SlideShare a Scribd company logo
1 of 87
Download to read offline
Photovoltaic Solar Energy Conversion (PVSEC)
                        ‫إﻧﺘﺎج اﻟﻜﻬﺮﺑﺎء ﻣﻦ اﻟﻄﺎﻗﺔ اﻟﺸﻤﺴﻴﺔ‬
                         ‫ﻴ‬    ‫ا‬      ‫إ ج ا ﻬﺮﺑ ء ﻦ ا‬

         Courses on photovoltaic for Moroccan academic staff; 23-27 April, ENIM / Rabat
                                                              23 27

                                                                          Ingot
                  PVSEC-Part
                  PVSEC P t II                                            crystal
Fundamental and application of Photovoltaic solar cells
                    and system
                    Ahmed Ennaoui                         Wafer
   Helmholtz-Zentrum Berlin für Materialien und Energie
              ennaoui@helmholtz-berlin.de

                                                             Solar cell
Highlight:Photovoltaic Solar Energy Conversion (PVSEC)
Highlights
Basic of solar cells and Modules
Light absorption and band to band transition
  g         p
Quantum efficiency and absorption coefficient
Generation and recombination processes
Shockley-Read Hall Recombination (SRH)
Continuity equation and Transport process
Silicon to binary and ternary compounds
From silicon solar cell as example of PN j ti
F      ili      l     ll         l f     junction
Performance of solar cells
Equivalent Circuit model: series (Rs) and shunt resistance (Rsh)
Change in cell performance with Rs and Rsh
Change in short circuit current and open-circuit with solar radiation
Change in short circuit current and open-circuit with the temperature
                                    open circuit
Performance measurement standard conditions
                            Prof. Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic of solar cells and Modules

              Sun has roughly T = 5800 K                   Solar cell has roughly T = 300 K




Two basic functions of a solar cell
1.
1    Light absorption: generation of free excess charge carriers
                                                    photocurrent, I                              Power
2. Charge separation: separate/extraction of excess electrons and holes                           IxV
                                                    p
                                                    photovoltage, V
                                                               g ,
     Conversion of the Sun light in the „Black Box“
        • To absorb the solar spectrum as efficient as possible
        • To collect photogenerated charge carriers
        • Charge transport must be possible
        • To make electron go to one side and holes to another              current flow
                                         Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Task of Photovoltaic
Key aim is to g
  y           generate electricity from solar spectrum
                                 y             p
       Power = Voltage x Current                      J [A/cm ]               2
                                                                                    . J xV
                                                                                    . (J ,V )
                                                                                         m       m
       [Watt/cm2]   [Volt ]   [A/cm2]                            Jm                        m    m

Two challenges
Generating a large current.                                                                  V [Volt ]
Generating a large voltage.
                                                                                   Vm

High current.                                         High voltage
But low voltage                                       But low current
E
Excess energy l t t h t
               lost to heat                           Sub-band gap light is lost




                                   Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Absorption-Separation-Collection
   Photons absorbed         Electron flow             Electrical current
   Photon flux gives number of photons/unit time/unit area/wavelength
Φ(λ) = Φ 0 .exp(−α λ x) ⎯R(λ )→
                         ⎯⎯             Φ(λ) = Φ 0 (λ).(1 − R λ ).exp(−α λ x)

                                                   Electrons collected
         dΦ                                              Load
G(x) = −    = αΦe−αx
         dx                                                   dp
                                             J = σE      Dp
                                                              dx




                                                                                     ceptor
                                                   P = Voltage x Current
                                                 Voltage Δ = μe – μh μe
                                                 V lt    Δμ




                                                                                   Acc
                                                 μ = chemical potential
                                                                    Rec    Voc
                                   or

                                        μh
                                Dono



                                             0       W             Ln La= 1/α




                              Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Quantum efficiency
• Photoccurrent = how much light converted?                              This ratio can be measured
 Maximum short circuit current                                         Electrons collected / Photons absorbed
• Limited information on the electronic properties
• Information on the optical properties of the device
                                                                             electrons
                                                                           N out       =
                                                                                          J A/cm 2 [   ]
                                                                                         e[Coulomb]
               hc                         1239
       hν =                  ⇒ EG (eV ) =
                   λ                      λ (nm)                            N    photons
                                                                                           =
                                                                                               [
                                                                                             Φ Watt/cm 2    ]
                                                                                              hν [Joule ]
                                                                                in

