This document summarizes a presentation on rigorously verifying the accuracy of numerical solutions to semi-linear parabolic partial differential equations using analytic semigroups. It introduces the considered problem of finding the solution to a semi-linear parabolic PDE. It then discusses using a piecewise linear finite element discretization in space and time to obtain an initial numerical solution. The goal is to rigorously enclose the true solution within a radius ρ of this numerical solution in the function space L∞(J;H10(Ω)). Key steps involve using properties of the analytic semigroup generated by the operator A and estimating discretization errors to compute the enclosure radius ρ.