WELCOME
10-Burgos
10-Dagohoy
10-Del Pilar
QUARTER 2
WEEK 8
OBJECTIVES
Illustrate the
center-radius form
of the equation
of a circle.
Determine the center
and radius of a circle
given its equation and
vice versa.
Look Back
to your
Lesson....
Look Back
to your
Lesson....
Look Back
to your
Lesson....
(x1, y1) = (1, 1)
(x2, y2) = (5, 2)
𝒅 = 𝒙𝟐 − 𝒙𝟏
𝟐 + (𝒚𝟐−𝒚𝟏)𝟐
𝒅 = 𝟓 − 𝟏 𝟐 + (𝟐 − 𝟏)𝟐
𝒅 = 𝟒𝟐 + 𝟏𝟐
𝒅 = 𝟏𝟕 𝒖𝒏𝒊𝒕𝒔
𝑫𝑰𝑺𝑻𝑨𝑵𝑪𝑬
FORMULA
Equation of a Circle
in Standard Form
or Center-Radius Form
center (0,0)
P(x,y)
𝒅 = 𝒙𝟐 − 𝒙𝟏
𝟐 + (𝒚𝟐−𝒚𝟏)𝟐
AP = r
(0,0)
𝒙𝟐 − 𝒙𝟏
𝟐 + 𝒚𝟐 − 𝒚𝟏
𝟐 = 𝑨𝑷
𝒙 − 𝟎 𝟐 + 𝒚 − 𝟎 𝟐 = 𝒓
𝒙𝟐 + 𝒚𝟐 = 𝒓
𝒙𝟐
+ 𝒚𝟐
= 𝒓𝟐
Lyn On Me
𝒙𝟐 + 𝒚𝟐
𝟐
= 𝒓 𝟐
A(x1, y1)= (0, 0) P(x2, y2) = (x, y)
Equation of a Circle in
Center - Radius Form
𝒙𝟐
+ 𝒚𝟐
= 𝒓𝟐
Example :
What is the equation of the
circle with center at the origin
and radius of length 8?
𝒙𝟐
+ 𝒚𝟐
= 𝒓𝟐
center = (0,0)
radius = 8 units 𝒙𝟐
+ 𝒚𝟐
= 𝟖𝟐
𝒙𝟐
+ 𝒚𝟐
= 𝟔𝟒
𝒙𝟐 + 𝒚𝟐 = 𝟔𝟒
Equation of a Circle
with Center (h,k)
and Radius r
center (h,k)
(x,y)
𝒅 = 𝒙𝟐 − 𝒙𝟏
𝟐 + 𝒚𝟐 −𝒚𝟏
𝟐
radius r
𝒙𝟐 − 𝒙𝟏
𝟐 + 𝒚𝟐 − 𝒚𝟏
𝟐 = 𝒓
𝒙 − 𝒉 𝟐 + 𝒚 − 𝒌 𝟐 = 𝒓
(𝒙 − 𝒉)𝟐
+(𝒚 − 𝒌)𝟐
= 𝒓𝟐
Lyn On Me
(x1, y1) = (x2, y2) =
(h, k) (x, y)
Equation of a Circle in
Standard Form with
Center (h,k) and radius r
(𝒙 − 𝒉)𝟐
+ (𝒚 − 𝒌)𝟐
= 𝒓𝟐
Find the equation
of a circle, in
standard form,
whose center is
(–1, –1), and radius
of 4 units.