                                 Load
                                 L d
                                                                      External Quantum Efficiency, EQE




                                                            cceptor
                                  dp
                       J = σE D p                                          N electron   1 J ( λ ) hc
                                  dx                                  EQE = photons =
                                                                       Q     out
                                                                           N in       Φ (λ ) e λ



                                                           Ac
                                 →
                         →
                                ∇p                       μe
                         E                                                 Internal Quantum Efficiency
                                                                                         EQE
                                        Rec
                                        R        Voc                          IQE =
                                                                                       1 − R (λ )
              μh                                                         Origine of the photovoltage
         or




                                                                             Chemical potential
      Dono




               x=0                       La= 1/α
                             x=W     x = Ln
                                                                           EF,n = μe           EF,h = μh

                                              Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Quantum efficiency measurements
                                                                             current/charge of 1 electron
                      External Quantum Efficiency" EQE" =
                                                   EQE
                                                                      Total power of photon/energy of 1 photon

                                                                                     Beam splitter




                                     Monochromator
            Chopper                  equipped with more gratings*


      EQE vs. λ

      EG



                              *Gratings should have line density as high as possible for achieving high resolution and high
                              power throughput. (600 – 3000 lines/mm).


1 - Reference measurement                     2 – Cell Measurement
                                                                                                 3 – Final Result
J sc = q.EQE REF .Φ1
  REF
                                         J sc = q.EQECELL .Φ2
                                           CELL

                                                                                                       CELL   MON,1
                                                                                                     J sc   J sc
                                                                                        EQE CELL   = MON,2 . REF EQE REF
J   MON,1
    sc      = q.EQE
              q Q     MON    .aΦ 1       J   MON,2
                                             sc      = q.EQE
                                                       q Q           MON   .aΦ 2                    J sc     J sc
                     MON,1                             CELL
                   J sc                             J sc
EQE MON       .a =                      EQECELL .a = MON,2 .EQEMON .a
                    qΦ 1                            J sc
                                                     Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: EQE and and absorption coefficient
                ( )
               E(k)                                           p
                                                 Photon absorption in a
                                                    direct band-gap
  e.g. GaAs                   Conduction
                                Band
                                                    semiconductor
                                                          B
                                                   α=        (h ν − E G ) 2
               EC                                         hν
                                                     1
Direct Bandgap Eg
               EV
                              Photon
                                            (α .h ν )2    vs. (hν − E G ) → E G

                    Valence
                     Band
                                                         Cut-off λ vs. EG
                                                                      1.24
 -k                                         +k          λ G [μm] =
                                                                     E G [eV]
                                                                                         J sc = q ∫ Φ (λ ) EQE (λ ) dλ
               E(k)                                                                                λ


   e.g. Si                     Conduction         Photon absorption in an
                                 Band               indirect band-gap
                                                      semiconductor
                                                                          1
               EG+Ep
                       Phonon          EC                  A
                                            Eg          α = (hν − EG ) 2
      Photon
                                       EV                  hν
                    Valence
                               Ep
                                             (α .h ν )2    vs. (h ν − E G ) → E G
                     Band

      -k                                    +k                 Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: absorption coefficient and absorption length
                                                           Light absorption
                                                       E G (T) = E g (0) − A.f(T)
                                                            Si        Ge          GaAs
                                               EG (eV) 1 12
                                                       1.12           0.66
                                                                      0 66        1.42
                                                                                  1 42
                                                   Temperature changes:
                                         EG ↑ as T ↓, Changing the absorption edge

                                                  Absorption ↔ Generation
                       hν                               Φ = Φ0 .(1 − R λ ).e−αx
                                                              1          Φ
Φ0(E)                                                  α λ = − . ln
                                                              d     Φ0 .(1 − R λ )
                      ΦA(E)
                                       Φt(x)
                                                                 dΦ
                                                  G(E, x) = −       = Φ o (E).(1 - R).α). -αx
                                                                 dx
                                                          Φ0 = ΦR + ΦA + ΦT
                                        Depth x
                                                                  Φ
            Surface           x =1/α
 Φr(E)                                                   100% = R λ + A λ + Tλ
                                  Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: absorption coefficient and absorption length




