SlideShare a Scribd company logo
1 of 23
Passive Filter Design
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1
Design Services
Contents
Slide
#
1. Filter Design
Category..............................................................................
2. Passive Filter Design Flow-
Chart.............................................................
3. Passive Low Pass Filter
Design...............................................................
3.1
Specifications : ..................................................................................
3.2
Calculation : ......................................................................................
.
3.3
Verification : ......................................................................................
.
3.4
Optimization : ....................................................................................
3.5 Elements
3
4
5
5
6
7
8-9
10-11
12
13-15
16-20
21-23
2All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
1.Filter Design Category
Available Filter Types
• Low Pass Filter
• High Pass Filter
• Band Pass Filter
• Band Reject Filter
Approximation
• Butterworth
- No ripple
- Smooth roll-off (rate of 20dB/decade for every pole)
• Chebyshev
- Pass-band ripple specification would be required.
- Steeper roll-of
Topology
• Passive
- High frequency range (> 1 MHz)
- Source and load impedance specifications would be required
• Active
- Low frequency range (1 Hz to 1 MHz)
- Unity-Gain Sallen-Key configuration (see Figure 1.0)
Number of Order
• 2nd
-10th
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
2.Passive Filter Design Flow Chart
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4
2. Circuit design and calculation2. Circuit design and calculation
3. Verification3. Verification
4. Optimize with standard capacitor value4. Optimize with standard capacitor value
5. Elements test (± 5%)5. Elements test (± 5%)
Meet the spec?Meet the spec?
No
Yes
Satisfy?Satisfy?
Yes
YESYES
Result :
Filter circuit with all element values
Result :
Filter circuit with all element values
Use Active FilterUse Active Filter
1.Customer’s
specification
1.Customer’s
specification
No
3.Passive Low Pass Filter Design (1/5)
3.1 Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5
Fr e que nc y
1 0 0KHz 1. 0MHz 10 MHz
db ( v ( o ut ) )
- 4 0
- 3 0
- 2 0
- 1 0
0
Figure 1 Low-pass filter response and specification
Pass-band Region
Stop-band Region
Pass-band edge frequency = 1 MHz
Pass-band gain = -3 dB
Stop-band edge frequency = 2.5 MHz
Stop-band gain = -30 dB
•Pass-band edge frequency : 1 MHz (fCutoff)
- Pass-band gain : -3 dB
•Stop-band edge frequency : 2.5 MHz
- Stop-band gain : -30 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Source Impedance : 50 Ω
STEP1.Customer’s
specification
STEP1.Customer’s
specification
3.Passive Low Pass Filter Design (2/5)
3.2 Calculation :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6
Figure 2.1 Low-pass filter circuit with calculated element-values
(Butterworth approximation).
Figure 2.2 Low-pass filter circuit with calculated element-values
(Chebyshev approximation).
0
C 2
1 0 . 6 6 n F
R L 2
5 0
L 1
5 . 6 6 5 u H
1 2
R s
5 0
o u t 3
C 1
1 0 . 6 6 n F
V s o u r c e
0
C 1
5 . 8 7 8 n F
R L
5 0
o u t
L 1
6 . 0 8 7 u H
1 2
L 2
1 4 . 7 u H
1 2
V s o u r c e
R s
5 0
C 2
2 . 4 3 5 n F
•L1=6.087uH
•L2=14.7uH
•C1=5.878nF
•C2=2.435nF
•L1=5.665uH
•C1=10.66nF
•C2=10.66nF
STEP2. Circuit
design and
calculation
STEP2. Circuit
design and
calculation
3.Passive Low Pass Filter Design (3/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7
Figure 3 Response and specification of the calculated circuits.
Fr equ en c y
1 00 KHz 1 . 0MHz 1 0MHz
d b( v ( ou t ) ) d b ( v ( o u t 3 ) )
- 4 0
- 3 0
- 2 0
- 1 0
0
Butterworth (1MHz,-3dB)
Chebyshev : (1MHz,-3dB)
(2.5MHz,-34.8dB)
(2.5MHz,-31.8dB)
3.3 Verification :
• Frequency Response Simulation
Pass-band Ripple (-2.81dB)
•Pass-band edge frequencies : 1 MHz
•Pass-band gains : -3 dB 
•Stop-band edge frequencies : 2.5 MHz
•Stop-band gains : < -30 dB 
•Butterworth Approximation
- No ripple 
- Roll-off rate is 80dB/decade 
•Chebyshev Approximation
- Pass-band ripple : -2.81dB 
- Steeper roll-of with less passive
component 
— Butterworth Approximation
— Butterworth Approximation
STEP3.
Verification
STEP3.
Verification
3.Passive Low Pass Filter Design (4/5)
3.4 Optimization :
- Use standard capacitor values (E-12 Capacitor Values)
- Optimize inductor values
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8
•L1=6.7 uH
•L2=15.4uH
•C1=5.6nF
•C2=2.2nF
•L1=6.06uH
•C1=10nF
•C2=10nF
Figure 4.1 Low-pass filter circuit with optimized element-values (Butterworth approximation).
