SlideShare a Scribd company logo
Microwave Engineering
and Antennas
Power Gain – Part II
Domine Leenaerts, Professor
Department of Electrical Engineering
Center for Wireless Technologies Eindhoven
Note: In these slide we have used the peak power in the
definition of Pav,s and related power definitions.
In the book and quizzes we will use the time-average
(rms) value with an additional factor Β½.
Power Gain – Part II
Objective of this lecture
β€’ Introduce the 4 definitions of power gain
β€’ Provide an example to show the differences
Four definitions of Power Gain
β€’ Available (power) Gain πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž =
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,π‘œπ‘œ
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
mismatch conditions at input
β€’ Delivered (power) Gain 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
mismatch conditions at output
β€’ Maximum (power) Gain πΊπΊπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š =
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,π‘œπ‘œ
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
optimal power transfer
β€’ Transducer (power) Gain 𝐺𝐺𝑇𝑇 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
mismatch at input and output
Z
V
Z
Z
V
Z
o
s
o
s
i l
V
l
V
i
system S
source load
input impedance
output impedance
Available and Delivered (Power) Gain
Z
V
Z
Z
V
Z
o
s
o
s
i l
V
l
V
i
system S
source load
input impedance
output impedance
πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž =
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,π‘œπ‘œ
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
=
𝑅𝑅𝑖𝑖
𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑠𝑠
2
𝐴𝐴𝑣𝑣
2
𝑅𝑅𝑠𝑠
π‘…π‘…π‘œπ‘œ
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
= 𝐴𝐴𝑣𝑣
2 𝑅𝑅𝑖𝑖𝑅𝑅𝑙𝑙
𝑅𝑅𝑙𝑙 + π‘…π‘…π‘œπ‘œ
2
𝐴𝐴𝑣𝑣 =
𝑉𝑉
π‘œπ‘œ
𝑉𝑉𝑖𝑖
=
𝑉𝑉𝑙𝑙
𝑉𝑉
𝑠𝑠
Zo=0 Ω; Zi = ∞ Ω:
Maximum and Transducer (Power) Gain
Z
V
Z
Z
V
Z
o
s
o
s
i l
V
l
V
i
system S
source load
input impedance
output impedance
𝐴𝐴𝑣𝑣 =
