SlideShare a Scribd company logo
GRID INERTIA
WHY IT
MATTERS IN A
RENEWABLE
WORLD
•General Electric will demolish the 750 MW Inland
Empire Energy Center (IEEC) in California that has
20 years remaining in its useful life. With solar and
wind dominating the grid, the plant has been
deemed uneconomical after operating well below
capacity for several years. The site will be used for a
new battery storage facility.
•Good news in terms of a zero-carbon future, right?
Maybe not. A rush to retire such units may impair
the ability of the grid to accept more solar and wind
resources in the future. Why? It’s all about a factor
• A power network without inertia is one that is unstable, suffers
from issues of power quality and is susceptible to blackouts.
The primary mechanism for providing inertia is via the presence
of heavy rotating equipment such as steam turbines and gas
turbines driving generators and rotating generators.
• Efforts to decommission such equipment and replace them with
renewable resources, while well intended, could inadvertently
hamper the creation of the robust and reliable renewable grid of
the future. Additionally, failure to invest in aging
turbomachinery in an effort to achieve environmental targets
could backfire. Operators could be forced to continue to
operate dirty generating resources to provide grid stability and
inertia when a small upgrade could greatly reduce emissions
NEWTON AND GRID INERTIA
• Sir Isaac Newton noted that unless acted upon by an
external force, an object at rest remains at rest and an
object in motion continues to move in a straight line with
constant speed. Another way to state this might be
resistance to change.
• In an electric system, the energy contained in generators
and motors at power stations and industrial facilities
provides inertia as they rotate at the same frequency as the
electricity grid. This effectively acts as a buffer against
rapid change. If demand for power spikes, the frequency of
the grid tends to decrease. Having a lot of rotating mass on
• Solar, on the other hand, is connected to the grid without
rotating mass. Even massive wind turbines fail to provide
the necessary stability as they are not directly connected
to the grid. Instead, a frequency converter between the
wind turbine and electricity grid prevents the kinetic
energy of the wind turbine’s rotating mass from providing
inertia during periods of frequency change.
• “When inertia decreases, sudden changes in frequency
caused by a change in electricity consumption or
production are faster and larger,” said Minna Laasonen,
senior advisor at Fingrid, the transmission operator in
Finland. “This means that it is more difficult to keep the
• What’s the big deal? A surge of renewables onto a grid
without sufficient rotating mass could cause serious
problems: power being cut in certain areas in an effort to
bring demand back in line with supply; and large power
plants getting disconnected from the grid to prevent them
becoming overloaded.
• The key to understanding this is frequency i.e. the speed
of the grid. Some parts of the world such as the U.S.
operate at a frequency of 60 Hz. Other parts operate at 50
Hz. Taking a simplified view of things, this is a measure of
how fast electrons are moving along an alternating current
wire. 60 times a second (60 Hz) or fifty times a second (50
Hz) is the frequency of the grid. If it rises too much above
• Looking on a smaller scale, household fuses and circuit
breakers are there to prevent a frequency overload. Operate too
many appliances, devices and gadgets on one circuit and
everything is shut down. This prevents damage to equipment
and wiring.
• It’s the same on a power network. If everyone turns on their
energy hungry devices (air conditioning, heating, etc.) at the
same time, frequency drops. If there’s more supply than
demand, frequency rises. System operators, then, are engaged
in a constant frequency balancing act. In extreme cases,
utilities lighten the load to avoid damaging grid equipment by
disconnecting neighborhoods. This remedial step might keep
rest of the network in operation. But those in the disconnected
• You can also get a domino effect. If frequency goes out of control,
one part of the system has to shut down. This causes severe strain
on the rest of the network. If not dealt with, cascading outages lead
to a major blackout such as that experienced in the Northeast of the
U.S. in 2003. 60 million people ended up without electricity. In the
summer of 2019, major blackouts in New York City and the U.K.
further emphasize the need for greater grid resilience.
• Donald Chamberlin, a retired electrical engineer who worked for a
utility in New England for 42 years, explained some of the
drawbacks in how the grid is evolving. If power is mainly coming
from solar panels and wind farms, and local generating facilities are
taken off line, it certainly lowers emissions. But it also removes the
necessary sources of reactive power.
• “Without enough reactive power, transmission capacity is reduced,
REACTIVE POWER
• Electricity is a complex subject. And one of the more obscure aspects
is the difference between real and reactive power. Real power (or
effective power) delivers energy from the generation source to the load
and is measured in volts, amps and watts.
• Reactive power, on the other hand, does no actual work. It is measured
in volt amperes reactive (VArs). It is the form of electricity which
creates or is stored in the magnetic field surrounding a piece of
equipment. Reactive power can be positive or negative. The amount of
current in a device impacts the amount of reactive power needed. If you
double the amount of power being consumed in an area, the reactive
power consumed quadruples. Reactive power consumption, therefore,
is a vital aspect of managing the network. This is typically done by
adding reactive compensating devices.
• Another factor is that reactive power does not travel as
far as real power. When the generator is near the load, the
same power generators that supply real current can
supply reactive current. Long transmission lines
operating at heavy loads consume VArs. This leads to
conductor heating and voltages falling.
• Reactive current, therefore, is best provided by sources
close to power loads to reduce the amount of reactive
current that has to be carried by the delivery system. A
lower reactive current demand on the delivery system
allows it to carry more real current. This helps the utility
to maintain its service voltage within required limits.
•Reactive power devices, then, must be placed nearer
the load to correct the power factor and avoid damage
to equipment. Low voltage can cause electric system
instability or collapse, damage to motors and the
failure of electronic equipment. High voltage can
exceed the insulation capabilities of equipment and
cause dangerous electric arcs.
A VARIETY OF TECHNOLOGIES ARE USED TO
STABILIZE VOLTAGE AND PREVENT ITS DECAY OR
COLLAPSE.
THESE INCLUDE:
CAPACITORS
•Capacitor banks can supply reactive power when
needed, but cannot absorb it. This means they can
supply lagging VArs only. This limits their role in
voltage regulation. One advantage is that they are
relatively inexpensive and easy to maintain.
STATIC VAR COMPENSATORS
Static VAr compensators are really higher-tech
capacitors; i.e. they are electronically switched with
instantly acting solid-state devices. They experience
severe output reduction under depressed voltage
conditions since their output is a function of the
square of the voltage at their terminals. Capacitors and
Static VAr compensators should always play a role in
grid stability but they are not enough.
SYNCHRONOUS CONDENSERS
• The term “condenser” is applied to rotating machines that
only supply reactive current. Unlike capacitors and static
VAr compensators, synchronous condensers are dynamic
sources as their output can change quickly to match
reactive power need. Since condensers are large rotating
generators, they add stored energy in the form of inertia
to the electric system. This property is useful in handling
transient conditions such as temporary short circuits and
momentary disruptions. This inertia is especially useful
for low inertia power sources such as photovoltaic cells
and wind turbines.
• Another advantage to using generators on the grid is that they
can be adapted to produce both reactive and real power as
needed. If the generator is needed suddenly for peaking power,
it can provide it rapidly. Otherwise, it is used to maintain the
proper voltage by supplying reactive power. Most generators
already have automatic voltage regulators that cause the
reactive power output to increase or decrease to control
voltages: putting lagging VArs onto the system under
conditions of low voltage/heavy load and absorbing leading
VArs under conditions of high voltage/light load.
• The ability to switch from peaking generator to synchronous
condenser is achieved by placing a synchronous self-shifting
(SSS) clutch between the turbine and generator. When the
power turbine is shut down, the clutch automatically
•“With the introduction of large-scale wind
farms whose power output can vary widely, it is
important to react quickly to changing
conditions,” said Chamberlin. “Wind turbine
generators are built to be lightweight with low
inertia, adding to the need for the inertial
properties of synchronous condensers.”
PLAN WISELY
• With wind and solar flooding onto the grid, and coal and natural
gas power plants retirements being announced on a regular
basis, there is a desire to decommission these units as rapidly as
possible. As a symbol of a new era, it may seem prudent to
flatten aging plants and erect battery storage facilities in their
place, as is being proposed in California. Yet such a strategy may
be short-sighted.
• The grid must be stable and controllable. The rush to add more
wind and solar without accounting for reactive power resources
lowers grid resilience. Retired generators and rarely used
peaking units can each supply hundreds of MegaVArs. Since
they have already been paid for, capital costs are negligible
•When plans are being drawn up to close
aging or poorly utilized facilities, therefore,
it may be wise to evaluate the benefit of
using its assets for synchronous
condensing. If the equipment doesn’t
include a clutch, it can be retrofitted at low
cost.

