SlideShare a Scribd company logo
8

Infinite Series &
Sequences
Infinite Series &
Sequences

Sequences
Sequences

3
Sequences
A sequence is defined as a function whose domain is the
set of positive integers. Although a sequence is a function,
it is common to represent sequences by subscript notation
rather than by the standard function notation. For instance,
in the sequence
Sequence

1 is mapped onto a1, 2 is mapped onto a2, and so on. The
numbers a1, a2, a3, . . ., an, . . . are the terms of the
sequence. The number an is the nth term of the sequence,
and the entire sequence is denoted by {an}.
4
Example 1 – Listing the Terms of a Sequence
a. The terms of the sequence {an} = {3 + (–1)n} are
3 + (–1)1, 3 + (–1)2, 3 + (–1)3, 3 + (–1)4, . . .
2,
4,
2,
4,
....
b. The terms of the sequence {bn}

are

5
Example 1 – Listing the Terms of a Sequence
c. The terms of the sequence {cn}

cont’d

are

d. The terms of the recursively defined sequence {dn},
where d1 = 25 and dn + 1 = dn – 5, are
25, 25 – 5 = 20, 20 – 5 = 15, 15 – 5 = 10,. . . . .
6
Limit of a Sequence

7
Limit of a Sequence
Sequences whose terms approach to limiting values, are
said to converge. For instance, the sequence {1/2n}

converges to 0, as indicated in the following definition.

8
Limit of a Sequence
Graphically, this definition says that eventually
(for n > M and ε > 0) the terms of a sequence that
converges to L will lie within the band between the lines
y = L + ε and y = L – ε as shown in Figure 1.
If a sequence {an} agrees with a
function f at every positive integer,
and if f(x) approaches a
limit L as
the sequence must
converge to the same limit L.
For n > M the terms of the sequence
all lie within ε units of L.
Figure 1

9
Limit of a Sequence

10
Example 2 – Finding the Limit of a Sequence
Find the limit of the sequence whose nth term is

Solution:
You learned that

So, you can apply Theorem 1 to conclude that

11
Limit of a Sequence

12
Limit of a Sequence
The symbol n! (read “n factorial”) is used to simplify some
of the formulas. Let n be a positive integer; then n factorial
is defined as n! = 1 • 2 • 3 • 4 . . . (n – 1) • n.
As a special case, zero factorial is defined as 0! = 1.
From this definition, you can see that 1! = 1, 2! = 1 • 2 = 2,
3! = 1 • 2 • 3 = 6, and so on.

13
Example 5 – Using the Squeeze Theorem
Show that the sequence
find its limit.

converges, and

Solution:
To apply the Squeeze Theorem, you must find two
convergent sequences that can be related to the given
sequence.
Two possibilities are an = –1/2n and bn = 1/2n, both of which
converge to 0.
By comparing the term n! with 2n, you can see that,
n! = 1 • 2 • 3 • 4 • 5 • 6 . . . n =
and
2n = 2 • 2 • 2 • 2 • 2 • 2 . . . 2 =

14
Example 5 – Solution

cont’d

This implies that for n ≥ 4, 2n < n!, and you have

as shown in Figure 2.
So, by the Squeeze Theorem
it follows that

For n ≥ 4, (–1)n /n! is squeezed between
–1/2n and 1/2n.
Figure 2

15
Limit of a Sequence

16
Pattern Recognition for
Sequences

17
Pattern Recognition for Sequences
Sometimes the terms of a sequence are generated by
some rule that does not explicitly identify the nth term of the
sequence.
In such cases, you may be required to discover a pattern in
the sequence and to describe the nth term.
Once the nth term has been specified, you can investigate
the convergence or divergence of the sequence.

18
Example 6 – Finding the nth Term of a Sequence
Find a sequence {an} whose first five terms are

and then determine whether the particular sequence you
have chosen converges or diverges.

19
Example 6 – Solution
First, note that the numerators are successive powers of 2,
and the denominators form the sequence of positive odd
integers.
By comparing an with n, you have the following pattern.