𝑉𝑉
π‘œπ‘œ
𝑉𝑉𝑖𝑖
=
𝑉𝑉𝑙𝑙
𝑉𝑉
𝑠𝑠
πΊπΊπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š =
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,π‘œπ‘œ
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
= 𝐴𝐴𝑣𝑣
2 𝑅𝑅𝑖𝑖
4π‘…π‘…π‘œπ‘œ
𝐺𝐺𝑇𝑇 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
=
𝑅𝑅𝑖𝑖
𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑠𝑠
2
𝐴𝐴𝑣𝑣
2 4𝑅𝑅𝑙𝑙𝑅𝑅𝑠𝑠
𝑅𝑅𝑙𝑙 + π‘…π‘…π‘œπ‘œ
2
𝐺𝐺𝑇𝑇
𝑅𝑅𝑙𝑙=π‘…π‘…π‘œπ‘œ
πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž
𝐺𝐺𝑇𝑇
𝑅𝑅𝑖𝑖=𝑅𝑅𝑠𝑠
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
𝐺𝐺𝑇𝑇
𝑅𝑅𝑙𝑙=π‘…π‘…π‘œπ‘œ, 𝑅𝑅𝑠𝑠=𝑅𝑅𝑖𝑖
πΊπΊπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š
Power Gain and scatter parameters: reflection
𝛀𝛀
𝑖𝑖𝑖𝑖 =
𝑏𝑏1
π‘Žπ‘Ž1
= 𝑆𝑆11 +
𝑆𝑆12𝑆𝑆21
1
𝛀𝛀
𝐿𝐿
βˆ’ 𝑆𝑆22
𝑏𝑏1
𝑏𝑏2
=
𝑠𝑠11 𝑠𝑠12
𝑠𝑠21 𝑠𝑠22
π‘Žπ‘Ž1
π‘Žπ‘Ž2
𝛀𝛀
π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ =
𝑏𝑏2
π‘Žπ‘Ž2
= 𝑆𝑆22 +
𝑆𝑆12𝑆𝑆21
1
𝛀𝛀
𝑆𝑆
βˆ’ 𝑆𝑆11
System S
Available, and delivered Power Gain
πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž 𝛀𝛀
𝑆𝑆, 𝑆𝑆 =
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑙𝑙
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
=
1 βˆ’ 𝛀𝛀
𝑆𝑆
2
1 βˆ’ 𝑆𝑆11𝛀𝛀
𝑆𝑆
2
𝑆𝑆21
2
1
1 βˆ’ 𝛀𝛀
π‘œπ‘œπ‘’π‘’π‘’π‘’
2
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 𝛀𝛀
𝐿𝐿, 𝑆𝑆 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠
=
1 βˆ’ 𝛀𝛀
𝐿𝐿
2
1 βˆ’ 𝑆𝑆22𝛀𝛀
𝐿𝐿
2
𝑆𝑆21
2
1
1 βˆ’ 𝛀𝛀
𝑖𝑖𝑖𝑖
2
πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž 𝛀𝛀
𝑆𝑆, 𝑆𝑆 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 𝛀𝛀
𝐿𝐿, 𝑆𝑆
Relation between all power gains
𝑀𝑀𝑆𝑆 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖𝑖𝑖
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
=
1 βˆ’ Γ𝑖𝑖𝑖𝑖
2
1 βˆ’ Γ𝑆𝑆
2
1 βˆ’ Γ𝑖𝑖𝑖𝑖Γ𝑆𝑆
2
𝑀𝑀𝐿𝐿 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑙𝑙
=
1 βˆ’ Γ𝑂𝑂𝑂𝑂𝑂𝑂
2
1 βˆ’ Γ𝐿𝐿
2
1 βˆ’ Ξ“π‘œπ‘œπ‘’π‘’π‘’π‘’Ξ“πΏπΏ
2
𝐺𝐺𝑇𝑇 Γ𝑆𝑆, Γ𝐿𝐿, 𝑆𝑆 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
=
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠
= 𝑀𝑀𝑆𝑆𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 Γ𝐿𝐿, 𝑆𝑆