                                                                                    100 nm




                        Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: improuvement, Light traping

          Influence of the layer thickness on the photocurrent of Si




Realization:
• Etching and texturing of semiconductors.
• Implementation of particles for scattering
 deposition on rough or structured surfaces
 d      ii          h              d    f

                                     Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Challenging parameters
                                                          Important cost factor
All device parameters      Reflection Loss
                                                    Material parameter          €

J sc = q . ∫ [η(λ) . (1 − R λ ).Φ 0 (λ ) . exp - α λ .d ]dλ
              η( ) (          )              p
             EG         Decisive Material parameter                          Light trapping
η(λ) =↑ %         EQE or η or IPCE - incident photon to electron conversion efficiency)
                                              p                                      y)
                                               1 J ph hc
                                  EQE =                 .
                                            Φ(λ) q λ

                                 Resistive loss

    Reflection loss                             Top contact
                                                     “loss”
                                                      loss
Recombination
    loss

                                                Back contact
                                                  „Loss“

                                    Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Close look to EQE

                              1 J ph (λ ) hc
                η(λ) = EQE =             .
                             Φ(λ)   q      λ


       (2) Losses due to reflection                 (3) Losses due to rear surface
       and low diffusion length                     passivation and reduced
                                                    absorption at long wavelengths
                                                    and low diffusion length

                                                     (4) Complete loss due to
                                                     missing absorption




  (1) Losses due to front surface
  recombination and absorption             Wavelength at             1.24
                                                         λ G [μm] =
  in passivation and antirection           the band gap             E G [eV]
  coating layers

                                  Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction Loss in Jph
Good surface passivation.                Texturing in the form of pyramids so that
Antireflection coatings.                  light is trapped at the surface (<60nm)
Low metal coverage of the top surface.
Light trapping or thick material
(but not thicker than diffusion length).
High diffusion length in the material.
Junction depth optimized for absorption
 in emitter and base.
Low reflection by texturing

                                      Resistive loss

           Reflection loss                         Top contact
                                                       “loss”
                                                       “l   ”
       Recombination
           loss

                                                   Back contact
                                                     „Loss“
Generation vs. recombination processes
  Generation (g) requires an input of energy given to an electron:
                                           gy g
  - Phonons - vibrational energy of the lattice
  - Photons - Light, or electromagnetic waves
  - Kinetic energy from another carrier (Impact ionization )
                                                                                     Electron
                                                                                     El t
                                      EC                                           thermalizes
                Generation
                                                                                  to band edge
                Ekin                              K.E. = E − EC
                                           EV                                                           EC
   Generation                                                  energy > EG
     Ekin                                                                  energy = EG
                                                                                            energy < EG

                                                                                                             EV
  - Impact ionization
The electron hits an atom, and break a covalent bond to generate an
electron-hole pair, if the kinetic energy is larger than the energy needed
to
t generate th pair. Th process continues with th newly generated
          t the i The                     ti       ith the     l       t d
electrons, leading to avalanche generation (e-h).

                                            Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Generation vs. recombination processes
Recombination (r) is the opposite of generation, leading to voltage and current loss.
Non-radiative recombination       phonons, lattice vibrations.
Radiative recombination           photons (dominating in a direct bandgap materials )
Auger recombination               charge carrier may give its energy to the other carrier.
Recombination processes are characterized b th minority carrier lif ti τ.
R       bi ti                    h    t i d by the i it           i lifetime
Equilibrium: charge distributions np = ni2
Out of equilibrium: The system tries to restore itself towards equilibrium through R-G
Steady-state rates: deviation from equilibrium
      y                             q
r = B .pn           ⎫
                                       (
                    ⎬ R = r − g = B pn − ni
                                          2
                                                 )               B(Si) = 2 × 10 −15 cm 3 /s
 g = B.p0 n0 = Bni2 ⎭
                                                                                         Electron thermalizes
                                                                                             to band edge


                                                                       bination
                                                            xcess energy given
                                                                       rrier in
                     EC                                                                             EC
                                                                       y

                                                          th same band d
                                                     EC   Auger recomb

