vocabulary 6. Arc: 7. Semicircle: 8. Minor Arc: 9. Major Arc: 10. Inscribed Angle: Wed, Feb 02
  • 10.
    Vocabulary 6. Arc: A section of the circumference of a circle 7. Semicircle: 8. Minor Arc: 9. Major Arc: 10. Inscribed Angle: Wed, Feb 02
  • 11.
    Vocabulary 6. Arc: A section of the circumference of a circle 7. Semicircle: An arc that is half of the circumference; half a circle 8. Minor Arc: 9. Major Arc: 10. Inscribed Angle: Wed, Feb 02
  • 12.
    Vocabulary 6. Arc: A section of the circumference of a circle 7. Semicircle: An arc that is half of the circumference; half a circle 8. Minor Arc: An arc that is less than half the circumference; same measure as the central angle 9. Major Arc: 10. Inscribed Angle: Wed, Feb 02
  • 13.
    Vocabulary 6. Arc: A section of the circumference of a circle 7. Semicircle: An arc that is half of the circumference; half a circle 8. Minor Arc: An arc that is less than half the circumference; same measure as the central angle 9. Major Arc: An arc that is more than half the circumference 10. Inscribed Angle: Wed, Feb 02
  • 14.
    Vocabulary 6. Arc: A section of the circumference of a circle 7. Semicircle: An arc that is half of the circumference; half a circle 8. Minor Arc: An arc that is less than half the circumference; same measure as the central angle 9. Major Arc: An arc that is more than half the circumference 10. Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle; half the measure of the arc it contains Wed, Feb 02
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  Wed, Feb 02
  • 26.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° Wed, Feb 02
  • 27.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° 82° Wed, Feb 02
  • 28.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° 82° x° Wed, Feb 02
  • 29.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° 82° x° x° Wed, Feb 02
  • 30.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  x + x +132 + 82 = 360 132° 82° x° x° Wed, Feb 02
  • 31.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  x + x +132 + 82 = 360 132° 82° 2x + 214 = 360 x° x° Wed, Feb 02
  • 32.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  x + x +132 + 82 = 360 132° 82° 2x + 214 = 360 −214 −214 x° x° Wed, Feb 02
  • 33.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  x + x +132 + 82 = 360 132° 82° 2x + 214 = 360 −214 −214 2x =146 x° x° Wed, Feb 02
  • 34.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  x + x +132 + 82 = 360 132° 82° 2x + 214 = 360 −214 −214 2x =146 2 2 x° x° Wed, Feb 02
  • 35.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  x + x +132 + 82 = 360 132° 82° 2x + 214 = 360 −214 −214 2x =146 2 2 x° x° x = 73 Wed, Feb 02
  • 36.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  x + x +132 + 82 = 360 132° 82° 2x + 214 = 360 −214 −214 2x =146 2 2 73° 73° x = 73 Wed, Feb 02
  • 37.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° 82° 73° 73° Wed, Feb 02
  • 38.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠ABC = (mAD + mCD 2 73° 73° Wed, Feb 02
  • 39.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠ABC = (mAD + mCD 2 1 = (73 + 73) 2 73° 73° Wed, Feb 02
  • 40.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠ABC = (mAD + mCD 2 1 1 = (73 + 73) = (146) 2 2 73° 73° Wed, Feb 02
  • 41.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠ABC = (mAD + mCD 2 1 1 = (73 + 73) = (146) = 73° 2 2 73° 73° Wed, Feb 02
  • 42.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° 82° 73° 73° Wed, Feb 02
  • 43.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠BCD = (mAD + mAB 2 73° 73° Wed, Feb 02
  • 44.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠BCD = (mAD + mAB 2 1 = (73 +132) 2 73° 73° Wed, Feb 02