𝐺𝐺𝑇𝑇 Γ𝑆𝑆, Γ𝐿𝐿, 𝑆𝑆 ≀ 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 Γ𝐿𝐿, 𝑆𝑆
𝐺𝐺𝑇𝑇 Γ𝑆𝑆, Γ𝐿𝐿, 𝑆𝑆 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
=
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑙𝑙
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙
π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑙𝑙
= πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž Γ𝑆𝑆, 𝑆𝑆 𝑀𝑀𝐿𝐿
𝐺𝐺𝑇𝑇 Γ𝑆𝑆, Γ𝐿𝐿, 𝑆𝑆 ≀ πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž Γ𝑆𝑆, 𝑆𝑆
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž
𝐺𝐺𝑇𝑇
Example: an RF amplifier
𝑠𝑠11 = 0.61, 165π‘œπ‘œ
𝑠𝑠12 = 0.05, 42π‘œπ‘œ
𝑠𝑠21 = 3.72, 59π‘œπ‘œ
𝑠𝑠22 = 0.45, βˆ’48π‘œπ‘œ
𝑍𝑍0 = 50Ξ©
𝑍𝑍𝑠𝑠 = 40Ξ©
𝑉𝑉
𝑠𝑠 = 5 βˆ— sin(πœ”πœ”πœ”πœ”) 𝑍𝑍𝐿𝐿 = 73Ξ©
Example: an RF amplifier
Ξ“ =
𝑍𝑍 βˆ’ 𝑍𝑍0
𝑍𝑍 + 𝑍𝑍0
, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Γ𝑠𝑠 = βˆ’0.111, Γ𝐿𝐿 = 0.187
𝛀𝛀
𝑖𝑖𝑖𝑖 = 𝑆𝑆11 +
𝑆𝑆12𝑆𝑆21
1
𝛀𝛀
𝐿𝐿
βˆ’ 𝑆𝑆22
= βˆ’0.594 + 𝑗𝑗𝑗.194 𝛀𝛀
π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = 𝑆𝑆22 +
𝑆𝑆12𝑆𝑆21
1
𝛀𝛀
𝑠𝑠
βˆ’ 𝑆𝑆11
= 0.305 βˆ’ 𝑗𝑗𝑗.356
𝑍𝑍𝑖𝑖𝑖𝑖 = 11 + 𝑗𝑗𝑗.54 [Ξ©] π‘π‘π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = 63 βˆ’ 𝑗𝑗𝑗𝑗. 4[Ξ©]
𝛀𝛀
𝑖𝑖𝑖𝑖 𝛀𝛀
π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ
𝑍𝑍𝑠𝑠 = 40Ξ©
𝑉𝑉
𝑠𝑠 = 5 βˆ— sin(πœ”πœ”πœ”πœ”) 𝑍𝑍𝐿𝐿 = 73Ξ©
Example: an RF amplifier
πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž 𝛀𝛀
𝑆𝑆, 𝑆𝑆 =
1 βˆ’ 𝛀𝛀
𝑆𝑆
2
1 βˆ’ 𝑆𝑆11𝛀𝛀
𝑠𝑠
2
𝑆𝑆21
2
1
1 βˆ’ 𝛀𝛀
π‘œπ‘œπ‘’π‘’π‘’π‘’
2
= 20.05 π‘œπ‘œπ‘œπ‘œ 13.02𝑑𝑑𝑑𝑑
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 𝛀𝛀
𝐿𝐿, 𝑆𝑆 =
1 βˆ’ 𝛀𝛀
𝐿𝐿
2
1 βˆ’ 𝑆𝑆22𝛀𝛀
𝐿𝐿
2
𝑆𝑆21
2
1
1 βˆ’ 𝛀𝛀
𝑖𝑖𝑖𝑖
2
= 24.49 π‘œπ‘œπ‘œπ‘œ 13.89𝑑𝑑𝑑𝑑
𝐺𝐺𝑇𝑇 𝛀𝛀
𝑆𝑆, 𝛀𝛀
𝐿𝐿, 𝑆𝑆 =
1 βˆ’ 𝛀𝛀
𝐿𝐿
2
1 βˆ’ 𝑆𝑆22𝛀𝛀
𝐿𝐿
2
𝑆𝑆21
2
1 βˆ’ 𝛀𝛀
𝑆𝑆
2
1 βˆ’ 𝛀𝛀
𝑖𝑖𝑖𝑖𝛀𝛀
𝑠𝑠
2
= 16.89 π‘œπ‘œπ‘œπ‘œ 12.27𝑑𝑑𝑑𝑑
𝑍𝑍𝑠𝑠 = 40Ξ©
𝑉𝑉
𝑠𝑠 = 5 βˆ— sin(πœ”πœ”πœ”πœ”) 𝑍𝑍𝐿𝐿 = 73Ξ©
πΊπΊπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝑆𝑆 = 41.5 π‘œπ‘œπ‘œπ‘œ 16.18𝑑𝑑𝑑𝑑
Example: an RF amplifier
β€’ The available power Pav =
𝑉𝑉𝑠𝑠
2
4𝑅𝑅𝑠𝑠
= 156 mW or Pav = 21.93 dBm.