                                                          to another car
       Radiative
                                     Non-radiative
                             E(eV)




     recombination
                                     recombination
                                             Phonon        he
                                                          Ex
                                                           o
                                                          A




                     EV                              EV                                              EV

                                            Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Shockley-Read Hall Recombination (SRH)
 The impurities create deep-level-traps (ET) within the bad gap
 The electron in transition between bands passes through ET                                                                      EC
  (1)+(3): one electron reduced from Conduction band                                                   (1)              (2)
          and one‐hole reduced from valence‐band and                                                                             ET
  (2)+(4): one hole created in valence band and                                                       (3)                  (4)
          one electron created in conduction band                                                                                EV
  Steady state
  Steady-state rates: R = A (np-ni2) = deviation from equilibrium:
                            (np n
   n, p and NT inside Δx are held constant by the balancing effect of distinct different process
                                     np − n i2
         R=
              ⎛ 1 ⎞             ⎛    ⎞
              ⎜     ⎟(n + n1) + ⎜ 1 ⎟(p + p1)                              cp,n: capture coefficient of the recombination process
              ⎜c N ⎟            ⎜c N ⎟
             1⎝ p T ⎠           ⎝ n T⎠                                     NT: density of the recombination levels.
τp =                    ↑                   1
                                                 ↑ τn =                    σn,p: capture cross sections for e and h.
       σ p v t ,h N T                                     σ n v t ,n NT    ET: energy levels inside the energy gap.
                        ( ET −Ei )                  − ( E T −Ei )
                                                                           vth: average thermal velocity of e and h.
                                                                           pT, nT: number of empty states available
       n1 = n i e          k BT
                                      p1 = n i e        k BT
                                                                           n, p: number of electrons or holes
                                                                           n1 , p1: number of electrons and holes at ET
   Low level i j ti
   L l l injection
                                                  Δn                                                  Δp
       n - type material              R SRH =                         p − type material     R SRH =
                                                  τn                                                  τp
                                                          Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Summary: Generation & Recombination
                                             Auger recombination
                                 (dominant effect at high carrier concentration) Ekin= -qELsc
                                                                                        q
                                                                                                  EC
                                Direct                      Loss to thermal
Shockley-Read Hall         recombination                       vibrations      Ekin
  recombination              direct band                                                                    EV




                                                                                           Impact ionization is a
                                                                                           generation mechanism.
                                ⎛ 1      1        1 ⎞                                      When the electron hits an
R = RSRH + RDirect + RAuger = Δn⎜    +        +        ⎟
                                                                                           atom, it may break a
                                ⎜τ                     ⎟
                                ⎝ SRH τ Direct τ Auger ⎠
                                                                                           covalent bond to generate
        (
  = Δn cn NT + BN D + cn,Auger .N D
                                  2
                                       )                                                   an electron-hole pair.

                       (
            ⇒ τ eff = cn NT + BN D + cn,Auger .N
                                               N             D )
                                                             2 −1       The process continues with the newly
                                                                        generated electrons leading to avalanche
                                                                                   electrons,
                                                                        generation of electrons and holes.
                                   τ : average time it takes an excess minority carrier to recombine
                                       (1 ns to 1 ms) in Si
            τ                      τ : depends on the density of metallic impurities and the density
                        t/teff          of crystalline defects.
                                                      Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
What we have learned?

     Photo absorption and photo generation, Direct and indirect band gap, EQE, IQE
     absorption coefficient, absorption length, excess minority carrier , carrier lifetime
      Recombination: Non Radiative, Radiative, Auger
      Shockley-Read Hall Recombination (dominant process in Si)
     There are wide variety of generation‐recombination events that allow restoration of
     equilibrium once the stimulus is removed.
     Direct recombination is photon‐assisted, indirect recombination phonon assisted.
    Recombination lifetime in Si is controlled by Auger recombination at high carrier
    concentration
    Recombination life time in Si is controlled by SRH at low carrier densities
    and depends on the amount of impurities and defects.




http://en.wikipedia.org/wiki/Main_Page    Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Continuity equation and Transport process
Continuity equation for minority carriers:
         y q                   y
∂ ( A . Δx . n ) A . J n (x) - A . J n (x + dx)
                =                               + A . g n . Δx − A . rn . Δx
       ∂t                      −q

                                             Φ = Φ0 .(1 − Rλ ).exp(−αx)
                                                     Light flux