Figure 4.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation).
0
C 1
5 . 6 n F
R L
5 0
o u t
L 1
6 . 7 u H
1 2
L 2
1 5 . 4 u H
1 2
V s o u r c e
R s
5 0
C 2
2 . 2 n F
0
C 2
1 0 n F
R L
5 0
L 1
6 . 0 6 u H
1 2
R s
5 0
o u t 3
C 1
1 0 n F
V s o u r c e
STEP4. Optimize with
standard capacitor value
(then verify)
STEP4. Optimize with
standard capacitor value
(then verify)
Fr e q ue n c y
10 0 KHz 1. 0MHz 1 0MHz
db( v ( ou t ) ) d b( v ( out 3) )
- 4 0
- 3 0
- 2 0
- 1 0
0
3.Passive Low Pass Filter Design (4/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9
Figure 5 Response and specification of the optimized circuits.
Butterworth (1MHz,-3dB)
Chebyshev : (1MHz,-3dB)
(2.5MHz,-34.3dB)
(2.5MHz,-31.8dB)
3.4 Optimization :
• Frequency Response Simulation
Pass-band Ripple (-2.62dB)
•Pass-band edge frequencies : 1 MHz
•Pass-band gains : -3 dB 
•Stop-band edge frequencies : 2.5 MHz
•Stop-band gains : < -30 dB 
•Butterworth Approximation
- No ripple 
- Roll-off rate is 80dB/decade 
•Chebyshev Approximation
- Pass-band ripple : -2.62dB 
- Steeper roll-of with less passive
component — Butterworth Approximation
— Butterworth Approximation
3.Passive Low Pass Filter Design (5/5)
3.5 Elements test :
- ± 5% test for each element value.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10
•L1=6.7 uH (± 5%)
•L2=15.4uH (± 5%)
•C1=5.6nF (± 5%)
•C2=2.2nF (± 5%)
•L1=6.06uH (± 5%)
•C1=10nF (± 5%)
•C2=10nF (± 5%)
Figure 6.1 Low-pass filter circuit with ± 5% of the element-values (Butterworth approximation).
Figure 6.1 Low-pass filter circuit with ± 5% of the element-values (Chebyshev approximation).
0
C 1
5 . 6 n F
R L
5 0
o u t
L 1
6 . 7 u H
1 2
L 2
1 5 . 4 u H
1 2
V s o u r c e
R s
5 0
C 2
2 . 2 n F
0
C 2
1 0 n F
R L
5 0
L 1
6 . 0 6 u H
1 2
R s
5 0
o u t 3
C 1
1 0 n F
V s o u r c e
± 5% ± 5%
± 5% ± 5%
± 5%
± 5% ± 5%
STEP5. Elements test
(± 5%)
STEP5. Elements test
(± 5%)
Fr eq ue nc y
100 KHz 1. 0 MHz 10 MHz
d b( v ( out 3 ) )
- 4 0
- 2 0
0
Fr eq uenc y
1 00 KHz 1 . 0 MHz 10 MHz
d b( v ( ou t ) )
- 4 0
- 2 0
0
3.Passive Low Pass Filter Design (5/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11
Figure 7 Response and specification when the element values are error with ±5%.
3.5 Elements test :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
Cutoff frequency : 0.9525M, 1M, 1.0527M
Chebyshev
— +5%
— standard values
— -5%
Pass-band gain (-3 dB) Cutoff frequency : 0.9524M, 1M, 1.0526M
V s o u r c e
0
C 2
1 0 n F
R L 2
5 0
L 1
6 . 0 6 u H
1 2
R s 2
5 0
o u t
C 1
1 0 n F
0
C 1
5 . 6 n
R L
5 0
o u t
L 1
6 . 7 u
1 2
L 2
1 5 . 4 u
1 2
V s o u r c e
R s
5 0
C 2
2 . 2 n
3.Passive Low Pass Filter Design
3.6 Result :
• Low-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12
•L1=6.7 uH (± 5%)
•L2=15.4uH (± 5%)
•C1=5.6nF (± 5%)
•C2=2.2nF (± 5%)
•L1=6.06uH (± 5%)
•C1=10nF (± 5%)
•C2=10nF (± 5%)
Figure 8.1 Low-pass filter circuit with all element-values (Butterworth approximation).
Figure 8.1 Low-pass filter circuit all element-values (Chebyshev approximation).
± 5% ± 5%
± 5% ± 5%
± 5%
± 5% ± 5%
Result : Filter circuit
with all element values
Result : Filter circuit
with all element values
Fr equen c y
10KHz 100KHz 1. 0MHz 10MHz 100MHz
db( v ( out ) )
- 80
- 60
- 40
- 20
0
4.Passive High Pass Filter Design (Example)
Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13
Figure 9 High-pass filter response and specification
Pass-band Region
Stop-band Region
Pass-band edge frequency = 1 MHz
Pass-band gain = -3 dB
Stop-band edge frequency = 0.4 MHz
Stop-band gain = -30 dB
•Pass-band edge frequency : 1 MHz (Cutoff frequency)
- Pass-band gain : -3 dB
•Stop-band edge frequency : 0.4 MHz
- Stop-band gain : -30 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Source Impedance : 50 Ω
V s o u r c e
0
C 2
1 n F
R L 2
5 0
L 1
1 0 . 6 u H
1
2
R s 2
5 0
o u t
C 1
1 n F
0
C 1
4 . 7 n F
R L
5 0
o u t
L 1
4 . 3 u H
1
2
L 2
7 . 1 u H
1
2
V s o u r c e
R s
5 0
C 2
1 . 8 n F
4.Passive High Pass Filter Design (Example)
Result :
• High-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14
•C1=4.7nF (± 5%)
•C2=1.8nF (± 5%)
•L1=4.3uF (± 5%)
•L2=7.1uH (± 5%)
•L1=6.06uH (± 5%)
•C1=10nF (± 5%)
•C2=10nF (± 5%)
Figure 9.1 High-pass filter circuit with all element-values (Butterworth approximation).
Figure 9.1 High-pass filter circuit all element-values (Chebyshev approximation).
± 5% ± 5%
± 5% ± 5%
± 5%
± 5%
± 5%
Fr e quenc y
100KHz 1. 0MHz 10MHz
db( v ( ou t ) )
- 40
- 20
0
Fr eque nc y
100KHz 1 . 0MHz 10MHz
db( v ( out ) )
- 40
- 20
0
4.Passive High Pass Filter Design (Example)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15
Figure 10 Response and specification when the element values are error with ±5%.