β€’ The power delivered to the load is the available power multiplied by
the transducer gain. This results in Pdel = PavGT = 2.63W or expressed
in dBm,
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐺𝐺𝑇𝑇 𝛀𝛀
𝑆𝑆, 𝛀𝛀
𝐿𝐿, 𝑆𝑆 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž 𝑑𝑑𝑑𝑑𝑑𝑑 = 21.93 + 12.27 = 34.2𝑑𝑑𝑑𝑑𝑑𝑑
𝑍𝑍𝑠𝑠 = 40Ξ©
𝑉𝑉
𝑠𝑠 = 5 βˆ— sin(πœ”πœ”πœ”πœ”) 𝑍𝑍𝐿𝐿 = 73Ξ©
Note: The time average Pav = 78 mW or
18.93 dBm. Time average Pdel = 31.2 dBm
Summary
β€’ 4 definitions of power gain, depending on the impedance matching
conditions.
β€’ Matching networks at between source and input (Ms) and output and
load (ML) influences the power transfer from source to load
β€’ Transducer (power) gain is equal to or smaller than the available
(power) gain or delivered (power) gain

More Related Content

Similar to FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII_corrected.pdf

Space_vector_technique_calculation_and.pdf
Space_vector_technique_calculation_and.pdfSpace_vector_technique_calculation_and.pdf
Space_vector_technique_calculation_and.pdf
Nandini826255
Β 
Negative feedback Amplifiers
Negative feedback AmplifiersNegative feedback Amplifiers
Negative feedback Amplifiers
Yeshudas Muttu
Β 
Second Sight Presentation
Second Sight PresentationSecond Sight Presentation
Second Sight PresentationWill Yang
Β 
Selaidechou
SelaidechouSelaidechou
SelaidechouPedro Dias
Β 
Ass2
Ass2Ass2
Ass2
Roy Magsino
Β 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
AIMST University
Β 
Instrumentation Lab. Experiment #3 Report: Operational Amplifiers
Instrumentation Lab. Experiment #3 Report: Operational AmplifiersInstrumentation Lab. Experiment #3 Report: Operational Amplifiers
Instrumentation Lab. Experiment #3 Report: Operational Amplifiers
mohammad zeyad
Β 
chapter 1-part 2.pdf
chapter 1-part 2.pdfchapter 1-part 2.pdf
chapter 1-part 2.pdf
abdi113370
Β 
Lab1
Lab1Lab1
Lab1
Parveer Roy
Β 
WEEK 1Β· Op-Amp Introduction1. Read Chapters 1-2 in the text Op Amp.docx
WEEK 1Β· Op-Amp Introduction1. Read Chapters 1-2 in the text Op Amp.docxWEEK 1Β· Op-Amp Introduction1. Read Chapters 1-2 in the text Op Amp.docx
WEEK 1Β· Op-Amp Introduction1. Read Chapters 1-2 in the text Op Amp.docx
celenarouzie
Β 
G0431032037
G0431032037G0431032037
G0431032037
ijceronline
Β 
100 w sspa
100 w sspa100 w sspa
100 w sspa
Avani Patel
Β 
control_5.pptx
control_5.pptxcontrol_5.pptx
control_5.pptx
ewnetukassa2
Β 
ECE6420 Final Project Report
ECE6420 Final Project ReportECE6420 Final Project Report
ECE6420 Final Project ReportTianhao Li
Β 
Grade 11,U3 L4-resistance in Series and Parallel CCT's
Grade 11,U3 L4-resistance in Series and Parallel CCT'sGrade 11,U3 L4-resistance in Series and Parallel CCT's
Grade 11,U3 L4-resistance in Series and Parallel CCT's
gruszecki1
Β 
Analog Electronics.pptx
Analog Electronics.pptxAnalog Electronics.pptx
Analog Electronics.pptx
amanuelMihiret1
Β 
Unit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit CommitmentUnit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit Commitment
SANTOSH GADEKAR
Β 