  • 45.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠BCD = (mAD + mAB 2 1 1 = (73 +132) = (205) 2 2 73° 73° Wed, Feb 02
  • 46.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠BCD = (mAD + mAB 2 1 1 = (73 +132) = (205) =102.5° 2 2 73° 73° Wed, Feb 02
  • 47.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° 82° 73° 73° Wed, Feb 02
  • 48.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠CDA = (mBC + mAB 2 73° 73° Wed, Feb 02
  • 49.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠CDA = (mBC + mAB 2 1 = (82 +132) 2 73° 73° Wed, Feb 02
  • 50.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠CDA = (mBC + mAB 2 1 1 = (82 +132) = (214) 2 2 73° 73° Wed, Feb 02
  • 51.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠CDA = (mBC + mAB 2 1 1 = (82 +132) = (214) =107° 2 2 73° 73° Wed, Feb 02
  • 52.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° 82° 73° 73° Wed, Feb 02
  • 53.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠DAB = (mBC + mCD 2 73° 73° Wed, Feb 02
  • 54.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠DAB = (mBC + mCD 2 1 = (82 + 73) 2 73° 73° Wed, Feb 02
  • 55.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠DAB = (mBC + mCD 2 1 1 = (82 + 73) = (155) 2 2 73° 73° Wed, Feb 02
  • 56.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  1  ) 132° 82° m∠DAB = (mBC + mCD 2 1 1 = (82 + 73) = (155) = 77.5° 2 2 73° 73° Wed, Feb 02
  • 57.
    Example 1  ≅ CD . Find the measures of the  In circle O, AD angles of quadrilateral ABCD, when  =132° and mBC = 82°. mAB  132° 82° m∠ABC = 73° m∠BCD =102.5° m∠CDA =107° 73° 73° m∠DAB = 77.5° Wed, Feb 02
  • 58.
    Example 2 Identify the following for circle P. a. Diameter b. Radius c. Chord  d. mLM   e. mLMK f. mLJ g. m∠LKJ h. Central Angle Wed, Feb 02
  • 59.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK c. Chord  d. mLM   e. mLMK f. mLJ g. m∠LKJ h. Central Angle Wed, Feb 02
  • 60.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM   e. mLMK f. mLJ g. m∠LKJ h. Central Angle Wed, Feb 02
  • 61.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL   e. mLMK f. mLJ g. m∠LKJ h. Central Angle Wed, Feb 02
  • 62.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL = 62° + 47°   e. mLMK f. mLJ g. m∠LKJ h. Central Angle Wed, Feb 02
  • 63.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL = 62° + 47° =109°   e. mLMK f. mLJ g. m∠LKJ h. Central Angle Wed, Feb 02
  • 64.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL = 62° + 47° =109°   e. mLMK f. mLJ = 62° +180° g. m∠LKJ h. Central Angle Wed, Feb 02
  • 65.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL = 62° + 47° =109°   e. mLMK f. mLJ = 62° +180° = 242° g. m∠LKJ h. Central Angle Wed, Feb 02
  • 66.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL = 62° + 47° =109°   e. mLMK f. mLJ = 62° +180° = 242° = 62° g. m∠LKJ h. Central Angle Wed, Feb 02
  • 67.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL = 62° + 47° =109°   e. mLMK f. mLJ = 62° +180° = 242° = 62° g. m∠LKJ h. Central Angle = 2 (62°) 1 Wed, Feb 02
  • 68.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL = 62° + 47° =109°   e. mLMK f. mLJ = 62° +180° = 242° = 62° g. m∠LKJ h. Central Angle = 2 (62°) = 31° 1 Wed, Feb 02
  • 69.
    Example 2 Identify the following for circle P. a. Diameter b. Radius JK KP c. Chord  d. mLM KL = 62° + 47° =109°   e. mLMK f. mLJ = 62° +180° = 242° = 62° g. m∠LKJ h. Central Angle = 2 (62°) = 31° 1 ∠JPM Wed, Feb 02
  • 70.
  • 71.
    Problem Set p. 228 #1-25 odd “We are so accustomed to disguise ourselves to others that in the end we become disguised to ourselves.” - Francois de La Rochefoucauld Wed, Feb 02