WE3H-1
A Novel 30-90 GHz Singly Balanced
Mixer with Broadband LO/IF
Yi-Ching Wu 1 , Chau-Ching Chiong 2 , Huei Wang 1
1Graduate Institute of Communication Engineering,
National Taiwan University, Taipei, 10617, Taiwan
2Institute of Astronomy and Astrophysics, Academia Sinica,
Taipei, 10617, Taiwan
Student
Paper
Finalist
WE3H-1
Outline
• Background
• Proposed Circuit Design
• Simulation and Experimental Results
• Conclusion
• References
-1
WE3H-1
Background
• ALMA (Atacama Large Milli/Submillimeter Array)
– Atacama Desert, Chile
• SMA (Submillimeter Array)
– Mauna Kea, Hawaii
-2
IF frequency ( IF Bandwidth)
ALMA 4-12 GHz ( 8 GHz )
SMA 4-8 GHz 2-18 GHz (16 GHz)
• Broadband IF : receive large amount of data at once
• Broadband LO : reduce antenna cabin space
WE3H-1
Introduction
-3
Ref[4] Ref[5] Ref[6]
Ref[7]
Ref[8]
Wide LO Bandwidth,
narrow IF Bandwidth !!
0 10 20 30 40 50 60 70 80 90 100 110 120
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
IFfrequency(GHz)
LO frequency (GHz)
Ref[8]at IF frequency 5 GHz
Ref[7] IF bandwidth 2.5 GHz
Ref[5] IF bandwidth 2 GHz
Ref[4] IF bandwidth 1.5 GHz
Ref[6]at IF frequency 0.1 GHz
WE3H-1
Introduction
-4
Ref[9]
Ref[10]
• dc power 24mW
Ref[12]
• dc power 66mW
• IP1dB: -10 dBm
Ref[11]
0 10 20 30 40 50 60 70 80 90 100 110 120
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
IFfrequency(GHz)
LO frequency (GHz)
Ref[12]
· RF: 75~112 GHz
· IF: dc-26 GHz
Ref[9]
· V-band
· IF: 4~16 GHz
Ref[10]
· RF: 85~105 GHz
· IF: 1~8.5 GHz
Ref[11]
· RF: 32~52 GHz
· IF: 2~12 GHz
WE3H-1
The Block Diagrams of The
Astronomical Receivers
Narrow Bandwidth Mixer
LNA
Antenna
Baseband Filter
Attenuator Attenuator
Band 1
0°
90°
LO Q+ LO Q-
LNA
Antenna
Band 2
0°
90°
LO I+ LO I-
LO I+ LO I-
LO Q+ LO Q-
LNA
Antenna
Band n
0°
90°
LO I+ LO I-
LO Q+ LO Q-
Narrow Bandwidth Mixer
Narrow Bandwidth Mixer
0°
90°
Upper sideband signal
Lower sideband signal
0°
90°
Upper sideband signal
Lower sideband signal
0°
90°
Upper sideband signal
Lower sideband signal
50 ohm
50 ohm
50 ohm
Proposed Mixer
LNA
Antenna
Baseband Filter
Attenuator
Band 1
0°
90°
LNA
Antenna
Band 2
0°
90°
LNA
Antenna
Band n
0°
90°
Attenuator
LO Q+ LO Q-
LO I+ LO I-
50 ohm
50 ohm
50 ohm
0°
90°
Upper sideband signal
Lower sideband signal
Conventional Receiver The Proposed Receiver
WE3H-1
Circuit Schematic
• CMOS 90nm
• Fundamental type
• Down conversion
• LO Freq.: 30-90 GHz
• DC power: 0.6 mW
-6
LO
RF
IF+ IF-
VDD2 VDD2
VDD1 VDD1
M1
M2 M3
M1
M2M3
Balun
RF+ RF-
VDD1: 0.25V
VDD2: 1V
WE3H-1
Analysis of the Proposed Mixing Core
-7
Small-signal equivalent model of mixing core
BACjgg
V
i
G gdmm
i
os
m · 212 
M1
M2 M3
iV
osi
SLm
s
RF
L
IF
RRG
R
V
R
V
CG
2
2
2

osi
iV
+
-
Vg gsm 22 Vg gsm 33
Vg gsm 11
2gsC
2gdC
1gdC
3gsC
3gdC
1gsC
11 gdm CjgA 
)(
)(
131
331
gdgdgs
mgdgs
CCCj
gCCj
B





WE3H-1
Simulated GM with Different
Sizes of Device
• LO frequency 60 GHz
-8
Wide IF Bandwidth: Constant Gm2
5 10 15 20 250 30
2
4
6
8
10
0
12
IF_freq
Gm
Gm(mA/V)
IF frequency (GHz)
5 10 15 20 250 30
2
4
6
8
10
0
12
IF_freq
Gm_log
IF frequency (GHz)
Gm(dB)
IF frequency (GHz)
Gm2
(dB)
WE3H-1
Simulated GM with Different
Sizes of Device
• LO frequency 30, 60, 90 GHz
-9
90GHz
30GHz
60GHz
WE3H-1
Compensated Marchand Balun
• Phase difference 177~181.8 (deg)
• Amplitude imbalance -0.04~0.64 (dB)
-10
P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai, and H. Wang, “Broadband balanced frequency doublers with fundamental rejection
enhancement using a novel compensated Marchand balun,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp.1913-1923 May.