     ∂n J n (x) - J n (x + dx)             1
        =                      + g n − rn = ∇.J n + g n − rn
     ∂t        − q.Δx                      q
                                                     ∂
                       ∇ ⋅ (∇ × H ) = ∇ ⋅ J cond +      ∇⋅D = 0
                                                     ∂t
                          (         )
                       ∇ ⋅ Jn + J p +
                                        ∂ρ
                                        ∂t
                                           = 0, ρ = q( p − n + N D − N A )

     Maxwell             ⎧ ∂n = 1 ∇ ⋅ J + G − R
                         ⎪ ∂t q        n   n   n
                       ⇒ ⎨
                           ∂p     1
                         ⎪ = − ∇ ⋅ J p + Gp − Rp
                         ⎩ ∂t     q
                                          Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Continuity equation and Transport process
                              rain       Evaporation
                                            p

          In flow


  Rate of                                                         Out flow
              dn
increase of         = (in flow – out flow) + Rain -                Evaporation
water level
   t l l      dt         1
  in lake           =      ∇ .J n                 + gn -                 rn
                         q




    ∂n 1                                               ∂p 1
        = ∇ .J n + g n - rn                                = ∇ .J p + g p - r p
    ∂t q                                               ∂t q
    J n = qnμn E + qDn∇ n                              J p = qnμ p E + qD p ∇ p
                                 Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Continuity equation and Transport process
Carriers are collected when they are:
 Generated closer t th j ti
 G       t d l      to the junction
 Generated within a diffusion length of the junction                                                   ∂n
                                                                                                          =0
 Key parameters for high collection are:                                                               ∂t
 Minority carrier diffusion
         y
 Surface recombination
 Difficult to achieve high collection near front surface and also rear
                        Differential equation is simple only when G = constant.
                            d 2 Δn Δn G(λ( x)          d 2 Δp Δp G(λ( x)
                                 2
                                   =    2
                                          −                 2
                                                              = 2 −
                             dx      Ln      Dn         dx     Lp    Dp
                                            −x        +x
                            Δn(x) = Aexp       + Bexp      + Gτ n ← Bondary conditions
                                            Ln        Ln




                                                                                                                     Acceptor
                                                                       p(-αx)
                                                                                             ΕF,n=μe
                                                  Donor

                                    ΕF,p=μh
                                                            Φ= 0(1-R)exp
                                                  D




                                                                                                                     A
      Acceptor




                 Rec                                                                                     Rec   Voc
                                                             =Φ

                                                                                   or

                                                                                            ΕF,p=μh
      A




                                    ΕF,n=μe
                                                                                Dono



   La= 1/α             Lp         W           0                                         0       W        Ln La= 1/α
                                                    Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic Diode J-V equation
                                                                                                dΔp n
Applying the same boundary conditions as in the ideal diode case
                                                              case.                J p = qD p
                                                                                                 dx
Differentiating to find the current
                                                                                                dΔn p
Equating the currents on the n-type and p-type sides, we get:                      J n = qD n
                                                                                                 dx
                 ⎛ Dn            Dp       ⎞
              J= ⎜q    n p,0 + q    p n,0
                                                  V
                                          ⎟ (exp qV − 1) − qG(L + L + W)
                 ⎜ L             Lp       ⎟     k BT           n   p
                 ⎝   n                    ⎠
                               J0                                 Photocurre nt J L


                  - JL     + JD                           ⎛       qV
                                                                           ⎞
                                                  J = J 0 ⎜ exp n.k B T
                                                                        − 1⎟ − J L
                                                          ⎜                ⎟
                                                          ⎝
                                                      1 4 42 4 43          ⎠
                                                              Dark current, J D

                                                 J0 : saturation current
                                                 kB : Boltzmann`s constant, 1.381 10-23 J/Kelvin
                                                 n : ideality factor
                    ⎡ D n n i2   D p n i2   ⎤
              J0 = q⎢          +            ⎥    ni: carrier concentration
                    ⎢ Ln N A L p N D
                    ⎣                       ⎥
                                            ⎦    NA,ND. Doping concentration