More Related Content

What's hot

Mz2421362141
Mz2421362141Mz2421362141
Mz2421362141
IJERA Editor
 
Impact of high level penetration of photovoltaics on Power system
Impact of high level penetration of photovoltaics on Power systemImpact of high level penetration of photovoltaics on Power system
Impact of high level penetration of photovoltaics on Power system
Muwaf_5
 
How to Reduce Total Cost of Ownership of 4G-LTE Networks - an Eltek White Paper
How to Reduce Total Cost of Ownership of 4G-LTE Networks - an Eltek White PaperHow to Reduce Total Cost of Ownership of 4G-LTE Networks - an Eltek White Paper
How to Reduce Total Cost of Ownership of 4G-LTE Networks - an Eltek White Paper
Eltek
 
Solar inverter Selection guide
Solar inverter Selection guideSolar inverter Selection guide
Solar inverter Selection guide
Lavancha_Energy-redefined
 
Distributed Generation Operation for Distribution System Volt/Var Control
Distributed Generation Operation for Distribution System Volt/Var ControlDistributed Generation Operation for Distribution System Volt/Var Control
Distributed Generation Operation for Distribution System Volt/Var Control
Novalio Daratha Asteria
 
Off Grid Homes: A Way to Increase the Access to Electricity
Off Grid Homes: A Way to Increase the Access to ElectricityOff Grid Homes: A Way to Increase the Access to Electricity
Off Grid Homes: A Way to Increase the Access to Electricity
solarplants
 
98X- didier2013.pdf
98X- didier2013.pdf98X- didier2013.pdf
98X- didier2013.pdf
Eng-Ahmed Raafat
 