Elements test :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
Cutoff frequency : 0.952M, 1M, 1.052M
Chebyshev
— +5%
— standard values
— -5%
Pass-band gain (-3 dB) Cutoff frequency : 0.9523M, 1M, 1.0526M
Pass-band Ripple (-2.7dB)
•Low end pass band frequency : 1 MHz (fC-L)
- Pass-band gain : -3 dB
•Low end stop band frequency : 0.4 MHz
- Stop-band gain : < -25 dB
•High end pass band frequency : 3 MHz (fC-H)
- Pass-band gain : -3 dB
•High end stop band frequency : 5 MHz
- Stop-band gain : < -25 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Source Impedance : 50 Ω
Fr e qu e nc y
1. 0MHz 10 MHz3 00 KHz
d b( v ( ou t ) )
- 40
- 30
- 20
- 10
0
5.Passive Band Pass Filter Design (Example)
Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16
Figure 11 Band-pass filter response and specification
Pass-band Region
Low end pass band frequency = 1 MHz
Pass-band gain = -3 dB
Low end stop band frequency = 0.6 MHz
Stop-band gain < -25 dB
Stop-band RegionStop-band Region
High end pass band frequency = 3 MHz
High end stop band frequency = 0.6 MHz
L 4
7 . 3 u H
1
2
C 4
1 . 2 n
0
R L
5 0
o u t
V s o u r c e
R s
5 0
L 1
3 u H
1 2
C 1
2 . 7 n
L 2
2 . 8 u H
1
2
L 3
7 . 8 u H
1 2
C 2
2 . 7 n
C 3
1 . 2 n
5.Passive Band Pass Filter Design (Example)
Result (Butterworth approximation) :
• High-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17
•L1 = 3uH (± 5%)
•L2 = 2.8uH (± 5%)
•L3 = 7.8uH (± 5%)
•L4 = 7.3uH (± 5%)
•C1 = 2.7nH (± 5%)
•C2 = 2.7nF (± 5%)
•C3 = 1.2nF (± 5%)
•C4 = 1.2nF (± 5%)
Figure 12 Band-pass filter circuit with all element-values (Butterworth approximation).
± 5% ± 5%
± 5% ± 5%
± 5% ± 5%
± 5% ± 5%
Fr equenc y
1. 0MHz 10MHz300KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
5.Passive Band Pass Filter Design (Example)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18
Figure 13 Response and specification when the element values are error with ±5%.
Elements test (Butterworth approximation) :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
fC-L: 0.95M, 1M, 1.05M
fC-H: 2.876M, 3M, 3.178M
0
R L
5 0
o u t
V s o u r c e
R s
5 0
L 1
1 2 . 3 u
1 2
C 1
6 8 0 p
L 2
7 u
1
2
L 3
1 2 . 3 u
1 2
C 2
1 . 2 n
C 3
6 8 0 p
5.Passive Band Pass Filter Design (Example)
Result (Chebyshev approximation) :
• High-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19
•L1 = 12.3uH (± 5%)
•L2 = 7uH (± 5%)
•L3 = 12.3uH (± 5%)
•C1 = 680pF (± 5%)
•C2 = 1.2nF (± 5%)
•C3 = 680pF (± 5%)
Figure 14 Band-pass filter circuit with all element-values (Chebyshev approximation).
± 5% ± 5%
± 5% ± 5%
± 5% ± 5%
Fr equenc y
1. 0MHz 10MHz300KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
5.Passive Band Pass Filter Design (Example)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20
Figure 15 Response and specification when the element values are error with ±5%.
Elements test (Chebyshev approximation) :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Chebyshev
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
fC-L: 0.952M, 1M, 1.052M
fC-H: 2.8812M, 3M, 3.184M
Pass-band Ripple (-2.63dB)
Fr equenc y
1. 0MHz 10MHz300KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
•Low end pass band frequency : 1 MHz (fC-L)
- Pass-band gain : -3 dB
•Low end stop band frequency : 1.4 MHz
- Stop-band gain : < -25 dB
•High end pass band frequency : 3 MHz (fC-H)
- Pass-band gain : -3 dB
•High end stop band frequency : 2.2 MHz
- Stop-band gain : < -25 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Source Impedance : 50 Ω
6.Passive Band Reject Filter Design (Example)
Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21
Figure 16 Band reject filter response and specification
Pass-band Region
Low end pass band frequency = 1 MHz
Pass-band gain = -3 dB
Low end stop band frequency
= 0.6 MHz
Stop-band gain < -25 dB
Stop-band Region
High end pass band frequency = 3 MHz
High end stop band frequency
= 0.6 MHz
Pass-band Region
0
R L
5 0
V s o u r c e
R s
5 0
L 1
3 . 5 5 u
1 2 o u t
C 1
2 n
L 2
2 . 2 u
1
2
C 2
3 . 3 n
L 3
9 u
1 2
C 3
1 . 2 n
6.Passive Band Reject Filter Design (Example)
Result :
• High-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22
•L1 = 3.55uH (± 5%)
•L2 = 2.2uH (± 5%)
•L3 = 9uH (± 5%)
•C1 = 2nH (± 5%)
•C2 = 3.3nF (± 5%)
•C3 = 1.2nF (± 5%)
Figure 17 Band-reject filter circuit with all element-values
± 5%
± 5%
± 5%
± 5%
± 5%
± 5%
Fr equenc y
1. 0MHz 10MHz300KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
6.Passive Band Reject Filter Design (Example)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23
Figure 13 Response and specification when the element values are error with ±5%.
Elements test :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
fC-L: 0.9457M, 1M, 1.0456M fC-H: 2.873M, 3M, 3.175M

