Part of hypotenuse Altitude
Altitude Other part of hyp.
=
Cos A⁰ =
Tan A⁰ =
A
Sin A⁰ =
Special Right Triangles
Geometry Formula Sheet
Area Formulas (2D Shapes)
Parallelogram A = bh
Triangle A = ½bh
Trapezoid
Circle
Rhombus / Kite A = ½d1d2
Regular Polygon A = ½aP
Formulas (3D Shapes) Volume Surface Area Lateral Area
Rectangular Prism V =bwh SA = 2bh + 2bw + 2hw
Other Prisms V = Bh SA = Ph + 2B LA = Ph
Cylinder V = 2
r hπ SA = 2 rh + 2 2
rπ LA = 2 rh
Pyramid V =
1
3
Bh SA= ½Pl + B LA= ½Pl
Cone V = 21
3
r hπ SA = rl + 2
rπ LA = rl
Sphere V = 34
3
rπ SA = 4
Altitude of a Triangle Formula:
A = ½h(b + b )1 2
A = πr2
KEY
b = base A = area
h = height C = circumference
r = radius B = area of base
a = apothem l = slant height
SA = surface area V = volume
d = diameter or diagonal
P = perimeter or perimeter of base
Circumference
C = πd or C = 2πr
Trigonometric Ratios
opposite
hypotenuse
adjacent
hypotenuse
opposite
adjacent
Pythagorean Theorem: 2 2 2
a b c+ =

Geometry formula sheet

  • 1.
    Part of hypotenuseAltitude Altitude Other part of hyp. = Cos A⁰ = Tan A⁰ = A Sin A⁰ = Special Right Triangles Geometry Formula Sheet Area Formulas (2D Shapes) Parallelogram A = bh Triangle A = ½bh Trapezoid Circle Rhombus / Kite A = ½d1d2 Regular Polygon A = ½aP Formulas (3D Shapes) Volume Surface Area Lateral Area Rectangular Prism V =bwh SA = 2bh + 2bw + 2hw Other Prisms V = Bh SA = Ph + 2B LA = Ph Cylinder V = 2 r hπ SA = 2 rh + 2 2 rπ LA = 2 rh Pyramid V = 1 3 Bh SA= ½Pl + B LA= ½Pl Cone V = 21 3 r hπ SA = rl + 2 rπ LA = rl Sphere V = 34 3 rπ SA = 4 Altitude of a Triangle Formula: A = ½h(b + b )1 2 A = πr2 KEY b = base A = area h = height C = circumference r = radius B = area of base a = apothem l = slant height SA = surface area V = volume d = diameter or diagonal P = perimeter or perimeter of base Circumference C = πd or C = 2πr Trigonometric Ratios opposite hypotenuse adjacent hypotenuse opposite adjacent Pythagorean Theorem: 2 2 2 a b c+ =