2013.
30 40 50 60 70 80 90
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
S(1,1)
S(2,1)
S(3,1)
S(1,1)(dB)
Frequency (GHz)
S(3,1)(dB)
S(2,1)(dB)
S(1,1)(dB)
30 35 40 45 50 55 60 65 70 75 80 85 90
170
172
174
176
178
180
182
184
186
188
190
Phase difference
Amplitude imbalance
Phasedifference(deg)
Frequency (GHz)
-2
-1
0
1
2
3
4
5
6
7
8
Amplitudeimbalance(dB)
WE3H-1
Chip Photo
• 0.389mm2
-11
LO
RF
IF+
IF-
0.565mm
0.688mm
WE3H-1
Measurement Setups
-12
Frequency (GHz) RF
Signal Source
LO
Signal Source
0.1~67GHz Agilent 83650 Agilent 83557A
75~115GHz Agilent 83650
X6 mulitipler
Gunn Oscillator
WE3H-1
Measured Conversion Gain vs.
LO Power
• LO frequency 30, 60, 90 GHz @ IF frequency 0.5 GHz
-13
LO Power
LO
frequency
30~67 GHz 2.3-2.6 dBm
75~90 GHz 4-4.2 dBm
-8 -6 -4 -2 0 2 4 6 8 10
-18
-16
-14
-12
-10
-8
-6
ConversionGain(dB)
LO Power (dBm)
-8 -6 -4 -2 0 2 4 6 8 10
-18
-16
-14
-12
-10
-8
-6
ConversionGain(dB)
LO Power (dBm)
-8 -6 -4 -2 0 2 4 6 8 10
-18
-16
-14
-12
-10
-8
-6
Measured LSB CG at 90GHz
Measured USB CG at 90GHz
Measured USB CG at 30GHz
Measured LSB CG at 30GHz
Measured LSB CG at 60GHz
Measured USB CG at 60GHz
ConversionGain(dB)
LO Power (dBm)
-8 -6 -4 -2 0 2 4 6 8 10
-18
-16
-14
-12
-10
-8
-6
ConversionGain(dB)
LO Power (dBm)
WE3H-1
Measured Conversion Gain vs.
IF Frequency
-14
0 2 4 6 8 10 12 14 16 18 20 22 24 26
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
ConversionGain(dB)
IF frequency (GHz)
Simulated USB CG at LO 30GHz
Simulated LSB CG at LO 30GHz
Measured LSB CG at LO 30GHz
Measured USB CG at LO 30GHz
0 2 4 6 8 10 12 14 16 18 20
-30
-25
-20
-15
-10
-5
0
ConversionGain(dB)
IF frequency (GHz)
Simulated USB CG at LO 90 GHz
Simulated LSB CG at LO 90 GHz
Measured LSB CG at LO 90 GHz
Measured USB CG at LO 90 GHz
0 2 4 6 8 10 12 14 16 18 20 22 24 26
-30
-25
-20
-15
-10
-5
0
ConversionGain(dB)
IF frequency (GHz)
Simulated LSB CG at LO 50GHz
Simulated USB CG at LO 50GHz
Measured LSB CG at LO 50GHz
Measured USB CG at LO 50GHz
0 2 4 6 8 10 12 14 16 18 20 22 24 26
-30
-25
-20
-15
-10
-5
0
ConversionGain(dB)
IF frequency (GHz)
Simulated USB CG at LO 60GHz
Simulated LSB CG at LO 60GHz
Measured LSB CG at LO 60GHz
Measured USB CG at LO 60GHz
WE3H-1
Measured Conversion Gain
vs. IF Frequency
• LO frequency 30 GHz
-15
Conversion Gain 3-dB IF bandwidth
-6.2~ -9.2 dB 26 GHz
(USB)
-8.8~ -11.8 dB 1.8 GHz
(LSB)
• USB: upper side band
• LSB: lower side band0 2 4 6 8 10 12 14 16 18 20 22 24 26
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
ConversionGain(dB)
IF frequency (GHz)
Simulated USB CG at LO 30GHz
Simulated LSB CG at LO 30GHz
Measured LSB CG at LO 30GHz