More Related Content

What's hot

High-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxHigh-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxssuserccb0ae
 
Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Ridwanul Hoque
 
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014Rohde & Schwarz North America
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADSankit_master
 
Fabrication of diodes, resistors, capacitors, fe ts
Fabrication of diodes, resistors, capacitors, fe tsFabrication of diodes, resistors, capacitors, fe ts
Fabrication of diodes, resistors, capacitors, fe tsKarthik Vivek
 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loopPreet_patel
 
Power amplifier ppt
Power amplifier pptPower amplifier ppt
Power amplifier pptKrishna Ece
 
Amplifier frequency response (part 2)
Amplifier frequency response (part 2)Amplifier frequency response (part 2)
Amplifier frequency response (part 2)Jamil Ahmed
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationPei-Che Chang
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End ArchitectureSHIV DUTT
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission linesAmit Rastogi
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterIkhwan_Fakrudin
 

What's hot (20)

Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
Active filters
Active filtersActive filters
Active filters
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
 
High-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxHigh-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptx
 
Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)Single Sideband Suppressed Carrier (SSB-SC)
Single Sideband Suppressed Carrier (SSB-SC)
 
An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014An Introduction to RF Design, Live presentation at EELive 2014
An Introduction to RF Design, Live presentation at EELive 2014
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADS
 
Fabrication of diodes, resistors, capacitors, fe ts
Fabrication of diodes, resistors, capacitors, fe tsFabrication of diodes, resistors, capacitors, fe ts
Fabrication of diodes, resistors, capacitors, fe ts
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loop
 
Power amplifier ppt
Power amplifier pptPower amplifier ppt
Power amplifier ppt
 
Amplifier frequency response (part 2)
Amplifier frequency response (part 2)Amplifier frequency response (part 2)
Amplifier frequency response (part 2)
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF consideration
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverter
 
Filters
FiltersFilters
Filters
 

Similar to Passive Filter Design using PSpice

Active_Filter.pptx.pdffdffgygydhdudyddyxyddyd
Active_Filter.pptx.pdffdffgygydhdudyddyxyddydActive_Filter.pptx.pdffdffgygydhdudyddyxyddyd
Active_Filter.pptx.pdffdffgygydhdudyddyxyddydsidhantkumarpdt
 
MagneTag Presentation Winter Quarter V3.0
MagneTag Presentation Winter Quarter V3.0MagneTag Presentation Winter Quarter V3.0
MagneTag Presentation Winter Quarter V3.0John-Paul Petersen
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studiesPhani Kumar
 
Circuit Theory 2: Filters Project Report
Circuit Theory 2: Filters Project ReportCircuit Theory 2: Filters Project Report
Circuit Theory 2: Filters Project ReportMichael Sandy
 
Design of Filter Circuits using MATLAB, Multisim, and Excel
Design of Filter Circuits using MATLAB, Multisim, and ExcelDesign of Filter Circuits using MATLAB, Multisim, and Excel
Design of Filter Circuits using MATLAB, Multisim, and ExcelDavid Sandy
 
National college of science and technology
National college of science and technologyNational college of science and technology
National college of science and technologySarah Krystelle
 
ECE 569 Digital Signal Processing Project
ECE 569 Digital Signal Processing ProjectECE 569 Digital Signal Processing Project
ECE 569 Digital Signal Processing Project?? ?
 
ECE 24 Final Report 052209
ECE 24 Final Report 052209ECE 24 Final Report 052209
ECE 24 Final Report 052209crh342
 

Similar to Passive Filter Design using PSpice (20)

Active_Filter.pptx.pdffdffgygydhdudyddyxyddyd
Active_Filter.pptx.pdffdffgygydhdudyddyxyddydActive_Filter.pptx.pdffdffgygydhdudyddyxyddyd
Active_Filter.pptx.pdffdffgygydhdudyddyxyddyd
 
MagneTag Presentation Winter Quarter V3.0
MagneTag Presentation Winter Quarter V3.0MagneTag Presentation Winter Quarter V3.0
MagneTag Presentation Winter Quarter V3.0
 
Pagara
PagaraPagara
Pagara
 
B tech
B techB tech
B tech
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studies
 
Circuit Theory 2: Filters Project Report
Circuit Theory 2: Filters Project ReportCircuit Theory 2: Filters Project Report
Circuit Theory 2: Filters Project Report
 
Design of Filter Circuits using MATLAB, Multisim, and Excel
Design of Filter Circuits using MATLAB, Multisim, and ExcelDesign of Filter Circuits using MATLAB, Multisim, and Excel
Design of Filter Circuits using MATLAB, Multisim, and Excel
 
National college of science and technology
National college of science and technologyNational college of science and technology
National college of science and technology
 
Pula
PulaPula
Pula
 
Cauan (2)
Cauan (2)Cauan (2)
Cauan (2)
 
ECE 569 Digital Signal Processing Project
ECE 569 Digital Signal Processing ProjectECE 569 Digital Signal Processing Project
ECE 569 Digital Signal Processing Project
 
Exp passive filter (6)
Exp passive filter (6)Exp passive filter (6)
Exp passive filter (6)
 
Cauan
CauanCauan
Cauan
 
AHK P5 Active Filter TR5 Final
AHK P5 Active Filter TR5 FinalAHK P5 Active Filter TR5 Final
AHK P5 Active Filter TR5 Final
 