Example
( -1,-1 )
4
r = 4 units
(x – h)2 + (y – k)2 = r2
[x – (-1)]2 + [y – (-1)]2 = 42
(x + 1)2 + (y + 1)2 = 42
(x + 1)2 + (y + 1)2 = 16
Given: C(h, k) = (–1, –1)
Equation of a Circle
in General Form
(𝒙 − 𝒉)𝟐 + (𝒚 − 𝒌)𝟐 = 𝒓𝟐
(𝒙 − 𝒉)𝟐
= 𝒙𝟐
− 𝟐𝒉𝒙 + 𝒉𝟐
(𝒚 − 𝒌)𝟐
= 𝒚𝟐 − 𝟐𝒌𝒚 + 𝒌𝟐
(𝒙 − 𝒉)𝟐
+ (𝒚 − 𝒌)𝟐
= 𝒓𝟐
𝒙𝟐
− 𝟐𝒉𝒙 + 𝒉𝟐
+ 𝒚𝟐
− 𝟐𝒌𝒚 + 𝒌𝟐
= 𝒓𝟐
𝑳𝒆𝒕 𝑫 = −𝟐𝒉 𝑳𝒆𝒕 𝑬 = −𝟐𝒌
𝑳𝒆𝒕 𝑭 = 𝒉𝟐
+ 𝒌𝟐
− 𝒓𝟐
𝒙𝟐
− 𝟐𝒉𝒙 + 𝒉𝟐
+ 𝒚𝟐
− 𝟐𝒌𝒚 + 𝒌𝟐
−𝒓𝟐
= 𝟎
𝒙𝟐
+ 𝒚𝟐
+ 𝑫𝒙 + 𝑬𝒚 + 𝑭 = 𝟎
Equation of a Circle
in General Form
𝒙𝟐
+ 𝒚𝟐
+ 𝑫𝒙 + 𝑬𝒚 + 𝑭 = 𝟎
Equation of a Circle in General Form
a. Standard form
b. Square the binomial
d. Simplify
c. Transpose
Example
Write the equation of a
circle, in general form, with
coordinates of the center
at (-2, 1) and radius 6.
(𝒙 − 𝒉)𝟐 + (𝒚 − 𝒌)𝟐 = 𝒓𝟐
(𝒙 + 𝟐)𝟐 = 𝒙𝟐 + 𝟒𝒙 + 𝟒
(𝒚 − 𝟏)𝟐
= 𝒚𝟐
− 𝟐𝒚 + 𝟏
𝒄𝒆𝒏𝒕𝒆𝒓: ( −𝟐, 𝟏 ) 𝒓𝒂𝒅𝒊𝒖𝒔: 𝟔
[𝒙 − (−𝟐)]𝟐 + (𝒚 − 𝟏)𝟐 = 𝟔𝟐
(𝒙 + 𝟐)𝟐
+ (𝒚 − 𝟏)𝟐
= 𝟑𝟔
(𝒙 + 𝟐)𝟐 + (𝒚 − 𝟏)𝟐 = 𝟑𝟔
𝒙𝟐
+ 𝟒𝒙 + 𝟒 + 𝒚𝟐
− 𝟐𝒚 + 𝟏 = 𝟑𝟔
𝒙𝟐
+ 𝟒𝒙 + 𝟒 + 𝒚𝟐
− 𝟐𝒚 + 𝟏 − 𝟑𝟔 = 𝟎
𝒙𝟐
+ 𝒚𝟐
+ 𝟒𝒙 − 𝟐𝒚 − 𝟑𝟏 = 𝟎
𝒙𝟐
+ 𝒚𝟐
+ 𝑫𝒙 + 𝑬𝒚 + 𝑭 = 𝟎
Determine the center
and radius of the circle
given an equation .
Example 1:
Determine the center
and radius of the circle
given by the equation
x2 + y2 = 24.
Given: x2 + y2 = 24
x2 + y2 = r2
center : (0,0)
radius = 2 𝟔 units
r2 = 24
𝒓𝟐 = 𝟐𝟒
r = 𝟐 𝟔
𝒓𝟐 = 𝟒(𝟔)
x2 + y2 = 24
(0,0)
Example 2 :
Determine the center and
radius of the circle given
by the equation
(x - 3)2 + (y + 2)2 = 49.
Given: (x – 3)2 + (y + 2)2 = 49
?
(x – h )2 + (y – k )2 = r2
(x – 3 )2 +
center (3, –2) radius = 7 units.
[ y -(-2 )]2
= 72
(y + 2)2 49
Example 3 :
Determine the center and
the radius of the circle
given by the equation
(x + 1)2 + y2 = 64.