Measured USB CG at LO 30GHz
• VDD1 0.25V
• VDD2 1V
• dc power 0.6mW
• LO power 2.3 dBm
WE3H-1
Measured Conversion Gain
vs. IF Frequency
• LO frequency 50 GHz
-16
Conversion Gain 3-dB IF bandwidth
-6.1 ~ -9.1 dB 21 GHz
(LSB)
-6.7 ~ -9.3 dB 6.5 GHz
(USB)
0 2 4 6 8 10 12 14 16 18 20 22 24 26
-30
-25
-20
-15
-10
-5
0
ConversionGain(dB)
IF frequency (GHz)
Simulated LSB CG at LO 50GHz
Simulated USB CG at LO 50GHz
Measured LSB CG at LO 50GHz
Measured USB CG at LO 50GHz
• VDD1 0.25V
• VDD2 1V
• dc power 0.6mW
• LO power 2.6 dBm
• USB: upper side band
• LSB: lower side band
WE3H-1
Measured Conversion Gain
vs. IF Frequency
• LO frequency 60 GHz
-17
Conversion Gain 3-dB IF bandwidth
-8.6~ -11.6 dB 23 GHz
(LSB)
-9~ -10.5 dB > 7 GHz
(USB)
0 2 4 6 8 10 12 14 16 18 20 22 24 26
-30
-25
-20
-15
-10
-5
0
ConversionGain(dB)
IF frequency (GHz)
Simulated USB CG at LO 60GHz
Simulated LSB CG at LO 60GHz
Measured LSB CG at LO 60GHz
Measured USB CG at LO 60GHz
• VDD1 0.25V
• VDD2 1V
• dc power 0.6mW
• LO power 2.6 dBm
• USB: upper side band
• LSB: lower side band
WE3H-1
Measured Conversion Gain
vs. IF Frequency
• LO frequency 90 GHz
-18
Conversion Gain 3-dB IF bandwidth
-7.2~ -10.2 dB 16 GHz
(LSB)
-7.4~ -9.6 dB 6.8 GHz
(USB)
0 2 4 6 8 10 12 14 16 18 20
-30
-25
-20
-15
-10
-5
0
ConversionGain(dB)
IF frequency (GHz)
Simulated USB CG at LO 90 GHz
Simulated LSB CG at LO 90 GHz
Measured LSB CG at LO 90 GHz
Measured USB CG at LO 90 GHz
• VDD1 0.25V
• VDD2 1V
• dc power 0.6mW
• LO power 4.2 dBm
• USB: upper side band
• LSB: lower side band
WE3H-1
Measured Conversion Gain
vs. RF Frequency
• IF Frequency 0.5 GHz
-19
Conversion Gain ISO LO- RF
-5.8~-8.5 dB > 30.2 dB
0 10 20 30 40 50 60 70 80 90 100110120
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
Measured CG
Measured isolation LO to RF
ConversionGain(dB)
Frequency (GHz)
-50
-45
-40
-35
-30
-25
-20
-15
-10
Isolation(dB)
• VDD1 0.25V
• VDD2 1V
• dc power 0.6mW
• LO power 2.3-4.2 dBm
WE3H-1
Measured IP1dB
• LO frequency 30, 60, 90 GHz
• > 2 dBm
-20
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6
-12
-11
-10
-9
-8
-7
-6
30 GHz
60 GHz
90 GHz
ConversionGain(dB)
RF power (dBm)
WE3H-1
Comparison Table
-21
Ref. Process RF
Freq.
(GHz)
CG
(dB)
IF
Bandwidth
(GHz)
LO
power
(dBm)
dc
Power
(mW)
LO to RF
Isolation
(dB)
IP1dB
(dBm)
Chip
size
(mm2)
[4] 90nm
CMOS
40~110 -1±2 1.5 -2 7.2 >45 -10.5 0.22
[5] 130nm
CMOS
0.8~77.5 -5.5±1 2 10 0 >13 -3 0.388
[6] 90nm
CMOS
30~100 -1.5±1.5 at IF 0.1GHz (fixed) 10 58 >47 -8.1 0.35
[7] 90nm
CMOS
5~65 5±1.5 2.5 0 4.2 >30 -3 0.138
[8] 90nm
CMOS
35~83 -1±1.5 at IF 5GHz (fixed) 1 6.5 >30 0±1 0.539
This
Work
90nm
CMOS
30~90
(LO freq.)