ECE 24 Final Report 052209
ECE 24 Final Report 052209ECE 24 Final Report 052209
ECE 24 Final Report 052209
 
Butterworth filter
Butterworth filterButterworth filter
Butterworth filter
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Balane
BalaneBalane
Balane
 
Agdon
AgdonAgdon
Agdon
 
Comm8(exp.3)
Comm8(exp.3)Comm8(exp.3)
Comm8(exp.3)
 

More from Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Recently uploaded

(AISHA) Ambegaon Khurd Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
(AISHA) Ambegaon Khurd Call Girls Just Call 7001035870 [ Cash on Delivery ] P...(AISHA) Ambegaon Khurd Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
(AISHA) Ambegaon Khurd Call Girls Just Call 7001035870 [ Cash on Delivery ] P...ranjana rawat
 
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️soniya singh
 
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts ServiceVVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Servicearoranaina404
 
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...BarusRa
 
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130Suhani Kapoor
 
VVIP Pune Call Girls Dange Chowk (8250192130) Pune Escorts Nearby with Comple...
VVIP Pune Call Girls Dange Chowk (8250192130) Pune Escorts Nearby with Comple...VVIP Pune Call Girls Dange Chowk (8250192130) Pune Escorts Nearby with Comple...
VVIP Pune Call Girls Dange Chowk (8250192130) Pune Escorts Nearby with Comple...Call Girls in Nagpur High Profile
 
Verified Trusted Call Girls Adugodi💘 9352852248 Good Looking standard Profil...
Verified Trusted Call Girls Adugodi💘 9352852248  Good Looking standard Profil...Verified Trusted Call Girls Adugodi💘 9352852248  Good Looking standard Profil...
Verified Trusted Call Girls Adugodi💘 9352852248 Good Looking standard Profil...kumaririma588
 
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service 🧵
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service  🧵CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service  🧵
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service 🧵anilsa9823
 
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...Call Girls in Nagpur High Profile
 
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)amitlee9823
 
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...home
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Gi...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Gi...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Gi...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Gi...Pooja Nehwal
 
Peaches App development presentation deck
Peaches App development presentation deckPeaches App development presentation deck
Peaches App development presentation decktbatkhuu1
 
Fashion trends before and after covid.pptx
Fashion trends before and after covid.pptxFashion trends before and after covid.pptx
Fashion trends before and after covid.pptxVanshNarang19
 
Design Inspiration for College by Slidesgo.pptx
Design Inspiration for College by Slidesgo.pptxDesign Inspiration for College by Slidesgo.pptx
Design Inspiration for College by Slidesgo.pptxTusharBahuguna2
 
Best VIP Call Girls Noida Sector 44 Call Me: 8448380779
Best VIP Call Girls Noida Sector 44 Call Me: 8448380779Best VIP Call Girls Noida Sector 44 Call Me: 8448380779
Best VIP Call Girls Noida Sector 44 Call Me: 8448380779Delhi Call girls
 

Recently uploaded (20)

(AISHA) Ambegaon Khurd Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
(AISHA) Ambegaon Khurd Call Girls Just Call 7001035870 [ Cash on Delivery ] P...(AISHA) Ambegaon Khurd Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
(AISHA) Ambegaon Khurd Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
 
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
 
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts ServiceVVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
 
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
 
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
 
VVIP Pune Call Girls Dange Chowk (8250192130) Pune Escorts Nearby with Comple...
VVIP Pune Call Girls Dange Chowk (8250192130) Pune Escorts Nearby with Comple...VVIP Pune Call Girls Dange Chowk (8250192130) Pune Escorts Nearby with Comple...
VVIP Pune Call Girls Dange Chowk (8250192130) Pune Escorts Nearby with Comple...
 
young call girls in Vivek Vihar🔝 9953056974 🔝 Delhi escort Service
young call girls in Vivek Vihar🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Vivek Vihar🔝 9953056974 🔝 Delhi escort Service
young call girls in Vivek Vihar🔝 9953056974 🔝 Delhi escort Service
 
꧁❤ Hauz Khas Call Girls Service Hauz Khas Delhi ❤꧂ 9999965857 ☎️ Hard And Sex...
꧁❤ Hauz Khas Call Girls Service Hauz Khas Delhi ❤꧂ 9999965857 ☎️ Hard And Sex...꧁❤ Hauz Khas Call Girls Service Hauz Khas Delhi ❤꧂ 9999965857 ☎️ Hard And Sex...
꧁❤ Hauz Khas Call Girls Service Hauz Khas Delhi ❤꧂ 9999965857 ☎️ Hard And Sex...
 
B. Smith. (Architectural Portfolio.).pdf
B. Smith. (Architectural Portfolio.).pdfB. Smith. (Architectural Portfolio.).pdf
B. Smith. (Architectural Portfolio.).pdf
 
Verified Trusted Call Girls Adugodi💘 9352852248 Good Looking standard Profil...
Verified Trusted Call Girls Adugodi💘 9352852248  Good Looking standard Profil...Verified Trusted Call Girls Adugodi💘 9352852248  Good Looking standard Profil...
Verified Trusted Call Girls Adugodi💘 9352852248 Good Looking standard Profil...
 
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service 🧵
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service  🧵CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service  🧵
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service 🧵
 
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...
VVIP Pune Call Girls Hadapsar (7001035870) Pune Escorts Nearby with Complete ...
 
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Gi...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Gi...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Gi...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Gi...
 