Given: (x + 1)2 + y2 = 64
( x – h )2 + ( y - k )2 = r2
[x - (-1 )2 + (y - 0 )2 = 82
center : (-1,0) radius = 8 units
Example 4 :
Determine the center and
the radius of the circle
given by the equation
x2 + y2 – 6x – 135 = 0.
x2 + y2 – 6x – 135 = 0
x2 + y2 – 6x – 135 + 135 = 0 + 135
x2 + y2 – 6x = 135
(x2 – 6x ) + y2 = 135
(x2 – 6x + 9 ) + y2 = 135 + 9
(x – 3)2 + y2 = 144
( x – h )2 + ( y – k )2 = r2
( x – 3 )2 + ( y – 0 )2 = 122
center : (3,0)
(x – 3)2 + y2 = 144
radius =12 units
Example 5:
Determine the
equation of the
circle whose
diameter has its
endpoints at
P1 (6, 2) and
P2 (4, 10).
1. Find the midpoint of the diameter
to find the center of the circle.
P1 (6, 2) and P2 (4, 10)
(𝑥𝑚, 𝑦𝑚) =
𝑥1 + 𝑥2
2
,
𝑦1 + 𝑦2
2
=
6+4
2
,
2+10
2
= 5, 6
(𝑥1, 𝑦1) (𝑥2, 𝑦2)
2. Determine the length of the radius r.
C(5, 6) and P2 (4, 10)
𝒓 = 𝒙𝟐 − 𝒙𝟏
𝟐 + 𝒚𝟐 − 𝒚𝟏
𝟐
𝒓 = 𝟒 − 𝟓 𝟐 + (𝟏𝟎 − 𝟔)𝟐
𝒓 = −𝟏 𝟐 + 𝟒𝟐
𝒓 = 𝟏 + 𝟏𝟔
𝒓 = 𝟏𝟕
(𝑥1, 𝑦1) (𝑥2, 𝑦2)
r
r
(x – h)2 + (y – k)2 = r2
(x – 5)2 + (y – 6)2 = ( 𝟏𝟕)2
(x – 5)2 + (y – 6)2 = 17
3. Substitute the values of C(h,k)=(5,6)
and the value of r = 𝟏𝟕
(x-5)2 + (y-5)2=17
Lyn On Me
SUBSCRIBE
LIKE
SHARE

Equation of a Circle in standard and general form

  • 1.
  • 2.
  • 3.
  • 4.
    Illustrate the center-radius form ofthe equation of a circle.
  • 5.
    Determine the center andradius of a circle given its equation and vice versa.
  • 6.
    Look Back to your Lesson.... LookBack to your Lesson....
  • 7.
    Look Back to your Lesson.... (x1,y1) = (1, 1) (x2, y2) = (5, 2) 𝒅 = 𝒙𝟐 − 𝒙𝟏 𝟐 + (𝒚𝟐−𝒚𝟏)𝟐 𝒅 = 𝟓 − 𝟏 𝟐 + (𝟐 − 𝟏)𝟐 𝒅 = 𝟒𝟐 + 𝟏𝟐 𝒅 = 𝟏𝟕 𝒖𝒏𝒊𝒕𝒔 𝑫𝑰𝑺𝑻𝑨𝑵𝑪𝑬 FORMULA
  • 8.
    Equation of aCircle in Standard Form or Center-Radius Form
  • 9.
    center (0,0) P(x,y) 𝒅 =𝒙𝟐 − 𝒙𝟏 𝟐 + (𝒚𝟐−𝒚𝟏)𝟐 AP = r (0,0)
  • 10.
    𝒙𝟐 − 𝒙𝟏 𝟐+ 𝒚𝟐 − 𝒚𝟏 𝟐 = 𝑨𝑷 𝒙 − 𝟎 𝟐 + 𝒚 − 𝟎 𝟐 = 𝒓 𝒙𝟐 + 𝒚𝟐 = 𝒓 𝒙𝟐 + 𝒚𝟐 = 𝒓𝟐 Lyn On Me 𝒙𝟐 + 𝒚𝟐 𝟐 = 𝒓 𝟐 A(x1, y1)= (0, 0) P(x2, y2) = (x, y)
  • 11.
    Equation of aCircle in Center - Radius Form 𝒙𝟐 + 𝒚𝟐 = 𝒓𝟐
  • 12.
    Example : What isthe equation of the circle with center at the origin and radius of length 8? 𝒙𝟐 + 𝒚𝟐 = 𝒓𝟐 center = (0,0) radius = 8 units 𝒙𝟐 + 𝒚𝟐 = 𝟖𝟐 𝒙𝟐 + 𝒚𝟐 = 𝟔𝟒 𝒙𝟐 + 𝒚𝟐 = 𝟔𝟒
  • 13.