-7.7±1.5
-9 ±1.5
-7.6±1.5
-10.1±1.5
-8.7±1.5
26*@LO 30GHz
22**@LO 40GHz
21**@LO 50GHz
23**@LO 60GHz
16**@LO 90GHz
2.3-2.6
(30-67GHz)
4-4.2
(75-90GHz)
0.6 >30.2 at least
2
0.389
* USB **LSB
WE3H-1
Comparison Table
-22
Ref. Process RF
Freq.
(GHz)
RF
Fractional
bandwidth
CG
(dB)
IF
Bandwidth
(GHz)
LO
power
(dBm)
dc
Power
(mW)
LO to RF
Isolation
(dB)
IP1dB
(dBm)
Chip
size
(mm2)
[9] 0.13µm
BiCMOS
V-band 23.34% -2.4 12 @RF 53GHz -13 2.8 25.7 -7.3 0.027
[10] 0.1µm
GaAs
pHEMT
80~105 27.03% -2 7 @LO 45GHz 6 12 >35 -2 1.12
[11] 0.15µm
pHEMT
32~52 47.62% 3.5~6.9 10 4 66 >37.5 -10 2
[12] 0.15µm
pHEMT
75~112
75~120
39.58%
46.16%
-9~-13
-10~-17
26@RF 86GHz
24@RF 96GHz
5
7
24 42
41.5
-2
(Sim.)
1
This
Work
90nm
CMOS
30~90
(LO freq.)
100%
(LO freq.)
-7.7±1.5
-9 ±1.5
-7.6±1.5
-10.1±1.5
-8.7±1.5
26*@LO 30GHz
22**@LO 40GHz
21**@LO 50GHz
23**@LO 60GHz
16**@LO 90GHz
2.3-2.6
(30-67GHz)
4-4.2
(75-90GHz)
0.6 >30.2 at least
2
0.389
* USB **LSB
WE3H-1
Conclusion
• Wide LO and Wide IF bandwidth
• dc power 0.6 mW
• IP1dB at least 2dBm
-23
WE3H-1-24
[1] J. Baars editor, ALMA Construction Project Book, Atacama Large Mil-limeter/Submillimeter Array, version 4, 2001.
[2] C.-Y. E. Tong, L. Zeng, P.K. Grimes, and R. Blundell, “Wideband SIS receiver development for the Submillimeter Array,” in the proceeding of 40th
International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Aug. 2015, Hong Kong, China, pp. 1-2.
[3] P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai, and H. Wang, “Broadband balanced frequency doublers with fundamental rejection enhancement using a
novel compensated Marchand balun,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp.1913-1923 May. 2013.
[4] J.-H. Tsai, “Design of 40-108 GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,”
IEEE Trans. Microwave Theory Tech., vol. 60, no. 3, pp.670-678, Mar. 2012.
[5] H.-Y. Yang, J.-H. Tsai, C.-H. Wang, C.-S. Lin, W.-H. Lin, K.-Y. Lin, T.-W. Huang, and H. Wang, “Design and analysis of a 0.8-77.5GHz ultra-
broadband distributed drain mixer using 0.13µm CMOS technology,”IEEE Trans. Microwave Theory Tech., vol. 57, no. 3, pp.562-572, Mar. 2009.
[6] J.-H. Tsai, H.-Y. Yang, T.-W. Huang, and H. Wang,“A 30-100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw.
Wireless Compon. Lett., vol. 18, no. 8, pp. 554-556, Aug. 2008.
[7] K.-C. Lin, H.-K. Chiou, K.-H. Chien, T.-Y. Yang, P.-C. Wu, C.-L. Ko, and Y.-Z. Juang, “A 4.2-mW 6-dB gain 5-65-GHz gate-pumped down-conversion
mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp.1516-1522 Apr. 2013.
[8] Hwann-Kaeo Chiou, Hung-Ting Chou, and Chia-Jen Liang, “A 35-to-83 GHz Multiconductor-Lines Signal Combiner for High Linear and Wideband
Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 10, pp. 548-550, Oct. 2013.
[9] S. P. Sah and D. Heo “A 12 GHz IF bandwidth low power 5-17 GHz V-band positive transformer-feedback down-conversion mixer,” in IEEE MTT-S
Int. Microwave Symp. Dig., Jun. 2014.
[10] J. Zhang, Y. Ye, and X.-W. Sun , “A W-band high conversion gain, single-balanced subharmonically gate-pumped mixer with novel size-reduced
Marchand balun ,” in IEEE MTT-S Int. Microwave Symp. Dig., May 2015.