Peaches App development presentation deck
Peaches App development presentation deckPeaches App development presentation deck
Peaches App development presentation deck
 
Fashion trends before and after covid.pptx
Fashion trends before and after covid.pptxFashion trends before and after covid.pptx
Fashion trends before and after covid.pptx
 
Design Inspiration for College by Slidesgo.pptx
Design Inspiration for College by Slidesgo.pptxDesign Inspiration for College by Slidesgo.pptx
Design Inspiration for College by Slidesgo.pptx
 
Best VIP Call Girls Noida Sector 44 Call Me: 8448380779
Best VIP Call Girls Noida Sector 44 Call Me: 8448380779Best VIP Call Girls Noida Sector 44 Call Me: 8448380779
Best VIP Call Girls Noida Sector 44 Call Me: 8448380779
 
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance VVIP 🍎 SER...
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance  VVIP 🍎 SER...Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance  VVIP 🍎 SER...
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance VVIP 🍎 SER...
 

Passive Filter Design using PSpice

  • 1. Passive Filter Design All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Design Services
  • 2. Contents Slide # 1. Filter Design Category.............................................................................. 2. Passive Filter Design Flow- Chart............................................................. 3. Passive Low Pass Filter Design............................................................... 3.1 Specifications : .................................................................................. 3.2 Calculation : ...................................................................................... . 3.3 Verification : ...................................................................................... . 3.4 Optimization : .................................................................................... 3.5 Elements 3 4 5 5 6 7 8-9 10-11 12 13-15 16-20 21-23 2All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
  • 3. 1.Filter Design Category Available Filter Types • Low Pass Filter • High Pass Filter • Band Pass Filter • Band Reject Filter Approximation • Butterworth - No ripple - Smooth roll-off (rate of 20dB/decade for every pole) • Chebyshev - Pass-band ripple specification would be required. - Steeper roll-of Topology • Passive - High frequency range (> 1 MHz) - Source and load impedance specifications would be required • Active - Low frequency range (1 Hz to 1 MHz) - Unity-Gain Sallen-Key configuration (see Figure 1.0) Number of Order • 2nd -10th All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
  • 4. 2.Passive Filter Design Flow Chart All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4 2. Circuit design and calculation2. Circuit design and calculation 3. Verification3. Verification 4. Optimize with standard capacitor value4. Optimize with standard capacitor value 5. Elements test (± 5%)5. Elements test (± 5%) Meet the spec?Meet the spec? No Yes Satisfy?Satisfy? Yes YESYES Result : Filter circuit with all element values Result : Filter circuit with all element values Use Active FilterUse Active Filter 1.Customer’s specification 1.Customer’s specification No
  • 5. 3.Passive Low Pass Filter Design (1/5) 3.1 Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5 Fr e que nc y 1 0 0KHz 1. 0MHz 10 MHz db ( v ( o ut ) ) - 4 0 - 3 0 - 2 0 - 1 0 0 Figure 1 Low-pass filter response and specification Pass-band Region Stop-band Region Pass-band edge frequency = 1 MHz Pass-band gain = -3 dB Stop-band edge frequency = 2.5 MHz Stop-band gain = -30 dB •Pass-band edge frequency : 1 MHz (fCutoff) - Pass-band gain : -3 dB •Stop-band edge frequency : 2.5 MHz - Stop-band gain : -30 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Source Impedance : 50 Ω STEP1.Customer’s specification STEP1.Customer’s specification
  • 6. 3.Passive Low Pass Filter Design (2/5) 3.2 Calculation : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6 Figure 2.1 Low-pass filter circuit with calculated element-values (Butterworth approximation). Figure 2.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation). 0 C 2 1 0 . 6 6 n F R L 2 5 0 L 1 5 . 6 6 5 u H 1 2 R s 5 0 o u t 3 C 1 1 0 . 6 6 n F V s o u r c e 0 C 1 5 . 8 7 8 n F R L 5 0 o u t L 1 6 . 0 8 7 u H 1 2 L 2 1 4 . 7 u H 1 2 V s o u r c e R s 5 0 C 2 2 . 4 3 5 n F •L1=6.087uH •L2=14.7uH •C1=5.878nF •C2=2.435nF •L1=5.665uH •C1=10.66nF •C2=10.66nF STEP2. Circuit design and calculation STEP2. Circuit design and calculation
  • 7. 3.Passive Low Pass Filter Design (3/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7 Figure 3 Response and specification of the calculated circuits. Fr equ en c y 1 00 KHz 1 . 0MHz 1 0MHz d b( v ( ou t ) ) d b ( v ( o u t 3 ) ) - 4 0 - 3 0 - 2 0 - 1 0 0 Butterworth (1MHz,-3dB) Chebyshev : (1MHz,-3dB) (2.5MHz,-34.8dB) (2.5MHz,-31.8dB) 3.3 Verification : • Frequency Response Simulation Pass-band Ripple (-2.81dB) •Pass-band edge frequencies : 1 MHz •Pass-band gains : -3 dB  •Stop-band edge frequencies : 2.5 MHz •Stop-band gains : < -30 dB  •Butterworth Approximation - No ripple  - Roll-off rate is 80dB/decade  •Chebyshev Approximation - Pass-band ripple : -2.81dB  - Steeper roll-of with less passive component  — Butterworth Approximation — Butterworth Approximation STEP3. Verification STEP3. Verification