Basics of amplifier.ppt
Basics of amplifier.pptBasics of amplifier.ppt
Basics of amplifier.ppt
Vijay Togadiya
Β 
Presentation
PresentationPresentation
PresentationTANOY DUTTA
Β 
Two-stage CE amplifier
Two-stage CE amplifier Two-stage CE amplifier
Two-stage CE amplifier
mrinal mahato
Β 

Similar to FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII_corrected.pdf (20)

Space_vector_technique_calculation_and.pdf
Space_vector_technique_calculation_and.pdfSpace_vector_technique_calculation_and.pdf
Space_vector_technique_calculation_and.pdf
Β 
Negative feedback Amplifiers
Negative feedback AmplifiersNegative feedback Amplifiers
Negative feedback Amplifiers
Β 
Second Sight Presentation
Second Sight PresentationSecond Sight Presentation
Second Sight Presentation
Β 
Selaidechou
SelaidechouSelaidechou
Selaidechou
Β 
Ass2
Ass2Ass2
Ass2
Β 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Β 
Instrumentation Lab. Experiment #3 Report: Operational Amplifiers
Instrumentation Lab. Experiment #3 Report: Operational AmplifiersInstrumentation Lab. Experiment #3 Report: Operational Amplifiers
Instrumentation Lab. Experiment #3 Report: Operational Amplifiers
Β 
chapter 1-part 2.pdf
chapter 1-part 2.pdfchapter 1-part 2.pdf
chapter 1-part 2.pdf
Β 
Lab1
Lab1Lab1
Lab1
Β 
WEEK 1Β· Op-Amp Introduction1. Read Chapters 1-2 in the text Op Amp.docx
WEEK 1Β· Op-Amp Introduction1. Read Chapters 1-2 in the text Op Amp.docxWEEK 1Β· Op-Amp Introduction1. Read Chapters 1-2 in the text Op Amp.docx
WEEK 1Β· Op-Amp Introduction1. Read Chapters 1-2 in the text Op Amp.docx
Β 
G0431032037
G0431032037G0431032037
G0431032037
Β 
100 w sspa
100 w sspa100 w sspa
100 w sspa
Β 
control_5.pptx
control_5.pptxcontrol_5.pptx
control_5.pptx
Β 
ECE6420 Final Project Report
ECE6420 Final Project ReportECE6420 Final Project Report
ECE6420 Final Project Report
Β 
Grade 11,U3 L4-resistance in Series and Parallel CCT's
Grade 11,U3 L4-resistance in Series and Parallel CCT'sGrade 11,U3 L4-resistance in Series and Parallel CCT's
Grade 11,U3 L4-resistance in Series and Parallel CCT's
Β 
Analog Electronics.pptx
Analog Electronics.pptxAnalog Electronics.pptx
Analog Electronics.pptx
Β 
Unit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit CommitmentUnit 5 Economic Load Dispatch and Unit Commitment
Unit 5 Economic Load Dispatch and Unit Commitment
Β 
Basics of amplifier.ppt
Basics of amplifier.pptBasics of amplifier.ppt
Basics of amplifier.ppt
Β 
Presentation
PresentationPresentation
Presentation
Β 
Two-stage CE amplifier
Two-stage CE amplifier Two-stage CE amplifier
Two-stage CE amplifier
Β 

FPviIoU6Qfi74iKFOgH4nA_67c7ba75e40549ba841e28dd4c6bcc1b_Web2_PowerGain_partII_corrected.pdf

  • 1. Microwave Engineering and Antennas Power Gain – Part II Domine Leenaerts, Professor Department of Electrical Engineering Center for Wireless Technologies Eindhoven Note: In these slide we have used the peak power in the definition of Pav,s and related power definitions. In the book and quizzes we will use the time-average (rms) value with an additional factor Β½.