[11] J.-C. Kao, C.-F. Chou, C.-C. Chiong, C.-C. Chuang, and H. Wang, “A high LO-to-RF isolation 32-52GHz triple cascode down conversion mixer with
2-12GHz IF bandwidth for ALMA band-1,” in Proc. IEEE Asia-Pacific Microw. Conf., Dec. 2014, pp.1190-1192.
[12] J.-C. Kao, K.-Y. Lin, C.-C. Chiong, C.-Y. Peng, and H. Wang, “A W-band high LO-to-RF isolation triple cascode mixer with wide IF band-width,”
IEEE Trans. Microwave Theory Tech., vol. 62, no. 7, pp.1506-1514, July 2014.
Reference

IMS2016 Session WE3H

  • 1.
    WE3H-1 A Novel 30-90GHz Singly Balanced Mixer with Broadband LO/IF Yi-Ching Wu 1 , Chau-Ching Chiong 2 , Huei Wang 1 1Graduate Institute of Communication Engineering, National Taiwan University, Taipei, 10617, Taiwan 2Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, 10617, Taiwan Student Paper Finalist
  • 2.
    WE3H-1 Outline • Background • ProposedCircuit Design • Simulation and Experimental Results • Conclusion • References -1
  • 3.
    WE3H-1 Background • ALMA (AtacamaLarge Milli/Submillimeter Array) – Atacama Desert, Chile • SMA (Submillimeter Array) – Mauna Kea, Hawaii -2 IF frequency ( IF Bandwidth) ALMA 4-12 GHz ( 8 GHz ) SMA 4-8 GHz 2-18 GHz (16 GHz) • Broadband IF : receive large amount of data at once • Broadband LO : reduce antenna cabin space
  • 4.
    WE3H-1 Introduction -3 Ref[4] Ref[5] Ref[6] Ref[7] Ref[8] WideLO Bandwidth, narrow IF Bandwidth !! 0 10 20 30 40 50 60 70 80 90 100 110 120 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 IFfrequency(GHz) LO frequency (GHz) Ref[8]at IF frequency 5 GHz Ref[7] IF bandwidth 2.5 GHz Ref[5] IF bandwidth 2 GHz Ref[4] IF bandwidth 1.5 GHz Ref[6]at IF frequency 0.1 GHz
  • 5.
    WE3H-1 Introduction -4 Ref[9] Ref[10] • dc power24mW Ref[12] • dc power 66mW • IP1dB: -10 dBm Ref[11] 0 10 20 30 40 50 60 70 80 90 100 110 120 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 IFfrequency(GHz) LO frequency (GHz) Ref[12] · RF: 75~112 GHz · IF: dc-26 GHz Ref[9] · V-band · IF: 4~16 GHz Ref[10] · RF: 85~105 GHz · IF: 1~8.5 GHz Ref[11] · RF: 32~52 GHz · IF: 2~12 GHz
  • 6.
    WE3H-1 The Block Diagramsof The Astronomical Receivers Narrow Bandwidth Mixer LNA Antenna Baseband Filter Attenuator Attenuator Band 1 0° 90° LO Q+ LO Q- LNA Antenna Band 2 0° 90° LO I+ LO I- LO I+ LO I- LO Q+ LO Q- LNA Antenna Band n 0° 90° LO I+ LO I- LO Q+ LO Q- Narrow Bandwidth Mixer Narrow Bandwidth Mixer 0° 90° Upper sideband signal Lower sideband signal 0° 90° Upper sideband signal Lower sideband signal 0° 90° Upper sideband signal Lower sideband signal 50 ohm 50 ohm 50 ohm Proposed Mixer LNA Antenna Baseband Filter Attenuator Band 1 0° 90° LNA Antenna Band 2 0° 90° LNA Antenna Band n 0° 90° Attenuator LO Q+ LO Q- LO I+ LO I- 50 ohm 50 ohm 50 ohm 0° 90° Upper sideband signal Lower sideband signal Conventional Receiver The Proposed Receiver
  • 7.
    WE3H-1 Circuit Schematic • CMOS90nm • Fundamental type • Down conversion • LO Freq.: 30-90 GHz • DC power: 0.6 mW -6 LO RF IF+ IF- VDD2 VDD2 VDD1 VDD1 M1 M2 M3 M1 M2M3 Balun RF+ RF- VDD1: 0.25V VDD2: 1V
  • 8.
    WE3H-1 Analysis of theProposed Mixing Core -7 Small-signal equivalent model of mixing core BACjgg V i G gdmm i os m · 212  M1 M2 M3 iV osi SLm s RF L IF RRG R V R V CG 2 2 2  osi iV + - Vg gsm 22 Vg gsm 33 Vg gsm 11 2gsC 2gdC 1gdC 3gsC 3gdC 1gsC 11 gdm CjgA  )( )( 131 331 gdgdgs mgdgs CCCj gCCj B     
  • 9.
