HYPOTHESIS TESTING
PART-VI
SINGLE VARIANCE
NADEEM UDDIN
ASSOCIATE PROFESSOR
OF STATISTICS
Test Concerning Variance
Example-1
A random sample of size 20 from a normal population
has a standard deviation S=4.51. Test the hypothesis
that 𝜎2 = 36 against the alternative that 𝜎2 < 36. Use a
0.05 level of significance.
Solution:
1.Hypothesis
H0: 𝜎2 = 36
H1: 𝜎2 < 36
2.Level of significance α = 0.05
3.Test statistic
4.Critical Region
In case of lower tail test i.e. H1 𝑖𝑠 ˂.
Reject H0, if 𝜒2
𝑐𝑎𝑙 ≤ 𝜒2
𝑡𝑎𝑏
Where
𝜒2
𝑡𝑎𝑏 = 𝜒2
1−𝛼,(𝑛−1)
= 𝜒2
1−0.05,(20−1) = 𝜒2
0.95,(19) = 10.117
𝜒2
𝑐𝑎𝑙 ≤ 10.117 (Using chi square table)
10.117
  212
2
n S




5.Computation
  
2
2 20 1 4.51
36
 

2 10.735cal 
6.Conclusion: Accept H0.
  212
2
n S




Example-2
A machine engine part produced by a company is claimed to
have diameter variance no longer than 0.0002 inches. A random
sample of 10 parts gave a sample variance of 0.0003. Test at 5%
level.
Solution:
1.Hypothesis
H0: 𝜎2
= 0.0002
H1: 𝜎2 > 0.0002
2.Level of significance α = 0.05
3.Test statistic
  212
2
n S




4.Critical Region
In case of upper tail test i.e. H1 𝑖𝑠 ˃.
Reject H0, if 𝜒2
𝑐𝑎𝑙 ≥ 𝜒2
𝑡𝑎𝑏
Where
𝜒2
𝑡𝑎𝑏 = 𝜒2
𝛼,(𝑛−1)
= 𝜒2
0.05,(10−1) = 𝜒2
0.05,(9) = 16.919
𝜒2
𝑐𝑎𝑙 ≥ 16.919 (Using chi square table)
5.Computation
  2 10 1 0.0003
0.0002
 

2 13.5cal 
6.Conclusion: Accept H0.
  212
2
n S




Example-3
Ten high school seniors taking the basic English test received the
following scores:28,26,30,24,25,29,31,26,23 and 27. Past scores
at their high school have shown the score to be normally
distributed with 𝜎2 = 16 against 𝜎2 ≠ 16 at α = 0.05
Solution: X X2
28 784
26 776
30 900
24 576
25 625
29 841
31 961
26 676
23 529
27 729
∑x=269 ∑x2=7297
1.Hypothesis
H0: 𝜎2
= 16
H1: 𝜎2 ≠ 16
2.Level of significance α = 0.05
3.Test statistic   212
2
n S




4.Critical Region
In case of two tail test i.e. H1 𝑖𝑠 ≠.
Reject H0, if 𝜒2
𝑐𝑎𝑙 ≤ 𝜒2
𝑡𝑎𝑏 or 𝜒2
𝑐𝑎𝑙 ≥ 𝜒2
𝑡𝑎𝑏.
Where 𝜒2
𝑡𝑎𝑏 = 𝜒2 𝛼
2
,(𝑛−1) = 𝜒2
0.05
2
,(10−1)
= 𝜒2
0.025, 9 = 19.023
𝜒2
𝑡𝑎𝑏 = 𝜒2
1−
𝛼
2,(𝑛−1)
= 𝜒2
1−
0.05
2 ,(10−1)
= 𝜒2
0.975, 9 = 2.700
𝜒2
𝑐𝑎𝑙 ≤ 2.700 or 𝜒2
𝑐𝑎𝑙 ≥ 19.023. (Using chi square table)
5.Computation
 
 
   
 
2 22 10 7297 2692 6.77
1 10 10 1
n x x
S
n n
  
  
 
