This document presents an overview of optimization algorithms on Riemannian manifolds. It begins by introducing concepts such as vector transport and retraction mappings that are used to generalize algorithms from Euclidean spaces to manifolds. It then summarizes several classical optimization methods including gradient descent, conjugate gradient, and variants of quasi-Newton methods adapted to the Riemannian setting using these geometric concepts. The convergence of the Fletcher-Reeves method is analyzed under standard assumptions on the objective function. Overall, the document provides a conceptual and mathematical foundation for optimization on manifolds.