    WE3H-1 Simulated GM withDifferent Sizes of Device • LO frequency 60 GHz -8 Wide IF Bandwidth: Constant Gm2 5 10 15 20 250 30 2 4 6 8 10 0 12 IF_freq Gm Gm(mA/V) IF frequency (GHz) 5 10 15 20 250 30 2 4 6 8 10 0 12 IF_freq Gm_log IF frequency (GHz) Gm(dB) IF frequency (GHz) Gm2 (dB)
  • 10.
    WE3H-1 Simulated GM withDifferent Sizes of Device • LO frequency 30, 60, 90 GHz -9 90GHz 30GHz 60GHz
  • 11.
    WE3H-1 Compensated Marchand Balun •Phase difference 177~181.8 (deg) • Amplitude imbalance -0.04~0.64 (dB) -10 P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai, and H. Wang, “Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand balun,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp.1913-1923 May. 2013. 30 40 50 60 70 80 90 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 S(1,1) S(2,1) S(3,1) S(1,1)(dB) Frequency (GHz) S(3,1)(dB) S(2,1)(dB) S(1,1)(dB) 30 35 40 45 50 55 60 65 70 75 80 85 90 170 172 174 176 178 180 182 184 186 188 190 Phase difference Amplitude imbalance Phasedifference(deg) Frequency (GHz) -2 -1 0 1 2 3 4 5 6 7 8 Amplitudeimbalance(dB)
  • 12.
  • 13.
    WE3H-1 Measurement Setups -12 Frequency (GHz)RF Signal Source LO Signal Source 0.1~67GHz Agilent 83650 Agilent 83557A 75~115GHz Agilent 83650 X6 mulitipler Gunn Oscillator
  • 14.
    WE3H-1 Measured Conversion Gainvs. LO Power • LO frequency 30, 60, 90 GHz @ IF frequency 0.5 GHz -13 LO Power LO frequency 30~67 GHz 2.3-2.6 dBm 75~90 GHz 4-4.2 dBm -8 -6 -4 -2 0 2 4 6 8 10 -18 -16 -14 -12 -10 -8 -6 ConversionGain(dB) LO Power (dBm) -8 -6 -4 -2 0 2 4 6 8 10 -18 -16 -14 -12 -10 -8 -6 ConversionGain(dB) LO Power (dBm) -8 -6 -4 -2 0 2 4 6 8 10 -18 -16 -14 -12 -10 -8 -6 Measured LSB CG at 90GHz Measured USB CG at 90GHz Measured USB CG at 30GHz Measured LSB CG at 30GHz Measured LSB CG at 60GHz Measured USB CG at 60GHz ConversionGain(dB) LO Power (dBm) -8 -6 -4 -2 0 2 4 6 8 10 -18 -16 -14 -12 -10 -8 -6 ConversionGain(dB) LO Power (dBm)
  • 15.
    WE3H-1 Measured Conversion Gainvs. IF Frequency -14 0 2 4 6 8 10 12 14 16 18 20 22 24 26 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 ConversionGain(dB) IF frequency (GHz) Simulated USB CG at LO 30GHz Simulated LSB CG at LO 30GHz Measured LSB CG at LO 30GHz Measured USB CG at LO 30GHz 0 2 4 6 8 10 12 14 16 18 20 -30 -25 -20 -15 -10 -5 0 ConversionGain(dB) IF frequency (GHz) Simulated USB CG at LO 90 GHz Simulated LSB CG at LO 90 GHz Measured LSB CG at LO 90 GHz Measured USB CG at LO 90 GHz 0 2 4 6 8 10 12 14 16 18 20 22 24 26 -30 -25 -20 -15 -10 -5 0 ConversionGain(dB) IF frequency (GHz) Simulated LSB CG at LO 50GHz Simulated USB CG at LO 50GHz Measured LSB CG at LO 50GHz Measured USB CG at LO 50GHz 0 2 4 6 8 10 12 14 16 18 20 22 24 26 -30 -25 -20 -15 -10 -5 0 ConversionGain(dB) IF frequency (GHz) Simulated USB CG at LO 60GHz Simulated LSB CG at LO 60GHz Measured LSB CG at LO 60GHz Measured USB CG at LO 60GHz
  • 16.