Review Grid Connected Wind Photovoltaic Cogeneration Using Back to Back Volta...
Review Grid Connected Wind Photovoltaic Cogeneration Using Back to Back Volta...Review Grid Connected Wind Photovoltaic Cogeneration Using Back to Back Volta...
Review Grid Connected Wind Photovoltaic Cogeneration Using Back to Back Volta...
IJSRED
 
Monitoring of Lead Acid Batteries - an Eltek White Paper
Monitoring of Lead Acid Batteries - an Eltek White PaperMonitoring of Lead Acid Batteries - an Eltek White Paper
Monitoring of Lead Acid Batteries - an Eltek White Paper
Eltek
 
Внедрение распределенной энергетики в систему централизованного энергоснабжен...
Внедрение распределенной энергетики в систему централизованного энергоснабжен...Внедрение распределенной энергетики в систему централизованного энергоснабжен...
Внедрение распределенной энергетики в систему централизованного энергоснабжен...
НП "Сообщество потребителей энергии"
 
Solar inverter
Solar inverterSolar inverter
Solar inverter
Rakesh Vadnala
 
Isolated Wind Hydro Hybrid Generation System with Battery Storage
Isolated Wind Hydro Hybrid Generation System with Battery StorageIsolated Wind Hydro Hybrid Generation System with Battery Storage
Isolated Wind Hydro Hybrid Generation System with Battery Storage
IJMER
 
Renewable energy for bts (2)
Renewable energy for bts (2)Renewable energy for bts (2)
Renewable energy for bts (2)nasir12345678900
 
IRJET- A New Thyristor Based DC Circuit Breaker Implemented on a DC Application
IRJET- A New Thyristor Based DC Circuit Breaker Implemented on a DC ApplicationIRJET- A New Thyristor Based DC Circuit Breaker Implemented on a DC Application
IRJET- A New Thyristor Based DC Circuit Breaker Implemented on a DC Application
IRJET Journal
 
How HE Results In Cost Saving - an Eltek Case Study
How HE Results In Cost Saving - an Eltek Case StudyHow HE Results In Cost Saving - an Eltek Case Study
How HE Results In Cost Saving - an Eltek Case Study
Eltek
 
DG interconnection protection ieee 1547
DG interconnection protection ieee 1547DG interconnection protection ieee 1547
DG interconnection protection ieee 1547
michaeljmack
 
Solar inverter with autosynchronization using microcontroller
Solar inverter with autosynchronization using microcontrollerSolar inverter with autosynchronization using microcontroller
Solar inverter with autosynchronization using microcontroller
Dhaval Brahmbhatt
 

What's hot (19)

Mz2421362141
Mz2421362141Mz2421362141
Mz2421362141
 
Impact of high level penetration of photovoltaics on Power system
Impact of high level penetration of photovoltaics on Power systemImpact of high level penetration of photovoltaics on Power system
Impact of high level penetration of photovoltaics on Power system
 
Hybrid wind solar energy system
Hybrid wind solar energy systemHybrid wind solar energy system
Hybrid wind solar energy system
 
How to Reduce Total Cost of Ownership of 4G-LTE Networks - an Eltek White Paper
How to Reduce Total Cost of Ownership of 4G-LTE Networks - an Eltek White PaperHow to Reduce Total Cost of Ownership of 4G-LTE Networks - an Eltek White Paper
How to Reduce Total Cost of Ownership of 4G-LTE Networks - an Eltek White Paper
 
Solar inverter Selection guide
Solar inverter Selection guideSolar inverter Selection guide
Solar inverter Selection guide
 
Im
ImIm
Im
 
Distributed Generation Operation for Distribution System Volt/Var Control
Distributed Generation Operation for Distribution System Volt/Var ControlDistributed Generation Operation for Distribution System Volt/Var Control
Distributed Generation Operation for Distribution System Volt/Var Control
 
Off Grid Homes: A Way to Increase the Access to Electricity
Off Grid Homes: A Way to Increase the Access to ElectricityOff Grid Homes: A Way to Increase the Access to Electricity
Off Grid Homes: A Way to Increase the Access to Electricity
 
98X- didier2013.pdf
98X- didier2013.pdf98X- didier2013.pdf
98X- didier2013.pdf
 
Review Grid Connected Wind Photovoltaic Cogeneration Using Back to Back Volta...
Review Grid Connected Wind Photovoltaic Cogeneration Using Back to Back Volta...Review Grid Connected Wind Photovoltaic Cogeneration Using Back to Back Volta...
Review Grid Connected Wind Photovoltaic Cogeneration Using Back to Back Volta...
 
Monitoring of Lead Acid Batteries - an Eltek White Paper
Monitoring of Lead Acid Batteries - an Eltek White PaperMonitoring of Lead Acid Batteries - an Eltek White Paper
Monitoring of Lead Acid Batteries - an Eltek White Paper
 
Внедрение распределенной энергетики в систему централизованного энергоснабжен...
Внедрение распределенной энергетики в систему централизованного энергоснабжен...Внедрение распределенной энергетики в систему централизованного энергоснабжен...
Внедрение распределенной энергетики в систему централизованного энергоснабжен...
 