Using L’Hôpital’s Rule to evaluate the limit of
f(x) = 2x/(2x – 1), you obtain

So, the sequence diverges.
20
Monotonic Sequences and
Bounded Sequences

21
Monotonic Sequences and Bounded Sequences

22
Example 8 – Determining Whether a Sequence Is Monotonic

Determine whether each sequence having the given nth
term is monotonic.

Solution:
a. This sequence alternates between
2 and 4.
So, it is not monotonic.

Not monotonic
Figure 3(a)

23
Example 8 – Solution

cont’d

b. This sequence is monotonic because each successive
term is larger than its predecessor.
To see this, compare the terms
bn and bn + 1.

Monotonic
Figure 3(b)

24
Example 8 – Solution

cont’d

c. This sequence is not monotonic, because the second
term is larger than the first term, and larger than the
third.
(Note that if you drop the first term,
the remaining sequence c2, c3, c4, . . .
is monotonic.)

Not monotonic
Figure 3(c)

25
Monotonic Sequences and Bounded Sequences

26
Monotonic Sequences and Bounded Sequences
One important property of the real numbers is that they are
complete. This means that there are no holes or gaps on
the real number line. (The set of rational numbers does not
have the completeness property.)
The completeness axiom for real numbers can be used to
conclude that if a sequence has an upper bound, it must
have a least upper bound (an upper bound that is smaller
than all other upper bounds for the sequence).

27
Monotonic Sequences and Bounded Sequences
For example, the least upper bound of the sequence
{an} = {n/(n + 1)},

is 1.

28
Example 9 – Bounded and Monotonic Sequences
a. The sequence {an} = {1/n} is both bounded and
monotonic and so, by Theorem 5, must converge.

b. The divergent sequence {bn} = {n2/(n + 1)} is monotonic,
but not bounded. (It is bounded below.)
c. The divergent sequence {cn} = {(–1)n} is bounded, but
not monotonic.

29

More Related Content

What's hot

Vector Space.pptx
Vector Space.pptxVector Space.pptx
Vector Space.pptx
Dr Ashok Tiwari
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
Ravi Gelani
 
Sequences and Series
Sequences and SeriesSequences and Series
Sequences and Series
sujathavvv
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
Manikanta satyala
 
Infinite sequences and series i
Infinite sequences and series iInfinite sequences and series i
Infinite sequences and series i
EasyStudy3
 
CMSC 56 | Lecture 6: Sets & Set Operations
CMSC 56 | Lecture 6: Sets & Set OperationsCMSC 56 | Lecture 6: Sets & Set Operations
CMSC 56 | Lecture 6: Sets & Set Operations
allyn joy calcaben
 
Inner Product Space
Inner Product SpaceInner Product Space
Inner Product Space
Patel Raj
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
Krishna Peshivadiya
 
Linear dependence(ld) &amp;linear independence(li)
Linear dependence(ld)  &amp;linear independence(li)Linear dependence(ld)  &amp;linear independence(li)
Linear dependence(ld) &amp;linear independence(li)
Digvijaysinh Gohil
 
Real analysis
Real analysisReal analysis
Real analysis
Kalaiselviprakash
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
rey castro
 
Geometric Sequence
Geometric SequenceGeometric Sequence
Geometric Sequence
Free Math Powerpoints
 
Abstract algebra & its applications (1)
Abstract algebra & its applications (1)Abstract algebra & its applications (1)
Abstract algebra & its applications (1)
drselvarani
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
AMINULISLAM439
 
Power series
Power series Power series
Power series
Pranav Veerani
 
Real Analysis 2 Presentation (M.Sc Math)
Real Analysis 2 Presentation (M.Sc Math)Real Analysis 2 Presentation (M.Sc Math)
Real Analysis 2 Presentation (M.Sc Math)
Mary Smith
 
Runge Kutta Method
Runge Kutta MethodRunge Kutta Method
Runge Kutta Method
ch macharaverriyya naidu
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
Manikanta satyala
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
saahil kshatriya
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
Asad Ali
 