    Equation of aCircle with Center (h,k) and Radius r
  • 14.
    center (h,k) (x,y) 𝒅 =𝒙𝟐 − 𝒙𝟏 𝟐 + 𝒚𝟐 −𝒚𝟏 𝟐 radius r
  • 15.
    𝒙𝟐 − 𝒙𝟏 𝟐+ 𝒚𝟐 − 𝒚𝟏 𝟐 = 𝒓 𝒙 − 𝒉 𝟐 + 𝒚 − 𝒌 𝟐 = 𝒓 (𝒙 − 𝒉)𝟐 +(𝒚 − 𝒌)𝟐 = 𝒓𝟐 Lyn On Me (x1, y1) = (x2, y2) = (h, k) (x, y)
  • 16.
    Equation of aCircle in Standard Form with Center (h,k) and radius r (𝒙 − 𝒉)𝟐 + (𝒚 − 𝒌)𝟐 = 𝒓𝟐
  • 17.
    Find the equation ofa circle, in standard form, whose center is (–1, –1), and radius of 4 units. Example ( -1,-1 ) 4
  • 18.
    r = 4units (x – h)2 + (y – k)2 = r2 [x – (-1)]2 + [y – (-1)]2 = 42 (x + 1)2 + (y + 1)2 = 42 (x + 1)2 + (y + 1)2 = 16 Given: C(h, k) = (–1, –1)
  • 19.
    Equation of aCircle in General Form
  • 20.
    (𝒙 − 𝒉)𝟐+ (𝒚 − 𝒌)𝟐 = 𝒓𝟐 (𝒙 − 𝒉)𝟐 = 𝒙𝟐 − 𝟐𝒉𝒙 + 𝒉𝟐 (𝒚 − 𝒌)𝟐 = 𝒚𝟐 − 𝟐𝒌𝒚 + 𝒌𝟐
  • 21.
    (𝒙 − 𝒉)𝟐 +(𝒚 − 𝒌)𝟐 = 𝒓𝟐 𝒙𝟐 − 𝟐𝒉𝒙 + 𝒉𝟐 + 𝒚𝟐 − 𝟐𝒌𝒚 + 𝒌𝟐 = 𝒓𝟐 𝑳𝒆𝒕 𝑫 = −𝟐𝒉 𝑳𝒆𝒕 𝑬 = −𝟐𝒌 𝑳𝒆𝒕 𝑭 = 𝒉𝟐 + 𝒌𝟐 − 𝒓𝟐 𝒙𝟐 − 𝟐𝒉𝒙 + 𝒉𝟐 + 𝒚𝟐 − 𝟐𝒌𝒚 + 𝒌𝟐 −𝒓𝟐 = 𝟎 𝒙𝟐 + 𝒚𝟐 + 𝑫𝒙 + 𝑬𝒚 + 𝑭 = 𝟎
  • 22.
    Equation of aCircle in General Form 𝒙𝟐 + 𝒚𝟐 + 𝑫𝒙 + 𝑬𝒚 + 𝑭 = 𝟎
  • 23.
    Equation of aCircle in General Form a. Standard form b. Square the binomial d. Simplify c. Transpose
  • 24.
    Example Write the equationof a circle, in general form, with coordinates of the center at (-2, 1) and radius 6.
  • 25.
    (𝒙 − 𝒉)𝟐+ (𝒚 − 𝒌)𝟐 = 𝒓𝟐 (𝒙 + 𝟐)𝟐 = 𝒙𝟐 + 𝟒𝒙 + 𝟒 (𝒚 − 𝟏)𝟐 = 𝒚𝟐 − 𝟐𝒚 + 𝟏 𝒄𝒆𝒏𝒕𝒆𝒓: ( −𝟐, 𝟏 ) 𝒓𝒂𝒅𝒊𝒖𝒔: 𝟔 [𝒙 − (−𝟐)]𝟐 + (𝒚 − 𝟏)𝟐 = 𝟔𝟐 (𝒙 + 𝟐)𝟐 + (𝒚 − 𝟏)𝟐 = 𝟑𝟔
  • 26.