  • 2. Power Gain – Part II Objective of this lecture β€’ Introduce the 4 definitions of power gain β€’ Provide an example to show the differences
  • 3. Four definitions of Power Gain β€’ Available (power) Gain πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž = π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,π‘œπ‘œ π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 mismatch conditions at input β€’ Delivered (power) Gain 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 mismatch conditions at output β€’ Maximum (power) Gain πΊπΊπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š = π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,π‘œπ‘œ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 optimal power transfer β€’ Transducer (power) Gain 𝐺𝐺𝑇𝑇 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 mismatch at input and output Z V Z Z V Z o s o s i l V l V i system S source load input impedance output impedance
  • 4. Available and Delivered (Power) Gain Z V Z Z V Z o s o s i l V l V i system S source load input impedance output impedance πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž = π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,π‘œπ‘œ π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 = 𝑅𝑅𝑖𝑖 𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑠𝑠 2 𝐴𝐴𝑣𝑣 2 𝑅𝑅𝑠𝑠 π‘…π‘…π‘œπ‘œ 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 = 𝐴𝐴𝑣𝑣 2 𝑅𝑅𝑖𝑖𝑅𝑅𝑙𝑙 𝑅𝑅𝑙𝑙 + π‘…π‘…π‘œπ‘œ 2 𝐴𝐴𝑣𝑣 = 𝑉𝑉 π‘œπ‘œ 𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑙𝑙 𝑉𝑉 𝑠𝑠 Zo=0 Ω; Zi = ∞ Ω:
  • 5. Maximum and Transducer (Power) Gain Z V Z Z V Z o s o s i l V l V i system S source load input impedance output impedance 𝐴𝐴𝑣𝑣 = 𝑉𝑉 π‘œπ‘œ 𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑙𝑙 𝑉𝑉 𝑠𝑠 πΊπΊπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š = π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,π‘œπ‘œ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 = 𝐴𝐴𝑣𝑣 2 𝑅𝑅𝑖𝑖 4π‘…π‘…π‘œπ‘œ 𝐺𝐺𝑇𝑇 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 = 𝑅𝑅𝑖𝑖 𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑠𝑠 2 𝐴𝐴𝑣𝑣 2 4𝑅𝑅𝑙𝑙𝑅𝑅𝑠𝑠 𝑅𝑅𝑙𝑙 + π‘…π‘…π‘œπ‘œ 2 𝐺𝐺𝑇𝑇 𝑅𝑅𝑙𝑙=π‘…π‘…π‘œπ‘œ πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž 𝐺𝐺𝑇𝑇 𝑅𝑅𝑖𝑖=𝑅𝑅𝑠𝑠 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 𝐺𝐺𝑇𝑇 𝑅𝑅𝑙𝑙=π‘…π‘…π‘œπ‘œ, 𝑅𝑅𝑠𝑠=𝑅𝑅𝑖𝑖 πΊπΊπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š