Solar inverter
Solar inverterSolar inverter
Solar inverter
 
Isolated Wind Hydro Hybrid Generation System with Battery Storage
Isolated Wind Hydro Hybrid Generation System with Battery StorageIsolated Wind Hydro Hybrid Generation System with Battery Storage
Isolated Wind Hydro Hybrid Generation System with Battery Storage
 
Renewable energy for bts (2)
Renewable energy for bts (2)Renewable energy for bts (2)
Renewable energy for bts (2)
 
IRJET- A New Thyristor Based DC Circuit Breaker Implemented on a DC Application
IRJET- A New Thyristor Based DC Circuit Breaker Implemented on a DC ApplicationIRJET- A New Thyristor Based DC Circuit Breaker Implemented on a DC Application
IRJET- A New Thyristor Based DC Circuit Breaker Implemented on a DC Application
 
How HE Results In Cost Saving - an Eltek Case Study
How HE Results In Cost Saving - an Eltek Case StudyHow HE Results In Cost Saving - an Eltek Case Study
How HE Results In Cost Saving - an Eltek Case Study
 
DG interconnection protection ieee 1547
DG interconnection protection ieee 1547DG interconnection protection ieee 1547
DG interconnection protection ieee 1547
 
Solar inverter with autosynchronization using microcontroller
Solar inverter with autosynchronization using microcontrollerSolar inverter with autosynchronization using microcontroller
Solar inverter with autosynchronization using microcontroller
 

Similar to Grid inertia

STATCOM for Improved Dynamic Performance of Wind Farms in Power Grid
STATCOM for Improved Dynamic Performance of Wind Farms  in Power Grid STATCOM for Improved Dynamic Performance of Wind Farms  in Power Grid
STATCOM for Improved Dynamic Performance of Wind Farms in Power Grid
IJMER
 
IRJET- Reactive Power Control of Transmission Line
IRJET-  	  Reactive Power Control of Transmission LineIRJET-  	  Reactive Power Control of Transmission Line
IRJET- Reactive Power Control of Transmission Line
IRJET Journal
 
POWER QUALITY IMPROVEMENT METHODOLOGY IN MICROGRID: A REVIEW
POWER QUALITY IMPROVEMENT METHODOLOGY IN MICROGRID: A REVIEWPOWER QUALITY IMPROVEMENT METHODOLOGY IN MICROGRID: A REVIEW
POWER QUALITY IMPROVEMENT METHODOLOGY IN MICROGRID: A REVIEW
IRJET Journal
 
DVARVVO_WP_0117
DVARVVO_WP_0117DVARVVO_WP_0117
DVARVVO_WP_0117Paul Chang
 
What are Ancillary Services In Power System ?
What are Ancillary Services In Power System ?What are Ancillary Services In Power System ?
What are Ancillary Services In Power System ?
Power System Operation
 
Chep 02 Power Frequency Disturbance
Chep 02 Power Frequency DisturbanceChep 02 Power Frequency Disturbance
Chep 02 Power Frequency Disturbance
Piyush Tandel
 
PV Wind Hybrid Systems
PV Wind Hybrid SystemsPV Wind Hybrid Systems
PV Wind Hybrid Systems
Seminar Links
 
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
eeiej_journal
 
Unit V part-2 windfarm grid issues.pptx
Unit V part-2 windfarm grid issues.pptxUnit V part-2 windfarm grid issues.pptx
Unit V part-2 windfarm grid issues.pptx
sundeepsiddula
 
IRJET- Low Volatge Ride through Solution for Wind Energy Conversion System
IRJET- Low Volatge Ride through Solution for Wind Energy Conversion SystemIRJET- Low Volatge Ride through Solution for Wind Energy Conversion System
IRJET- Low Volatge Ride through Solution for Wind Energy Conversion System
IRJET Journal
 
Mme presentation customs
Mme presentation customsMme presentation customs
Mme presentation customsmme
 
C121738
C121738C121738
C121738
irjes
 
IRJET- Grid Integrated Single Phase PV with Shunt Active Filter based Control...
IRJET- Grid Integrated Single Phase PV with Shunt Active Filter based Control...IRJET- Grid Integrated Single Phase PV with Shunt Active Filter based Control...
IRJET- Grid Integrated Single Phase PV with Shunt Active Filter based Control...
IRJET Journal
 
Implementation of solar inverter (2)
Implementation of solar inverter (2)Implementation of solar inverter (2)
Implementation of solar inverter (2)
vishal gawhale
 
Voltage stability enhancement for large scale squirrel cage induction generat...
Voltage stability enhancement for large scale squirrel cage induction generat...Voltage stability enhancement for large scale squirrel cage induction generat...
Voltage stability enhancement for large scale squirrel cage induction generat...
International Journal of Power Electronics and Drive Systems
 
Ac.generators
Ac.generatorsAc.generators
Ac.generators
prashant vanjari
 
144624132-Sizing-a-PV-system-ppt.ppt
144624132-Sizing-a-PV-system-ppt.ppt144624132-Sizing-a-PV-system-ppt.ppt
144624132-Sizing-a-PV-system-ppt.ppt
BlessyJoy18
 