  • 8. 3.Passive Low Pass Filter Design (4/5) 3.4 Optimization : - Use standard capacitor values (E-12 Capacitor Values) - Optimize inductor values All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8 •L1=6.7 uH •L2=15.4uH •C1=5.6nF •C2=2.2nF •L1=6.06uH •C1=10nF •C2=10nF Figure 4.1 Low-pass filter circuit with optimized element-values (Butterworth approximation). Figure 4.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation). 0 C 1 5 . 6 n F R L 5 0 o u t L 1 6 . 7 u H 1 2 L 2 1 5 . 4 u H 1 2 V s o u r c e R s 5 0 C 2 2 . 2 n F 0 C 2 1 0 n F R L 5 0 L 1 6 . 0 6 u H 1 2 R s 5 0 o u t 3 C 1 1 0 n F V s o u r c e STEP4. Optimize with standard capacitor value (then verify) STEP4. Optimize with standard capacitor value (then verify)
  • 9. Fr e q ue n c y 10 0 KHz 1. 0MHz 1 0MHz db( v ( ou t ) ) d b( v ( out 3) ) - 4 0 - 3 0 - 2 0 - 1 0 0 3.Passive Low Pass Filter Design (4/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9 Figure 5 Response and specification of the optimized circuits. Butterworth (1MHz,-3dB) Chebyshev : (1MHz,-3dB) (2.5MHz,-34.3dB) (2.5MHz,-31.8dB) 3.4 Optimization : • Frequency Response Simulation Pass-band Ripple (-2.62dB) •Pass-band edge frequencies : 1 MHz •Pass-band gains : -3 dB  •Stop-band edge frequencies : 2.5 MHz •Stop-band gains : < -30 dB  •Butterworth Approximation - No ripple  - Roll-off rate is 80dB/decade  •Chebyshev Approximation - Pass-band ripple : -2.62dB  - Steeper roll-of with less passive component — Butterworth Approximation — Butterworth Approximation
  • 10. 3.Passive Low Pass Filter Design (5/5) 3.5 Elements test : - ± 5% test for each element value. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10 •L1=6.7 uH (± 5%) •L2=15.4uH (± 5%) •C1=5.6nF (± 5%) •C2=2.2nF (± 5%) •L1=6.06uH (± 5%) •C1=10nF (± 5%) •C2=10nF (± 5%) Figure 6.1 Low-pass filter circuit with ± 5% of the element-values (Butterworth approximation). Figure 6.1 Low-pass filter circuit with ± 5% of the element-values (Chebyshev approximation). 0 C 1 5 . 6 n F R L 5 0 o u t L 1 6 . 7 u H 1 2 L 2 1 5 . 4 u H 1 2 V s o u r c e R s 5 0 C 2 2 . 2 n F 0 C 2 1 0 n F R L 5 0 L 1 6 . 0 6 u H 1 2 R s 5 0 o u t 3 C 1 1 0 n F V s o u r c e ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% STEP5. Elements test (± 5%) STEP5. Elements test (± 5%)
  • 11. Fr eq ue nc y 100 KHz 1. 0 MHz 10 MHz d b( v ( out 3 ) ) - 4 0 - 2 0 0 Fr eq uenc y 1 00 KHz 1 . 0 MHz 10 MHz d b( v ( ou t ) ) - 4 0 - 2 0 0 3.Passive Low Pass Filter Design (5/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11 Figure 7 Response and specification when the element values are error with ±5%. 3.5 Elements test : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.9525M, 1M, 1.0527M Chebyshev — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.9524M, 1M, 1.0526M
  • 12. V s o u r c e 0 C 2 1 0 n F R L 2 5 0 L 1 6 . 0 6 u H 1 2 R s 2 5 0 o u t C 1 1 0 n F 0 C 1 5 . 6 n R L 5 0 o u t L 1 6 . 7 u 1 2 L 2 1 5 . 4 u 1 2 V s o u r c e R s 5 0 C 2 2 . 2 n 3.Passive Low Pass Filter Design 3.6 Result : • Low-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12 •L1=6.7 uH (± 5%) •L2=15.4uH (± 5%) •C1=5.6nF (± 5%) •C2=2.2nF (± 5%) •L1=6.06uH (± 5%) •C1=10nF (± 5%) •C2=10nF (± 5%) Figure 8.1 Low-pass filter circuit with all element-values (Butterworth approximation). Figure 8.1 Low-pass filter circuit all element-values (Chebyshev approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% Result : Filter circuit with all element values Result : Filter circuit with all element values
  • 13. Fr equen c y 10KHz 100KHz 1. 0MHz 10MHz 100MHz db( v ( out ) ) - 80 - 60 - 40 - 20 0 4.Passive High Pass Filter Design (Example) Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13 Figure 9 High-pass filter response and specification Pass-band Region Stop-band Region Pass-band edge frequency = 1 MHz Pass-band gain = -3 dB Stop-band edge frequency = 0.4 MHz Stop-band gain = -30 dB •Pass-band edge frequency : 1 MHz (Cutoff frequency) - Pass-band gain : -3 dB •Stop-band edge frequency : 0.4 MHz - Stop-band gain : -30 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Source Impedance : 50 Ω
  • 14. V s o u r c e 0 C 2 1 n F R L 2 5 0 L 1 1 0 . 6 u H 1 2 R s 2 5 0 o u t C 1 1 n F 0 C 1 4 . 7 n F R L 5 0 o u t L 1 4 . 3 u H 1 2 L 2 7 . 1 u H 1 2 V s o u r c e R s 5 0 C 2 1 . 8 n F 4.Passive High Pass Filter Design (Example) Result : • High-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14 •C1=4.7nF (± 5%) •C2=1.8nF (± 5%) •L1=4.3uF (± 5%) •L2=7.1uH (± 5%) •L1=6.06uH (± 5%) •C1=10nF (± 5%) •C2=10nF (± 5%) Figure 9.1 High-pass filter circuit with all element-values (Butterworth approximation). Figure 9.1 High-pass filter circuit all element-values (Chebyshev approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5%