What's hot (20)

Vector Space.pptx
Vector Space.pptxVector Space.pptx
Vector Space.pptx
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
Sequences and Series
Sequences and SeriesSequences and Series
Sequences and Series
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Infinite sequences and series i
Infinite sequences and series iInfinite sequences and series i
Infinite sequences and series i
 
CMSC 56 | Lecture 6: Sets & Set Operations
CMSC 56 | Lecture 6: Sets & Set OperationsCMSC 56 | Lecture 6: Sets & Set Operations
CMSC 56 | Lecture 6: Sets & Set Operations
 
Inner Product Space
Inner Product SpaceInner Product Space
Inner Product Space
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
 
Linear dependence(ld) &amp;linear independence(li)
Linear dependence(ld)  &amp;linear independence(li)Linear dependence(ld)  &amp;linear independence(li)
Linear dependence(ld) &amp;linear independence(li)
 
Real analysis
Real analysisReal analysis
Real analysis
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
 
Geometric Sequence
Geometric SequenceGeometric Sequence
Geometric Sequence
 
Abstract algebra & its applications (1)
Abstract algebra & its applications (1)Abstract algebra & its applications (1)
Abstract algebra & its applications (1)
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
 
Power series
Power series Power series
Power series
 
Real Analysis 2 Presentation (M.Sc Math)
Real Analysis 2 Presentation (M.Sc Math)Real Analysis 2 Presentation (M.Sc Math)
Real Analysis 2 Presentation (M.Sc Math)
 
Runge Kutta Method
Runge Kutta MethodRunge Kutta Method
Runge Kutta Method
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 

Similar to Infinite series & sequence lecture 2

Sequences and series
Sequences and seriesSequences and series
Sequences and series
anithaselvakumar271
 
Sequences and series
Sequences and seriesSequences and series
Sequences and seriesmstf mstf
 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docx
Getachew Mulaw
 
AYUSH.pptx
AYUSH.pptxAYUSH.pptx
AYUSH.pptx
amwebsite12345
 
6.sequences and series Further Mathematics Zimbabwe Zimsec Cambridge
6.sequences and series   Further Mathematics Zimbabwe Zimsec Cambridge6.sequences and series   Further Mathematics Zimbabwe Zimsec Cambridge
6.sequences and series Further Mathematics Zimbabwe Zimsec Cambridge
alproelearning
 
An alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic functionAn alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic function
ijscmcj
 
Convergence
ConvergenceConvergence
Convergence
Dr. Hari Arora
 
11.1 Sequences and Series
11.1 Sequences and Series11.1 Sequences and Series
11.1 Sequences and Series
smiller5
 
Arithmetic sequences and series
Arithmetic sequences and seriesArithmetic sequences and series
Arithmetic sequences and series
Rose Mary Tania Arini
 
Series_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdfSeries_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdf
mohamedtawfik358886
 
Sequence formulas direct and recursive
Sequence formulas direct and recursiveSequence formulas direct and recursive
Sequence formulas direct and recursive
Zohaib Khalid
 
Sequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial TheoremSequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial Theorem
Ver Louie Gautani
 
Infinite series-Calculus and Analytical Geometry
Infinite series-Calculus and Analytical GeometryInfinite series-Calculus and Analytical Geometry
Infinite series-Calculus and Analytical Geometry
Rabin BK
 
Unit 05 - Limits and Continuity.pdf
Unit 05 - Limits and Continuity.pdfUnit 05 - Limits and Continuity.pdf
Unit 05 - Limits and Continuity.pdf
SagarPetwal
 
Arithmetic Progression & Geometric ProgresionP
Arithmetic Progression & Geometric ProgresionPArithmetic Progression & Geometric ProgresionP
Arithmetic Progression & Geometric ProgresionP
ibha1234
 
Arithmetic And Geometric Progressions
Arithmetic And Geometric ProgressionsArithmetic And Geometric Progressions
Arithmetic And Geometric Progressions
Finni Rice
 