Microogrid with diesel generator ,wind turbine and solar farm with optimistic...
Microogrid with diesel generator ,wind turbine and solar farm with optimistic...Microogrid with diesel generator ,wind turbine and solar farm with optimistic...
Microogrid with diesel generator ,wind turbine and solar farm with optimistic...
MATLAB Solutions
 
Iaetsd analysis of output dc current injection in 100k w grid
Iaetsd analysis of output dc current injection in 100k w gridIaetsd analysis of output dc current injection in 100k w grid
Iaetsd analysis of output dc current injection in 100k w grid
Iaetsd Iaetsd
 

Similar to Grid inertia (20)

STATCOM for Improved Dynamic Performance of Wind Farms in Power Grid
STATCOM for Improved Dynamic Performance of Wind Farms  in Power Grid STATCOM for Improved Dynamic Performance of Wind Farms  in Power Grid
STATCOM for Improved Dynamic Performance of Wind Farms in Power Grid
 
IRJET- Reactive Power Control of Transmission Line
IRJET-  	  Reactive Power Control of Transmission LineIRJET-  	  Reactive Power Control of Transmission Line
IRJET- Reactive Power Control of Transmission Line
 
POWER QUALITY IMPROVEMENT METHODOLOGY IN MICROGRID: A REVIEW
POWER QUALITY IMPROVEMENT METHODOLOGY IN MICROGRID: A REVIEWPOWER QUALITY IMPROVEMENT METHODOLOGY IN MICROGRID: A REVIEW
POWER QUALITY IMPROVEMENT METHODOLOGY IN MICROGRID: A REVIEW
 
DVARVVO_WP_0117
DVARVVO_WP_0117DVARVVO_WP_0117
DVARVVO_WP_0117
 
What are Ancillary Services In Power System ?
What are Ancillary Services In Power System ?What are Ancillary Services In Power System ?
What are Ancillary Services In Power System ?
 
Chep 02 Power Frequency Disturbance
Chep 02 Power Frequency DisturbanceChep 02 Power Frequency Disturbance
Chep 02 Power Frequency Disturbance
 
PV Wind Hybrid Systems
PV Wind Hybrid SystemsPV Wind Hybrid Systems
PV Wind Hybrid Systems
 
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
 
Unit V part-2 windfarm grid issues.pptx
Unit V part-2 windfarm grid issues.pptxUnit V part-2 windfarm grid issues.pptx
Unit V part-2 windfarm grid issues.pptx
 
IRJET- Low Volatge Ride through Solution for Wind Energy Conversion System
IRJET- Low Volatge Ride through Solution for Wind Energy Conversion SystemIRJET- Low Volatge Ride through Solution for Wind Energy Conversion System
IRJET- Low Volatge Ride through Solution for Wind Energy Conversion System
 
Mme presentation customs
Mme presentation customsMme presentation customs
Mme presentation customs
 
C121738
C121738C121738
C121738
 
IRJET- Grid Integrated Single Phase PV with Shunt Active Filter based Control...
IRJET- Grid Integrated Single Phase PV with Shunt Active Filter based Control...IRJET- Grid Integrated Single Phase PV with Shunt Active Filter based Control...
IRJET- Grid Integrated Single Phase PV with Shunt Active Filter based Control...
 
Implementation of solar inverter (2)
Implementation of solar inverter (2)Implementation of solar inverter (2)
Implementation of solar inverter (2)
 
Voltage stability enhancement for large scale squirrel cage induction generat...
Voltage stability enhancement for large scale squirrel cage induction generat...Voltage stability enhancement for large scale squirrel cage induction generat...
Voltage stability enhancement for large scale squirrel cage induction generat...
 
Ac.generators
Ac.generatorsAc.generators
Ac.generators
 
8925273.ppt
8925273.ppt8925273.ppt
8925273.ppt
 
144624132-Sizing-a-PV-system-ppt.ppt
144624132-Sizing-a-PV-system-ppt.ppt144624132-Sizing-a-PV-system-ppt.ppt
144624132-Sizing-a-PV-system-ppt.ppt
 
Microogrid with diesel generator ,wind turbine and solar farm with optimistic...
Microogrid with diesel generator ,wind turbine and solar farm with optimistic...Microogrid with diesel generator ,wind turbine and solar farm with optimistic...
Microogrid with diesel generator ,wind turbine and solar farm with optimistic...
 
Iaetsd analysis of output dc current injection in 100k w grid
Iaetsd analysis of output dc current injection in 100k w gridIaetsd analysis of output dc current injection in 100k w grid
Iaetsd analysis of output dc current injection in 100k w grid
 

More from Power System Operation

ENERGY TRANSITION OUTLOOK 2021
ENERGY TRANSITION OUTLOOK  2021ENERGY TRANSITION OUTLOOK  2021
ENERGY TRANSITION OUTLOOK 2021
Power System Operation
 
Thermography test of electrical panels
Thermography test of electrical panelsThermography test of electrical panels
Thermography test of electrical panels
Power System Operation
 
What does peak shaving mean
What does peak shaving meanWhat does peak shaving mean
What does peak shaving mean
Power System Operation
 
What's short circuit level
What's short circuit levelWhat's short circuit level
What's short circuit level
Power System Operation
 
Power System Restoration Guide
Power System Restoration Guide  Power System Restoration Guide
Power System Restoration Guide
Power System Operation
 