 10 12
16
6.77



2
3.808cal 
6.Conclusion: Accept H0.
  212
2
n S





Hypothesis testing part vi single variance

  • 1.
    HYPOTHESIS TESTING PART-VI SINGLE VARIANCE NADEEMUDDIN ASSOCIATE PROFESSOR OF STATISTICS
  • 2.
    Test Concerning Variance Example-1 Arandom sample of size 20 from a normal population has a standard deviation S=4.51. Test the hypothesis that 𝜎2 = 36 against the alternative that 𝜎2 < 36. Use a 0.05 level of significance.
  • 3.
    Solution: 1.Hypothesis H0: 𝜎2 =36 H1: 𝜎2 < 36 2.Level of significance α = 0.05 3.Test statistic 4.Critical Region In case of lower tail test i.e. H1 𝑖𝑠 ˂. Reject H0, if 𝜒2 𝑐𝑎𝑙 ≤ 𝜒2 𝑡𝑎𝑏 Where 𝜒2 𝑡𝑎𝑏 = 𝜒2 1−𝛼,(𝑛−1) = 𝜒2 1−0.05,(20−1) = 𝜒2 0.95,(19) = 10.117 𝜒2 𝑐𝑎𝑙 ≤ 10.117 (Using chi square table) 10.117   212 2 n S    
  • 4.
    5.Computation    2 220 1 4.51 36    2 10.735cal  6.Conclusion: Accept H0.   212 2 n S    
  • 5.
    Example-2 A machine enginepart produced by a company is claimed to have diameter variance no longer than 0.0002 inches. A random sample of 10 parts gave a sample variance of 0.0003. Test at 5% level. Solution: 1.Hypothesis H0: 𝜎2 = 0.0002 H1: 𝜎2 > 0.0002 2.Level of significance α = 0.05 3.Test statistic   212 2 n S    
  • 6.
    4.Critical Region In caseof upper tail test i.e. H1 𝑖𝑠 ˃. Reject H0, if 𝜒2 𝑐𝑎𝑙 ≥ 𝜒2 𝑡𝑎𝑏 Where 𝜒2 𝑡𝑎𝑏 = 𝜒2 𝛼,(𝑛−1) = 𝜒2 0.05,(10−1) = 𝜒2 0.05,(9) = 16.919 𝜒2 𝑐𝑎𝑙 ≥ 16.919 (Using chi square table) 5.Computation   2 10 1 0.0003 0.0002    2 13.5cal  6.Conclusion: Accept H0.   212 2 n S    
  • 7.
    Example-3 Ten high schoolseniors taking the basic English test received the following scores:28,26,30,24,25,29,31,26,23 and 27. Past scores at their high school have shown the score to be normally distributed with 𝜎2 = 16 against 𝜎2 ≠ 16 at α = 0.05 Solution: X X2 28 784 26 776 30 900 24 576 25 625 29 841 31 961 26 676 23 529 27 729 ∑x=269 ∑x2=7297
  • 8.
    1.Hypothesis H0: 𝜎2 = 16 H1:𝜎2 ≠ 16 2.Level of significance α = 0.05 3.Test statistic   212 2 n S     4.Critical Region In case of two tail test i.e. H1 𝑖𝑠 ≠. Reject H0, if 𝜒2 𝑐𝑎𝑙 ≤ 𝜒2 𝑡𝑎𝑏 or 𝜒2 𝑐𝑎𝑙 ≥ 𝜒2 𝑡𝑎𝑏. Where 𝜒2 𝑡𝑎𝑏 = 𝜒2 𝛼 2 ,(𝑛−1) = 𝜒2 0.05 2 ,(10−1) = 𝜒2 0.025, 9 = 19.023 𝜒2 𝑡𝑎𝑏 = 𝜒2 1− 𝛼 2,(𝑛−1) = 𝜒2 1− 0.05 2 ,(10−1) = 𝜒2 0.975, 9 = 2.700 𝜒2 𝑐𝑎𝑙 ≤ 2.700 or 𝜒2 𝑐𝑎𝑙 ≥ 19.023. (Using chi square table)
  • 9.
    5.Computation          2 22 10 7297 2692 6.77 1 10 10 1 n x x S n n          10 12 16 6.77    2 3.808cal  6.Conclusion: Accept H0.   212 2 n S    