    WE3H-1 Measured Conversion Gain vs.IF Frequency • LO frequency 30 GHz -15 Conversion Gain 3-dB IF bandwidth -6.2~ -9.2 dB 26 GHz (USB) -8.8~ -11.8 dB 1.8 GHz (LSB) • USB: upper side band • LSB: lower side band0 2 4 6 8 10 12 14 16 18 20 22 24 26 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 ConversionGain(dB) IF frequency (GHz) Simulated USB CG at LO 30GHz Simulated LSB CG at LO 30GHz Measured LSB CG at LO 30GHz Measured USB CG at LO 30GHz • VDD1 0.25V • VDD2 1V • dc power 0.6mW • LO power 2.3 dBm
  • 17.
    WE3H-1 Measured Conversion Gain vs.IF Frequency • LO frequency 50 GHz -16 Conversion Gain 3-dB IF bandwidth -6.1 ~ -9.1 dB 21 GHz (LSB) -6.7 ~ -9.3 dB 6.5 GHz (USB) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 -30 -25 -20 -15 -10 -5 0 ConversionGain(dB) IF frequency (GHz) Simulated LSB CG at LO 50GHz Simulated USB CG at LO 50GHz Measured LSB CG at LO 50GHz Measured USB CG at LO 50GHz • VDD1 0.25V • VDD2 1V • dc power 0.6mW • LO power 2.6 dBm • USB: upper side band • LSB: lower side band
  • 18.
    WE3H-1 Measured Conversion Gain vs.IF Frequency • LO frequency 60 GHz -17 Conversion Gain 3-dB IF bandwidth -8.6~ -11.6 dB 23 GHz (LSB) -9~ -10.5 dB > 7 GHz (USB) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 -30 -25 -20 -15 -10 -5 0 ConversionGain(dB) IF frequency (GHz) Simulated USB CG at LO 60GHz Simulated LSB CG at LO 60GHz Measured LSB CG at LO 60GHz Measured USB CG at LO 60GHz • VDD1 0.25V • VDD2 1V • dc power 0.6mW • LO power 2.6 dBm • USB: upper side band • LSB: lower side band
  • 19.
    WE3H-1 Measured Conversion Gain vs.IF Frequency • LO frequency 90 GHz -18 Conversion Gain 3-dB IF bandwidth -7.2~ -10.2 dB 16 GHz (LSB) -7.4~ -9.6 dB 6.8 GHz (USB) 0 2 4 6 8 10 12 14 16 18 20 -30 -25 -20 -15 -10 -5 0 ConversionGain(dB) IF frequency (GHz) Simulated USB CG at LO 90 GHz Simulated LSB CG at LO 90 GHz Measured LSB CG at LO 90 GHz Measured USB CG at LO 90 GHz • VDD1 0.25V • VDD2 1V • dc power 0.6mW • LO power 4.2 dBm • USB: upper side band • LSB: lower side band
  • 20.
    WE3H-1 Measured Conversion Gain vs.RF Frequency • IF Frequency 0.5 GHz -19 Conversion Gain ISO LO- RF -5.8~-8.5 dB > 30.2 dB 0 10 20 30 40 50 60 70 80 90 100110120 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 Measured CG Measured isolation LO to RF ConversionGain(dB) Frequency (GHz) -50 -45 -40 -35 -30 -25 -20 -15 -10 Isolation(dB) • VDD1 0.25V • VDD2 1V • dc power 0.6mW • LO power 2.3-4.2 dBm
  • 21.
    WE3H-1 Measured IP1dB • LOfrequency 30, 60, 90 GHz • > 2 dBm -20 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 -12 -11 -10 -9 -8 -7 -6 30 GHz 60 GHz 90 GHz ConversionGain(dB) RF power (dBm)
  • 22.
    WE3H-1 Comparison Table -21 Ref. ProcessRF Freq. (GHz) CG (dB) IF Bandwidth (GHz) LO power (dBm) dc Power (mW) LO to RF Isolation (dB) IP1dB (dBm) Chip size (mm2) [4] 90nm CMOS 40~110 -1±2 1.5 -2 7.2 >45 -10.5 0.22 [5] 130nm CMOS 0.8~77.5 -5.5±1 2 10 0 >13 -3 0.388 [6] 90nm CMOS 30~100 -1.5±1.5 at IF 0.1GHz (fixed) 10 58 >47 -8.1 0.35 [7] 90nm CMOS 5~65 5±1.5 2.5 0 4.2 >30 -3 0.138 [8] 90nm CMOS 35~83 -1±1.5 at IF 5GHz (fixed) 1 6.5 >30 0±1 0.539 This Work 90nm CMOS 30~90 (LO freq.) -7.7±1.5 -9 ±1.5 -7.6±1.5 -10.1±1.5 -8.7±1.5 26*@LO 30GHz 22**@LO 40GHz 21**@LO 50GHz 23**@LO 60GHz 16**@LO 90GHz 2.3-2.6 (30-67GHz) 4-4.2 (75-90GHz) 0.6 >30.2 at least 2 0.389 * USB **LSB
  • 23.