                                            Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Silicon (Diamond) to Chalcopyrite (Tetragonal)
Diamond structure        IV                                                 nq N + mqM
                                       Grimm Sommerfeld rulea
                                       Grimm-Sommerfeld-rulea                            =4
                          Si                                                 n + m + ...
                                  N,M elements, n,m atoms/unit cell and qN, qM valence electrons


                    sp3 hybrid bonds

     III-V    zincblende structure        II-VI
 Epitaxial film:               Polycrystalline thin film:
 GaAs , InP…                         CdTe, ZnS



   II-IV-V2                               I-III-VI2
Epitaxial film:                Polycrystalline thin film:
 ZnGeAs, …                        Cu(In,Ga)(Se,S)2
                           (Chalcopyrite and related compounds)
                        I-III-VI2 Alloy: Group I= Cu, Group
                       III= In and Ga, Group VI = Se and S
                                         Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: how to make a solar cell: The p-n junction
                                                                IB    IIB IIIB IVB VB VIB
                                                                                                               Si
                                                                          Periodic Table
                                                                          5                           8
                                                                                                               Ge
                                                                                   6         7

                                                                              B         C        N        O   GaAs
                                                                          13       14        15       16

                                                                              Al        Si        P       S   CdTe
                                                               29    30   31       32        33       34

                                                                Cu   Zn   Ga       Ge        As        Se     I P
                                                                                                              InP
                                                                     48   49       50        51       52

                                                                     Cd       In       Sn        Sb Te        AlSb

                                                                                                              CIGS
                                                                                                              CZTS
                       Metallurgical Junction
                       NA                 ND
               -   -   -    -   - - + +   +    +   +
               -   -   -    -   - - + +   +    +   +
   P           -   -   -    -   - - + +   +    +   +
                                                           N

               -   -   -    -   - - + +   +    +   +
                     Space
ionized acceptors Charge Region                    ionized donors
                                E-Field
h+ diffusion = h+ drift                   e- diffusion = e- drift
Basic: PN junction at equilibrium
 ⎧p p0 ≈ N A      ⎧ n no ≈ N D
 ⎪                ⎪
 ⎨       n
           2
                  ⎨        ni
                              2
 ⎪n p0 ≈ i
                  ⎪ p n0 ≈
 ⎩
EC
             NA
                  ⎩             ND             n = p = ni
                          qVbi
                                            n i = BT 3 e −EG
                                               2               kT
Ei
                                 EF
EV                                      300K : n i ≅ 1.5 × 10 10 cm −3


     ρ(x)             W
                  +
                      qND                  Built-in voltage Vbi

       -qNA -
         N                        x        qVb = ( Ei − E F ) p + ( E F − Ei )n
                                              bi
     V (x)                                 nn0 = ni exp[( E F − Ei ) k BT ]
                           Vbi             p p 0 = ni exp[Ei − E F k BT ]
                                                        p
     E(x)                         x                     ⎛         ⎞
                                                 k BT ⎜ p p 0 nn0 ⎟        ⎛ N AND ⎞
                                           Vbi =     ln             ≈ VT ln⎜       ⎟
       − xp           xn                           q    ⎜ n2 ⎟             ⎜    2 ⎟
                                                        ⎝    i    ⎠        ⎝ ni ⎠
     Emax                         x
                                      A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction in the dark
Depletion region width:
   Solve 1D Poisson equation using depletion charge approximation, subject to the
   following boundary conditions:
                      V ( − x p ) = 0, V ( xn ) = Vbi , E (− xn ) = E ( x p ) = 0

                 p-side:   V p ( x) =
                                        qN A
                                        2k s ε 0
                                                 (x + x p )2
                                     qN D
                 n-side: Vn ( x) = −          ( xn − x )2 + Vbi
                                     2k s ε 0
   Use the continuity of the two solutions at x=0, and charge neutrality, to obtain the
   expression for the depletion region width W:

                  xn + x p = W ⎫
                 V p (0) = Vn (0) ⎪ → W = 2k s ε0 ( N A + N D )Vbi
                                  ⎬
                                  ⎪               qN A N D
                 N A x p = N D xn ⎭

                                   A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction in the dark
Depletion layer capacitance:
    Consider a p+n, or one-sided junction, for which:
                                   2k s ε 0 (Vbi m V )
                            W=
                                          qN D