  • 6. Power Gain and scatter parameters: reflection 𝛀𝛀 𝑖𝑖𝑖𝑖 = 𝑏𝑏1 π‘Žπ‘Ž1 = 𝑆𝑆11 + 𝑆𝑆12𝑆𝑆21 1 𝛀𝛀 𝐿𝐿 βˆ’ 𝑆𝑆22 𝑏𝑏1 𝑏𝑏2 = 𝑠𝑠11 𝑠𝑠12 𝑠𝑠21 𝑠𝑠22 π‘Žπ‘Ž1 π‘Žπ‘Ž2 𝛀𝛀 π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = 𝑏𝑏2 π‘Žπ‘Ž2 = 𝑆𝑆22 + 𝑆𝑆12𝑆𝑆21 1 𝛀𝛀 𝑆𝑆 βˆ’ 𝑆𝑆11 System S
  • 7. Available, and delivered Power Gain πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž 𝛀𝛀 𝑆𝑆, 𝑆𝑆 = π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑙𝑙 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 = 1 βˆ’ 𝛀𝛀 𝑆𝑆 2 1 βˆ’ 𝑆𝑆11𝛀𝛀 𝑆𝑆 2 𝑆𝑆21 2 1 1 βˆ’ 𝛀𝛀 π‘œπ‘œπ‘’π‘’π‘’π‘’ 2 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 𝛀𝛀 𝐿𝐿, 𝑆𝑆 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠 = 1 βˆ’ 𝛀𝛀 𝐿𝐿 2 1 βˆ’ 𝑆𝑆22𝛀𝛀 𝐿𝐿 2 𝑆𝑆21 2 1 1 βˆ’ 𝛀𝛀 𝑖𝑖𝑖𝑖 2 πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž 𝛀𝛀 𝑆𝑆, 𝑆𝑆 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 𝛀𝛀 𝐿𝐿, 𝑆𝑆
  • 8. Relation between all power gains 𝑀𝑀𝑆𝑆 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖𝑖𝑖 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 = 1 βˆ’ Γ𝑖𝑖𝑖𝑖 2 1 βˆ’ Γ𝑆𝑆 2 1 βˆ’ Γ𝑖𝑖𝑖𝑖Γ𝑆𝑆 2 𝑀𝑀𝐿𝐿 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑙𝑙 = 1 βˆ’ Γ𝑂𝑂𝑂𝑂𝑂𝑂 2 1 βˆ’ Γ𝐿𝐿 2 1 βˆ’ Ξ“π‘œπ‘œπ‘’π‘’π‘’π‘’Ξ“πΏπΏ 2 𝐺𝐺𝑇𝑇 Γ𝑆𝑆, Γ𝐿𝐿, 𝑆𝑆 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠 = 𝑀𝑀𝑆𝑆𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 Γ𝐿𝐿, 𝑆𝑆 𝐺𝐺𝑇𝑇 Γ𝑆𝑆, Γ𝐿𝐿, 𝑆𝑆 ≀ 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 Γ𝐿𝐿, 𝑆𝑆 𝐺𝐺𝑇𝑇 Γ𝑆𝑆, Γ𝐿𝐿, 𝑆𝑆 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 = π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑙𝑙 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑠𝑠 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž,𝑙𝑙 = πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž Γ𝑆𝑆, 𝑆𝑆 𝑀𝑀𝐿𝐿 𝐺𝐺𝑇𝑇 Γ𝑆𝑆, Γ𝐿𝐿, 𝑆𝑆 ≀ πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž Γ𝑆𝑆, 𝑆𝑆 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž 𝐺𝐺𝑇𝑇