    WE3H-1 Comparison Table -22 Ref. ProcessRF Freq. (GHz) RF Fractional bandwidth CG (dB) IF Bandwidth (GHz) LO power (dBm) dc Power (mW) LO to RF Isolation (dB) IP1dB (dBm) Chip size (mm2) [9] 0.13µm BiCMOS V-band 23.34% -2.4 12 @RF 53GHz -13 2.8 25.7 -7.3 0.027 [10] 0.1µm GaAs pHEMT 80~105 27.03% -2 7 @LO 45GHz 6 12 >35 -2 1.12 [11] 0.15µm pHEMT 32~52 47.62% 3.5~6.9 10 4 66 >37.5 -10 2 [12] 0.15µm pHEMT 75~112 75~120 39.58% 46.16% -9~-13 -10~-17 26@RF 86GHz 24@RF 96GHz 5 7 24 42 41.5 -2 (Sim.) 1 This Work 90nm CMOS 30~90 (LO freq.) 100% (LO freq.) -7.7±1.5 -9 ±1.5 -7.6±1.5 -10.1±1.5 -8.7±1.5 26*@LO 30GHz 22**@LO 40GHz 21**@LO 50GHz 23**@LO 60GHz 16**@LO 90GHz 2.3-2.6 (30-67GHz) 4-4.2 (75-90GHz) 0.6 >30.2 at least 2 0.389 * USB **LSB
  • 24.
    WE3H-1 Conclusion • Wide LOand Wide IF bandwidth • dc power 0.6 mW • IP1dB at least 2dBm -23
  • 25.
    WE3H-1-24 [1] J. Baarseditor, ALMA Construction Project Book, Atacama Large Mil-limeter/Submillimeter Array, version 4, 2001. [2] C.-Y. E. Tong, L. Zeng, P.K. Grimes, and R. Blundell, “Wideband SIS receiver development for the Submillimeter Array,” in the proceeding of 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Aug. 2015, Hong Kong, China, pp. 1-2. [3] P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai, and H. Wang, “Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand balun,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp.1913-1923 May. 2013. [4] J.-H. Tsai, “Design of 40-108 GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microwave Theory Tech., vol. 60, no. 3, pp.670-678, Mar. 2012. [5] H.-Y. Yang, J.-H. Tsai, C.-H. Wang, C.-S. Lin, W.-H. Lin, K.-Y. Lin, T.-W. Huang, and H. Wang, “Design and analysis of a 0.8-77.5GHz ultra- broadband distributed drain mixer using 0.13µm CMOS technology,”IEEE Trans. Microwave Theory Tech., vol. 57, no. 3, pp.562-572, Mar. 2009. [6] J.-H. Tsai, H.-Y. Yang, T.-W. Huang, and H. Wang,“A 30-100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554-556, Aug. 2008. [7] K.-C. Lin, H.-K. Chiou, K.-H. Chien, T.-Y. Yang, P.-C. Wu, C.-L. Ko, and Y.-Z. Juang, “A 4.2-mW 6-dB gain 5-65-GHz gate-pumped down-conversion mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp.1516-1522 Apr. 2013. [8] Hwann-Kaeo Chiou, Hung-Ting Chou, and Chia-Jen Liang, “A 35-to-83 GHz Multiconductor-Lines Signal Combiner for High Linear and Wideband Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 10, pp. 548-550, Oct. 2013. [9] S. P. Sah and D. Heo “A 12 GHz IF bandwidth low power 5-17 GHz V-band positive transformer-feedback down-conversion mixer,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2014. [10] J. Zhang, Y. Ye, and X.-W. Sun , “A W-band high conversion gain, single-balanced subharmonically gate-pumped mixer with novel size-reduced Marchand balun ,” in IEEE MTT-S Int. Microwave Symp. Dig., May 2015. [11] J.-C. Kao, C.-F. Chou, C.-C. Chiong, C.-C. Chuang, and H. Wang, “A high LO-to-RF isolation 32-52GHz triple cascode down conversion mixer with 2-12GHz IF bandwidth for ALMA band-1,” in Proc. IEEE Asia-Pacific Microw. Conf., Dec. 2014, pp.1190-1192. [12] J.-C. Kao, K.-Y. Lin, C.-C. Chiong, C.-Y. Peng, and H. Wang, “A W-band high LO-to-RF isolation triple cascode mixer with wide IF band-width,” IEEE Trans. Microwave Theory Tech., vol. 62, no. 7, pp.1506-1514, July 2014. Reference