This document discusses methods for identifying the source node of information spread in networks based on the observed spread over time. It begins by introducing epidemic models like SIS and SI for modeling information spread over networks. It then discusses maximum likelihood methods for identifying the source node on regular tree networks based on the observed subgraph. The accuracy of these methods increases with network size and degree. Extensions to other network structures and SIR models are also proposed. Overall, the document reviews mathematical models and algorithms for source identification in networks from limited observations of information spread.