  • 15. Fr e quenc y 100KHz 1. 0MHz 10MHz db( v ( ou t ) ) - 40 - 20 0 Fr eque nc y 100KHz 1 . 0MHz 10MHz db( v ( out ) ) - 40 - 20 0 4.Passive High Pass Filter Design (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15 Figure 10 Response and specification when the element values are error with ±5%. Elements test : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.952M, 1M, 1.052M Chebyshev — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.9523M, 1M, 1.0526M Pass-band Ripple (-2.7dB)
  • 16. •Low end pass band frequency : 1 MHz (fC-L) - Pass-band gain : -3 dB •Low end stop band frequency : 0.4 MHz - Stop-band gain : < -25 dB •High end pass band frequency : 3 MHz (fC-H) - Pass-band gain : -3 dB •High end stop band frequency : 5 MHz - Stop-band gain : < -25 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Source Impedance : 50 Ω Fr e qu e nc y 1. 0MHz 10 MHz3 00 KHz d b( v ( ou t ) ) - 40 - 30 - 20 - 10 0 5.Passive Band Pass Filter Design (Example) Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16 Figure 11 Band-pass filter response and specification Pass-band Region Low end pass band frequency = 1 MHz Pass-band gain = -3 dB Low end stop band frequency = 0.6 MHz Stop-band gain < -25 dB Stop-band RegionStop-band Region High end pass band frequency = 3 MHz High end stop band frequency = 0.6 MHz
  • 17. L 4 7 . 3 u H 1 2 C 4 1 . 2 n 0 R L 5 0 o u t V s o u r c e R s 5 0 L 1 3 u H 1 2 C 1 2 . 7 n L 2 2 . 8 u H 1 2 L 3 7 . 8 u H 1 2 C 2 2 . 7 n C 3 1 . 2 n 5.Passive Band Pass Filter Design (Example) Result (Butterworth approximation) : • High-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17 •L1 = 3uH (± 5%) •L2 = 2.8uH (± 5%) •L3 = 7.8uH (± 5%) •L4 = 7.3uH (± 5%) •C1 = 2.7nH (± 5%) •C2 = 2.7nF (± 5%) •C3 = 1.2nF (± 5%) •C4 = 1.2nF (± 5%) Figure 12 Band-pass filter circuit with all element-values (Butterworth approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5%
  • 18. Fr equenc y 1. 0MHz 10MHz300KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 5.Passive Band Pass Filter Design (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18 Figure 13 Response and specification when the element values are error with ±5%. Elements test (Butterworth approximation) : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) fC-L: 0.95M, 1M, 1.05M fC-H: 2.876M, 3M, 3.178M
  • 19. 0 R L 5 0 o u t V s o u r c e R s 5 0 L 1 1 2 . 3 u 1 2 C 1 6 8 0 p L 2 7 u 1 2 L 3 1 2 . 3 u 1 2 C 2 1 . 2 n C 3 6 8 0 p 5.Passive Band Pass Filter Design (Example) Result (Chebyshev approximation) : • High-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19 •L1 = 12.3uH (± 5%) •L2 = 7uH (± 5%) •L3 = 12.3uH (± 5%) •C1 = 680pF (± 5%) •C2 = 1.2nF (± 5%) •C3 = 680pF (± 5%) Figure 14 Band-pass filter circuit with all element-values (Chebyshev approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5%
  • 20. Fr equenc y 1. 0MHz 10MHz300KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 5.Passive Band Pass Filter Design (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20 Figure 15 Response and specification when the element values are error with ±5%. Elements test (Chebyshev approximation) : • Frequency Response Simulation, compare to -5% and +5% of all element values. Chebyshev — +5% — standard values — -5% Pass-band gain (-3 dB) fC-L: 0.952M, 1M, 1.052M fC-H: 2.8812M, 3M, 3.184M Pass-band Ripple (-2.63dB)
  • 21. Fr equenc y 1. 0MHz 10MHz300KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 •Low end pass band frequency : 1 MHz (fC-L) - Pass-band gain : -3 dB •Low end stop band frequency : 1.4 MHz - Stop-band gain : < -25 dB •High end pass band frequency : 3 MHz (fC-H) - Pass-band gain : -3 dB •High end stop band frequency : 2.2 MHz - Stop-band gain : < -25 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Source Impedance : 50 Ω 6.Passive Band Reject Filter Design (Example) Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21 Figure 16 Band reject filter response and specification Pass-band Region Low end pass band frequency = 1 MHz Pass-band gain = -3 dB Low end stop band frequency = 0.6 MHz Stop-band gain < -25 dB Stop-band Region High end pass band frequency = 3 MHz High end stop band frequency = 0.6 MHz Pass-band Region
  • 22. 0 R L 5 0 V s o u r c e R s 5 0 L 1 3 . 5 5 u 1 2 o u t C 1 2 n L 2 2 . 2 u 1 2 C 2 3 . 3 n L 3 9 u 1 2 C 3 1 . 2 n 6.Passive Band Reject Filter Design (Example) Result : • High-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22 •L1 = 3.55uH (± 5%) •L2 = 2.2uH (± 5%) •L3 = 9uH (± 5%) •C1 = 2nH (± 5%) •C2 = 3.3nF (± 5%) •C3 = 1.2nF (± 5%) Figure 17 Band-reject filter circuit with all element-values ± 5% ± 5% ± 5% ± 5% ± 5% ± 5%
  • 23. Fr equenc y 1. 0MHz 10MHz300KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 6.Passive Band Reject Filter Design (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23 Figure 13 Response and specification when the element values are error with ±5%. Elements test : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) fC-L: 0.9457M, 1M, 1.0456M fC-H: 2.873M, 3M, 3.175M