    (𝒙 + 𝟐)𝟐+ (𝒚 − 𝟏)𝟐 = 𝟑𝟔 𝒙𝟐 + 𝟒𝒙 + 𝟒 + 𝒚𝟐 − 𝟐𝒚 + 𝟏 = 𝟑𝟔 𝒙𝟐 + 𝟒𝒙 + 𝟒 + 𝒚𝟐 − 𝟐𝒚 + 𝟏 − 𝟑𝟔 = 𝟎 𝒙𝟐 + 𝒚𝟐 + 𝟒𝒙 − 𝟐𝒚 − 𝟑𝟏 = 𝟎 𝒙𝟐 + 𝒚𝟐 + 𝑫𝒙 + 𝑬𝒚 + 𝑭 = 𝟎
  • 27.
    Determine the center andradius of the circle given an equation .
  • 28.
    Example 1: Determine thecenter and radius of the circle given by the equation x2 + y2 = 24.
  • 29.
    Given: x2 +y2 = 24 x2 + y2 = r2 center : (0,0) radius = 2 𝟔 units r2 = 24 𝒓𝟐 = 𝟐𝟒 r = 𝟐 𝟔 𝒓𝟐 = 𝟒(𝟔) x2 + y2 = 24 (0,0)
  • 30.
    Example 2 : Determinethe center and radius of the circle given by the equation (x - 3)2 + (y + 2)2 = 49.
  • 31.
    Given: (x –3)2 + (y + 2)2 = 49 ? (x – h )2 + (y – k )2 = r2 (x – 3 )2 + center (3, –2) radius = 7 units. [ y -(-2 )]2 = 72 (y + 2)2 49
  • 32.
    Example 3 : Determinethe center and the radius of the circle given by the equation (x + 1)2 + y2 = 64.
  • 33.
    Given: (x +1)2 + y2 = 64 ( x – h )2 + ( y - k )2 = r2 [x - (-1 )2 + (y - 0 )2 = 82 center : (-1,0) radius = 8 units
  • 34.
    Example 4 : Determinethe center and the radius of the circle given by the equation x2 + y2 – 6x – 135 = 0.
  • 35.
    x2 + y2– 6x – 135 = 0 x2 + y2 – 6x – 135 + 135 = 0 + 135 x2 + y2 – 6x = 135 (x2 – 6x ) + y2 = 135 (x2 – 6x + 9 ) + y2 = 135 + 9 (x – 3)2 + y2 = 144
  • 36.
    ( x –h )2 + ( y – k )2 = r2 ( x – 3 )2 + ( y – 0 )2 = 122 center : (3,0) (x – 3)2 + y2 = 144 radius =12 units
  • 37.
    Example 5: Determine the equationof the circle whose diameter has its endpoints at P1 (6, 2) and P2 (4, 10).
  • 38.
    1. Find themidpoint of the diameter to find the center of the circle. P1 (6, 2) and P2 (4, 10) (𝑥𝑚, 𝑦𝑚) = 𝑥1 + 𝑥2 2 , 𝑦1 + 𝑦2 2 = 6+4 2 , 2+10 2 = 5, 6 (𝑥1, 𝑦1) (𝑥2, 𝑦2)
  • 39.
    2. Determine thelength of the radius r. C(5, 6) and P2 (4, 10) 𝒓 = 𝒙𝟐 − 𝒙𝟏 𝟐 + 𝒚𝟐 − 𝒚𝟏 𝟐 𝒓 = 𝟒 − 𝟓 𝟐 + (𝟏𝟎 − 𝟔)𝟐 𝒓 = −𝟏 𝟐 + 𝟒𝟐 𝒓 = 𝟏 + 𝟏𝟔 𝒓 = 𝟏𝟕 (𝑥1, 𝑦1) (𝑥2, 𝑦2) r r
  • 40.
    (x – h)2+ (y – k)2 = r2 (x – 5)2 + (y – 6)2 = ( 𝟏𝟕)2 (x – 5)2 + (y – 6)2 = 17 3. Substitute the values of C(h,k)=(5,6) and the value of r = 𝟏𝟕 (x-5)2 + (y-5)2=17
  • 41.