Big Data Analytics for Power Grid Operations
Big Data Analytics for Power Grid OperationsBig Data Analytics for Power Grid Operations
Big Data Analytics for Power Grid Operations
Power System Operation
 
SPS to RAS Special Protection Scheme Remedial Action Scheme
SPS to RAS Special Protection Scheme  Remedial Action SchemeSPS to RAS Special Protection Scheme  Remedial Action Scheme
SPS to RAS Special Protection Scheme Remedial Action Scheme
Power System Operation
 
Substation Neutral Earthing
Substation Neutral EarthingSubstation Neutral Earthing
Substation Neutral Earthing
Power System Operation
 
SVC PLUS Frequency Stabilizer Frequency and voltage support for dynamic grid...
SVC PLUS Frequency Stabilizer Frequency and voltage support for  dynamic grid...SVC PLUS Frequency Stabilizer Frequency and voltage support for  dynamic grid...
SVC PLUS Frequency Stabilizer Frequency and voltage support for dynamic grid...
Power System Operation
 
Principles & Testing Methods Of Earth Ground Resistance
Principles & Testing Methods Of Earth Ground ResistancePrinciples & Testing Methods Of Earth Ground Resistance
Principles & Testing Methods Of Earth Ground Resistance
Power System Operation
 
Gas Insulated Switchgear? Gas-Insulated High-Voltage Switchgear (GIS)
Gas Insulated Switchgear?  Gas-Insulated High-Voltage Switchgear (GIS)Gas Insulated Switchgear?  Gas-Insulated High-Voltage Switchgear (GIS)
Gas Insulated Switchgear? Gas-Insulated High-Voltage Switchgear (GIS)
Power System Operation
 
Electrical Transmission Tower Types - Design & Parts
Electrical Transmission Tower  Types - Design & PartsElectrical Transmission Tower  Types - Design & Parts
Electrical Transmission Tower Types - Design & Parts
Power System Operation
 
What is load management
What is load managementWhat is load management
What is load management
Power System Operation
 
What does merit order mean
What does merit order meanWhat does merit order mean
What does merit order mean
Power System Operation
 
What are Balancing Services ?
What are  Balancing Services ?What are  Balancing Services ?
What are Balancing Services ?
Power System Operation
 
The Need for Enhanced Power System Modelling Techniques & Simulation Tools
The Need for Enhanced  Power System  Modelling Techniques  &  Simulation Tools The Need for Enhanced  Power System  Modelling Techniques  &  Simulation Tools
The Need for Enhanced Power System Modelling Techniques & Simulation Tools
Power System Operation
 
Power Quality Trends in the Transition to Carbon-Free Electrical Energy System
Power Quality  Trends in the Transition to  Carbon-Free Electrical Energy SystemPower Quality  Trends in the Transition to  Carbon-Free Electrical Energy System
Power Quality Trends in the Transition to Carbon-Free Electrical Energy System
Power System Operation
 
Power Purchase Agreement PPA
Power Purchase Agreement PPA Power Purchase Agreement PPA
Power Purchase Agreement PPA
Power System Operation
 
Harmonic study and analysis
Harmonic study and analysisHarmonic study and analysis
Harmonic study and analysis
Power System Operation
 
What is leakage current testing
What is leakage current testingWhat is leakage current testing
What is leakage current testing
Power System Operation
 

More from Power System Operation (20)

ENERGY TRANSITION OUTLOOK 2021
ENERGY TRANSITION OUTLOOK  2021ENERGY TRANSITION OUTLOOK  2021
ENERGY TRANSITION OUTLOOK 2021
 
Thermography test of electrical panels
Thermography test of electrical panelsThermography test of electrical panels
Thermography test of electrical panels
 
What does peak shaving mean
What does peak shaving meanWhat does peak shaving mean
What does peak shaving mean
 
What's short circuit level
What's short circuit levelWhat's short circuit level
What's short circuit level
 
Power System Restoration Guide
Power System Restoration Guide  Power System Restoration Guide
Power System Restoration Guide
 
Big Data Analytics for Power Grid Operations
Big Data Analytics for Power Grid OperationsBig Data Analytics for Power Grid Operations
Big Data Analytics for Power Grid Operations
 
SPS to RAS Special Protection Scheme Remedial Action Scheme
SPS to RAS Special Protection Scheme  Remedial Action SchemeSPS to RAS Special Protection Scheme  Remedial Action Scheme
SPS to RAS Special Protection Scheme Remedial Action Scheme
 
Substation Neutral Earthing
Substation Neutral EarthingSubstation Neutral Earthing
Substation Neutral Earthing
 
SVC PLUS Frequency Stabilizer Frequency and voltage support for dynamic grid...
SVC PLUS Frequency Stabilizer Frequency and voltage support for  dynamic grid...SVC PLUS Frequency Stabilizer Frequency and voltage support for  dynamic grid...
SVC PLUS Frequency Stabilizer Frequency and voltage support for dynamic grid...
 