Ap gp
Ap gpAp gp
Ap gp
sujoy7
 

Similar to Infinite series & sequence lecture 2 (20)

Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Chap2
Chap2Chap2
Chap2
 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docx
 
AYUSH.pptx
AYUSH.pptxAYUSH.pptx
AYUSH.pptx
 
6.sequences and series Further Mathematics Zimbabwe Zimsec Cambridge
6.sequences and series   Further Mathematics Zimbabwe Zimsec Cambridge6.sequences and series   Further Mathematics Zimbabwe Zimsec Cambridge
6.sequences and series Further Mathematics Zimbabwe Zimsec Cambridge
 
An alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic functionAn alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic function
 
Convergence
ConvergenceConvergence
Convergence
 
11.1 Sequences and Series
11.1 Sequences and Series11.1 Sequences and Series
11.1 Sequences and Series
 
Arithmetic sequences and series
Arithmetic sequences and seriesArithmetic sequences and series
Arithmetic sequences and series
 
1 1 number theory
1 1 number theory1 1 number theory
1 1 number theory
 
Series_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdfSeries_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdf
 
Sequence formulas direct and recursive
Sequence formulas direct and recursiveSequence formulas direct and recursive
Sequence formulas direct and recursive
 
Sequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial TheoremSequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial Theorem
 
Task 4
Task 4Task 4
Task 4
 
Infinite series-Calculus and Analytical Geometry
Infinite series-Calculus and Analytical GeometryInfinite series-Calculus and Analytical Geometry
Infinite series-Calculus and Analytical Geometry
 
Unit 05 - Limits and Continuity.pdf
Unit 05 - Limits and Continuity.pdfUnit 05 - Limits and Continuity.pdf
Unit 05 - Limits and Continuity.pdf
 
Arithmetic Progression & Geometric ProgresionP
Arithmetic Progression & Geometric ProgresionPArithmetic Progression & Geometric ProgresionP
Arithmetic Progression & Geometric ProgresionP
 
Arithmetic And Geometric Progressions
Arithmetic And Geometric ProgressionsArithmetic And Geometric Progressions
Arithmetic And Geometric Progressions
 
Ap gp
Ap gpAp gp
Ap gp
 

Recently uploaded

Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
Krisztián Száraz
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 

Recently uploaded (20)

Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 

Infinite series & sequence lecture 2

  • 4. Sequences A sequence is defined as a function whose domain is the set of positive integers. Although a sequence is a function, it is common to represent sequences by subscript notation rather than by the standard function notation. For instance, in the sequence Sequence 1 is mapped onto a1, 2 is mapped onto a2, and so on. The numbers a1, a2, a3, . . ., an, . . . are the terms of the sequence. The number an is the nth term of the sequence, and the entire sequence is denoted by {an}. 4
  • 5. Example 1 – Listing the Terms of a Sequence a. The terms of the sequence {an} = {3 + (–1)n} are 3 + (–1)1, 3 + (–1)2, 3 + (–1)3, 3 + (–1)4, . . . 2, 4, 2, 4, .... b. The terms of the sequence {bn} are 5
  • 6. Example 1 – Listing the Terms of a Sequence c. The terms of the sequence {cn} cont’d are d. The terms of the recursively defined sequence {dn}, where d1 = 25 and dn + 1 = dn – 5, are 25, 25 – 5 = 20, 20 – 5 = 15, 15 – 5 = 10,. . . . . 6
  • 7. Limit of a Sequence 7
  • 8. Limit of a Sequence Sequences whose terms approach to limiting values, are said to converge. For instance, the sequence {1/2n} converges to 0, as indicated in the following definition. 8
  • 9. Limit of a Sequence Graphically, this definition says that eventually (for n > M and ε > 0) the terms of a sequence that converges to L will lie within the band between the lines y = L + ε and y = L – ε as shown in Figure 1. If a sequence {an} agrees with a function f at every positive integer, and if f(x) approaches a limit L as the sequence must converge to the same limit L. For n > M the terms of the sequence all lie within ε units of L. Figure 1 9
  • 10. Limit of a Sequence 10
  • 11. Example 2 – Finding the Limit of a Sequence Find the limit of the sequence whose nth term is Solution: You learned that So, you can apply Theorem 1 to conclude that 11
  • 12. Limit of a Sequence 12
  • 13. Limit of a Sequence The symbol n! (read “n factorial”) is used to simplify some of the formulas. Let n be a positive integer; then n factorial is defined as n! = 1 • 2 • 3 • 4 . . . (n – 1) • n. As a special case, zero factorial is defined as 0! = 1. From this definition, you can see that 1! = 1, 2! = 1 • 2 = 2, 3! = 1 • 2 • 3 = 6, and so on. 13
  • 14. Example 5 – Using the Squeeze Theorem Show that the sequence find its limit. converges, and Solution: To apply the Squeeze Theorem, you must find two convergent sequences that can be related to the given sequence. Two possibilities are an = –1/2n and bn = 1/2n, both of which converge to 0. By comparing the term n! with 2n, you can see that, n! = 1 • 2 • 3 • 4 • 5 • 6 . . . n = and 2n = 2 • 2 • 2 • 2 • 2 • 2 . . . 2 = 14
  • 15. Example 5 – Solution cont’d This implies that for n ≥ 4, 2n < n!, and you have as shown in Figure 2. So, by the Squeeze Theorem it follows that For n ≥ 4, (–1)n /n! is squeezed between –1/2n and 1/2n. Figure 2 15
  • 16. Limit of a Sequence 16
  • 18. Pattern Recognition for Sequences Sometimes the terms of a sequence are generated by some rule that does not explicitly identify the nth term of the sequence. In such cases, you may be required to discover a pattern in the sequence and to describe the nth term. Once the nth term has been specified, you can investigate the convergence or divergence of the sequence. 18
  • 19. Example 6 – Finding the nth Term of a Sequence Find a sequence {an} whose first five terms are and then determine whether the particular sequence you have chosen converges or diverges. 19
  • 20. Example 6 – Solution First, note that the numerators are successive powers of 2, and the denominators form the sequence of positive odd integers. By comparing an with n, you have the following pattern. Using L’Hôpital’s Rule to evaluate the limit of f(x) = 2x/(2x – 1), you obtain So, the sequence diverges. 20
  • 22. Monotonic Sequences and Bounded Sequences 22
  • 23. Example 8 – Determining Whether a Sequence Is Monotonic Determine whether each sequence having the given nth term is monotonic. Solution: a. This sequence alternates between 2 and 4. So, it is not monotonic. Not monotonic Figure 3(a) 23
  • 24. Example 8 – Solution cont’d b. This sequence is monotonic because each successive term is larger than its predecessor. To see this, compare the terms bn and bn + 1. Monotonic Figure 3(b) 24
  • 25. Example 8 – Solution cont’d c. This sequence is not monotonic, because the second term is larger than the first term, and larger than the third. (Note that if you drop the first term, the remaining sequence c2, c3, c4, . . . is monotonic.) Not monotonic Figure 3(c) 25
  • 26. Monotonic Sequences and Bounded Sequences 26
  • 27. Monotonic Sequences and Bounded Sequences One important property of the real numbers is that they are complete. This means that there are no holes or gaps on the real number line. (The set of rational numbers does not have the completeness property.) The completeness axiom for real numbers can be used to conclude that if a sequence has an upper bound, it must have a least upper bound (an upper bound that is smaller than all other upper bounds for the sequence). 27
  • 28. Monotonic Sequences and Bounded Sequences For example, the least upper bound of the sequence {an} = {n/(n + 1)}, is 1. 28
  • 29. Example 9 – Bounded and Monotonic Sequences a. The sequence {an} = {1/n} is both bounded and monotonic and so, by Theorem 5, must converge. b. The divergent sequence {bn} = {n2/(n + 1)} is monotonic, but not bounded. (It is bounded below.) c. The divergent sequence {cn} = {(–1)n} is bounded, but not monotonic. 29