  • 9. Example: an RF amplifier 𝑠𝑠11 = 0.61, 165π‘œπ‘œ 𝑠𝑠12 = 0.05, 42π‘œπ‘œ 𝑠𝑠21 = 3.72, 59π‘œπ‘œ 𝑠𝑠22 = 0.45, βˆ’48π‘œπ‘œ 𝑍𝑍0 = 50Ξ© 𝑍𝑍𝑠𝑠 = 40Ξ© 𝑉𝑉 𝑠𝑠 = 5 βˆ— sin(πœ”πœ”πœ”πœ”) 𝑍𝑍𝐿𝐿 = 73Ξ©
  • 10. Example: an RF amplifier Ξ“ = 𝑍𝑍 βˆ’ 𝑍𝑍0 𝑍𝑍 + 𝑍𝑍0 , 𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Γ𝑠𝑠 = βˆ’0.111, Γ𝐿𝐿 = 0.187 𝛀𝛀 𝑖𝑖𝑖𝑖 = 𝑆𝑆11 + 𝑆𝑆12𝑆𝑆21 1 𝛀𝛀 𝐿𝐿 βˆ’ 𝑆𝑆22 = βˆ’0.594 + 𝑗𝑗𝑗.194 𝛀𝛀 π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = 𝑆𝑆22 + 𝑆𝑆12𝑆𝑆21 1 𝛀𝛀 𝑠𝑠 βˆ’ 𝑆𝑆11 = 0.305 βˆ’ 𝑗𝑗𝑗.356 𝑍𝑍𝑖𝑖𝑖𝑖 = 11 + 𝑗𝑗𝑗.54 [Ξ©] π‘π‘π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = 63 βˆ’ 𝑗𝑗𝑗𝑗. 4[Ξ©] 𝛀𝛀 𝑖𝑖𝑖𝑖 𝛀𝛀 π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ 𝑍𝑍𝑠𝑠 = 40Ξ© 𝑉𝑉 𝑠𝑠 = 5 βˆ— sin(πœ”πœ”πœ”πœ”) 𝑍𝑍𝐿𝐿 = 73Ξ©
  • 11. Example: an RF amplifier πΊπΊπ‘Žπ‘Žπ‘Žπ‘Ž 𝛀𝛀 𝑆𝑆, 𝑆𝑆 = 1 βˆ’ 𝛀𝛀 𝑆𝑆 2 1 βˆ’ 𝑆𝑆11𝛀𝛀 𝑠𝑠 2 𝑆𝑆21 2 1 1 βˆ’ 𝛀𝛀 π‘œπ‘œπ‘’π‘’π‘’π‘’ 2 = 20.05 π‘œπ‘œπ‘œπ‘œ 13.02𝑑𝑑𝑑𝑑 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 𝛀𝛀 𝐿𝐿, 𝑆𝑆 = 1 βˆ’ 𝛀𝛀 𝐿𝐿 2 1 βˆ’ 𝑆𝑆22𝛀𝛀 𝐿𝐿 2 𝑆𝑆21 2 1 1 βˆ’ 𝛀𝛀 𝑖𝑖𝑖𝑖 2 = 24.49 π‘œπ‘œπ‘œπ‘œ 13.89𝑑𝑑𝑑𝑑 𝐺𝐺𝑇𝑇 𝛀𝛀 𝑆𝑆, 𝛀𝛀 𝐿𝐿, 𝑆𝑆 = 1 βˆ’ 𝛀𝛀 𝐿𝐿 2 1 βˆ’ 𝑆𝑆22𝛀𝛀 𝐿𝐿 2 𝑆𝑆21 2 1 βˆ’ 𝛀𝛀 𝑆𝑆 2 1 βˆ’ 𝛀𝛀 𝑖𝑖𝑖𝑖𝛀𝛀 𝑠𝑠 2 = 16.89 π‘œπ‘œπ‘œπ‘œ 12.27𝑑𝑑𝑑𝑑 𝑍𝑍𝑠𝑠 = 40Ξ© 𝑉𝑉 𝑠𝑠 = 5 βˆ— sin(πœ”πœ”πœ”πœ”) 𝑍𝑍𝐿𝐿 = 73Ξ© πΊπΊπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š 𝑆𝑆 = 41.5 π‘œπ‘œπ‘œπ‘œ 16.18𝑑𝑑𝑑𝑑
  • 12. Example: an RF amplifier β€’ The available power Pav = 𝑉𝑉𝑠𝑠 2 4𝑅𝑅𝑠𝑠 = 156 mW or Pav = 21.93 dBm. β€’ The power delivered to the load is the available power multiplied by the transducer gain. This results in Pdel = PavGT = 2.63W or expressed in dBm, 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐺𝐺𝑇𝑇 𝛀𝛀 𝑆𝑆, 𝛀𝛀 𝐿𝐿, 𝑆𝑆 π‘ƒπ‘ƒπ‘Žπ‘Žπ‘Žπ‘Ž 𝑑𝑑𝑑𝑑𝑑𝑑 = 21.93 + 12.27 = 34.2𝑑𝑑𝑑𝑑𝑑𝑑 𝑍𝑍𝑠𝑠 = 40Ξ© 𝑉𝑉 𝑠𝑠 = 5 βˆ— sin(πœ”πœ”πœ”πœ”) 𝑍𝑍𝐿𝐿 = 73Ξ© Note: The time average Pav = 78 mW or 18.93 dBm. Time average Pdel = 31.2 dBm
  • 13. Summary β€’ 4 definitions of power gain, depending on the impedance matching conditions. β€’ Matching networks at between source and input (Ms) and output and load (ML) influences the power transfer from source to load β€’ Transducer (power) gain is equal to or smaller than the available (power) gain or delivered (power) gain