Principles & Testing Methods Of Earth Ground Resistance
Principles & Testing Methods Of Earth Ground ResistancePrinciples & Testing Methods Of Earth Ground Resistance
Principles & Testing Methods Of Earth Ground Resistance
 
Gas Insulated Switchgear? Gas-Insulated High-Voltage Switchgear (GIS)
Gas Insulated Switchgear?  Gas-Insulated High-Voltage Switchgear (GIS)Gas Insulated Switchgear?  Gas-Insulated High-Voltage Switchgear (GIS)
Gas Insulated Switchgear? Gas-Insulated High-Voltage Switchgear (GIS)
 
Electrical Transmission Tower Types - Design & Parts
Electrical Transmission Tower  Types - Design & PartsElectrical Transmission Tower  Types - Design & Parts
Electrical Transmission Tower Types - Design & Parts
 
What is load management
What is load managementWhat is load management
What is load management
 
What does merit order mean
What does merit order meanWhat does merit order mean
What does merit order mean
 
What are Balancing Services ?
What are  Balancing Services ?What are  Balancing Services ?
What are Balancing Services ?
 
The Need for Enhanced Power System Modelling Techniques & Simulation Tools
The Need for Enhanced  Power System  Modelling Techniques  &  Simulation Tools The Need for Enhanced  Power System  Modelling Techniques  &  Simulation Tools
The Need for Enhanced Power System Modelling Techniques & Simulation Tools
 
Power Quality Trends in the Transition to Carbon-Free Electrical Energy System
Power Quality  Trends in the Transition to  Carbon-Free Electrical Energy SystemPower Quality  Trends in the Transition to  Carbon-Free Electrical Energy System
Power Quality Trends in the Transition to Carbon-Free Electrical Energy System
 
Power Purchase Agreement PPA
Power Purchase Agreement PPA Power Purchase Agreement PPA
Power Purchase Agreement PPA
 
Harmonic study and analysis
Harmonic study and analysisHarmonic study and analysis
Harmonic study and analysis
 
What is leakage current testing
What is leakage current testingWhat is leakage current testing
What is leakage current testing
 

Recently uploaded

H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 

Recently uploaded (20)

H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 

Grid inertia

  • 1. GRID INERTIA WHY IT MATTERS IN A RENEWABLE WORLD
  • 2. •General Electric will demolish the 750 MW Inland Empire Energy Center (IEEC) in California that has 20 years remaining in its useful life. With solar and wind dominating the grid, the plant has been deemed uneconomical after operating well below capacity for several years. The site will be used for a new battery storage facility. •Good news in terms of a zero-carbon future, right? Maybe not. A rush to retire such units may impair the ability of the grid to accept more solar and wind resources in the future. Why? It’s all about a factor
  • 3. • A power network without inertia is one that is unstable, suffers from issues of power quality and is susceptible to blackouts. The primary mechanism for providing inertia is via the presence of heavy rotating equipment such as steam turbines and gas turbines driving generators and rotating generators. • Efforts to decommission such equipment and replace them with renewable resources, while well intended, could inadvertently hamper the creation of the robust and reliable renewable grid of the future. Additionally, failure to invest in aging turbomachinery in an effort to achieve environmental targets could backfire. Operators could be forced to continue to operate dirty generating resources to provide grid stability and inertia when a small upgrade could greatly reduce emissions
  • 4. NEWTON AND GRID INERTIA • Sir Isaac Newton noted that unless acted upon by an external force, an object at rest remains at rest and an object in motion continues to move in a straight line with constant speed. Another way to state this might be resistance to change. • In an electric system, the energy contained in generators and motors at power stations and industrial facilities provides inertia as they rotate at the same frequency as the electricity grid. This effectively acts as a buffer against rapid change. If demand for power spikes, the frequency of the grid tends to decrease. Having a lot of rotating mass on
  • 5. • Solar, on the other hand, is connected to the grid without rotating mass. Even massive wind turbines fail to provide the necessary stability as they are not directly connected to the grid. Instead, a frequency converter between the wind turbine and electricity grid prevents the kinetic energy of the wind turbine’s rotating mass from providing inertia during periods of frequency change. • “When inertia decreases, sudden changes in frequency caused by a change in electricity consumption or production are faster and larger,” said Minna Laasonen, senior advisor at Fingrid, the transmission operator in Finland. “This means that it is more difficult to keep the
  • 6. • What’s the big deal? A surge of renewables onto a grid without sufficient rotating mass could cause serious problems: power being cut in certain areas in an effort to bring demand back in line with supply; and large power plants getting disconnected from the grid to prevent them becoming overloaded. • The key to understanding this is frequency i.e. the speed of the grid. Some parts of the world such as the U.S. operate at a frequency of 60 Hz. Other parts operate at 50 Hz. Taking a simplified view of things, this is a measure of how fast electrons are moving along an alternating current wire. 60 times a second (60 Hz) or fifty times a second (50 Hz) is the frequency of the grid. If it rises too much above
  • 7. • Looking on a smaller scale, household fuses and circuit breakers are there to prevent a frequency overload. Operate too many appliances, devices and gadgets on one circuit and everything is shut down. This prevents damage to equipment and wiring. • It’s the same on a power network. If everyone turns on their energy hungry devices (air conditioning, heating, etc.) at the same time, frequency drops. If there’s more supply than demand, frequency rises. System operators, then, are engaged in a constant frequency balancing act. In extreme cases, utilities lighten the load to avoid damaging grid equipment by disconnecting neighborhoods. This remedial step might keep rest of the network in operation. But those in the disconnected
  • 8. • You can also get a domino effect. If frequency goes out of control, one part of the system has to shut down. This causes severe strain on the rest of the network. If not dealt with, cascading outages lead to a major blackout such as that experienced in the Northeast of the U.S. in 2003. 60 million people ended up without electricity. In the summer of 2019, major blackouts in New York City and the U.K. further emphasize the need for greater grid resilience. • Donald Chamberlin, a retired electrical engineer who worked for a utility in New England for 42 years, explained some of the drawbacks in how the grid is evolving. If power is mainly coming from solar panels and wind farms, and local generating facilities are taken off line, it certainly lowers emissions. But it also removes the necessary sources of reactive power. • “Without enough reactive power, transmission capacity is reduced,
  • 9. REACTIVE POWER • Electricity is a complex subject. And one of the more obscure aspects is the difference between real and reactive power. Real power (or effective power) delivers energy from the generation source to the load and is measured in volts, amps and watts. • Reactive power, on the other hand, does no actual work. It is measured in volt amperes reactive (VArs). It is the form of electricity which creates or is stored in the magnetic field surrounding a piece of equipment. Reactive power can be positive or negative. The amount of current in a device impacts the amount of reactive power needed. If you double the amount of power being consumed in an area, the reactive power consumed quadruples. Reactive power consumption, therefore, is a vital aspect of managing the network. This is typically done by adding reactive compensating devices.
  • 10. • Another factor is that reactive power does not travel as far as real power. When the generator is near the load, the same power generators that supply real current can supply reactive current. Long transmission lines operating at heavy loads consume VArs. This leads to conductor heating and voltages falling. • Reactive current, therefore, is best provided by sources close to power loads to reduce the amount of reactive current that has to be carried by the delivery system. A lower reactive current demand on the delivery system allows it to carry more real current. This helps the utility to maintain its service voltage within required limits.
  • 11. •Reactive power devices, then, must be placed nearer the load to correct the power factor and avoid damage to equipment. Low voltage can cause electric system instability or collapse, damage to motors and the failure of electronic equipment. High voltage can exceed the insulation capabilities of equipment and cause dangerous electric arcs.
  • 12. A VARIETY OF TECHNOLOGIES ARE USED TO STABILIZE VOLTAGE AND PREVENT ITS DECAY OR COLLAPSE. THESE INCLUDE: CAPACITORS •Capacitor banks can supply reactive power when needed, but cannot absorb it. This means they can supply lagging VArs only. This limits their role in voltage regulation. One advantage is that they are relatively inexpensive and easy to maintain.
  • 13. STATIC VAR COMPENSATORS Static VAr compensators are really higher-tech capacitors; i.e. they are electronically switched with instantly acting solid-state devices. They experience severe output reduction under depressed voltage conditions since their output is a function of the square of the voltage at their terminals. Capacitors and Static VAr compensators should always play a role in grid stability but they are not enough.
  • 14. SYNCHRONOUS CONDENSERS • The term “condenser” is applied to rotating machines that only supply reactive current. Unlike capacitors and static VAr compensators, synchronous condensers are dynamic sources as their output can change quickly to match reactive power need. Since condensers are large rotating generators, they add stored energy in the form of inertia to the electric system. This property is useful in handling transient conditions such as temporary short circuits and momentary disruptions. This inertia is especially useful for low inertia power sources such as photovoltaic cells and wind turbines.
  • 15. • Another advantage to using generators on the grid is that they can be adapted to produce both reactive and real power as needed. If the generator is needed suddenly for peaking power, it can provide it rapidly. Otherwise, it is used to maintain the proper voltage by supplying reactive power. Most generators already have automatic voltage regulators that cause the reactive power output to increase or decrease to control voltages: putting lagging VArs onto the system under conditions of low voltage/heavy load and absorbing leading VArs under conditions of high voltage/light load. • The ability to switch from peaking generator to synchronous condenser is achieved by placing a synchronous self-shifting (SSS) clutch between the turbine and generator. When the power turbine is shut down, the clutch automatically
  • 16. •“With the introduction of large-scale wind farms whose power output can vary widely, it is important to react quickly to changing conditions,” said Chamberlin. “Wind turbine generators are built to be lightweight with low inertia, adding to the need for the inertial properties of synchronous condensers.”
  • 17. PLAN WISELY • With wind and solar flooding onto the grid, and coal and natural gas power plants retirements being announced on a regular basis, there is a desire to decommission these units as rapidly as possible. As a symbol of a new era, it may seem prudent to flatten aging plants and erect battery storage facilities in their place, as is being proposed in California. Yet such a strategy may be short-sighted. • The grid must be stable and controllable. The rush to add more wind and solar without accounting for reactive power resources lowers grid resilience. Retired generators and rarely used peaking units can each supply hundreds of MegaVArs. Since they have already been paid for, capital costs are negligible
  • 18. •When plans are being drawn up to close aging or poorly utilized facilities, therefore, it may be wise to evaluate the benefit of using its assets for synchronous condensing. If the equipment doesn’t include a clutch, it can be retrofitted at low cost.