    The depletion layer capacitance is calculated using:
                           dQc qN D dW   qN D k s ε 0   1 2(Vbi m V )
                      C=      =        =              → 2=
        1 C2               dV    dV      2(Vbi m V )   C   qN D k s ε0

                                    1                         Measurement setup:
                           slope ∝
                                   ND
                                                                          W
                                                                                     dW
   Reverse
     bias                  Forward bias            vac ~
                                          V
                         Vbi − V                               V


                                   A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction in the dark
Ideal Current-Voltage Characteristics:
Assumptions:
• Abrupt depletion layer approximation
• Low level injection
   Low-level               injected minority carrier density much smaller than the
   majority carrier density
• No generation-recombination within the space-charge region (SCR)
Depletion l
D l ti layer:

   EC
                      W
                                               n.p = n exp(V / VT )
                                                               2
                                                               i

                 qV                            p n (x n ) = n n0 exp(V/VT )
                                      EF
                                       Fn
   E Fp
    EV
                                               n p ( −x p ) = n p0 exp(V/VT )
                                                     k BT
               − xp                             VT =
                          xn                           q
                                    A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction in the dark


            Forward bias:                            Reverse bias:

                                        EC
                  W
                                                    Ln          qV
EC                                                                     q(Vbi + V )
                        q(Vbi − V )
                                        E Fp
                  qV                    EV
                                 E Fn                                         E Fn
E Fp
   p
 EV
                                                                      Lp
                                                            W

                                             Reverse saturation current is due to
                                               minority carriers being collected
                                              over a distance on the order of the
                                                       diffusion length.
Basic: PN junction in the dark
  Quantitative p-n Diode Solution / Little MATH
            Q. neutral Region                                                     Q. neutral Region
                                                   Depletion Region
                 P-type                                                                N-type
                                                        E≠0
                  E=0                                                                   E=0

 -∞                                             -xp Electrical field   +xn                                 +∞
      ∂Δn p          d Δn p
                      2
                                    Δn p                                     ∂Δp n      d 2 Δp n Δp n
              = Dn              −          + G L existe in the depletion           = Dp         −     + GL
       ∂t             dx 2          τn            region the minority         ∂t         dx  2
                                                                                                  τp
                     d 2 Δn p       Δn p            carrier diffusion
                                                        i diff i
            0 = Dn              −                 Does not apply here                    d 2 Δp n Δp n
                      dx 2           τn                                           0 = Dp         −
                                                                                          dx 2     τp

Boundary condition                   Boundary condition          Boundary condition       Boundary condition
Δn p ( x → −∞) = 0                   Δn p ( x → − x p ) = ?      Δp n ( x → x n ) = ?     Δp n ( x → +∞) = 0



                      n i2            ⎛     qV      ⎞                             n i2   ⎛     qV      ⎞
  Δn p (x = − x p ) =                 ⎜ exp
                                      ⎜          − 1⎟
                                                    ⎟           Δp n (x = x p ) =        ⎜ exp
                                                                                         ⎜          − 1⎟
                                                                                                       ⎟
                      NA              ⎝     k BT    ⎠                             ND     ⎝     k BT    ⎠
Basic: PN junction in the dark
Total current density:
                    y
•     Total current equals the sum of the minority carrier diffusion currents defined at the
      edges of the SCR:
    I tot = I diff ( n ) + I diff ( −x p )
              p (x           n

           ⎛ D p p n0 D n n p0 ⎞ V/V
  I D = qA ⎜
           ⎜ L
                     +
                       Ln ⎟
                                  (
                               ⎟ e T −1           )
           ⎝     p             ⎠
• Reverse saturation current density: I 0 = J 0 . A
                                current
                             Current density area
                                                                                  V (volt)
                                             2                           2
                                        ni
                               p n0 ≈
                                                 ND        n p0   ≈ ni
                                                                             NA
                                ⎛ D p p n0 D n n p0   ⎞          ⎛ Dp   Dn               ⎞
                       I 0 = qA ⎜         +           ⎟ = qAn i2 ⎜    +                  ⎟
                                ⎜ L         Ln        ⎟          ⎜L N                    ⎟
                                ⎝     p               ⎠          ⎝ p D LnN A             ⎠

                                        A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: How to make a solar cell: Dark current + Dark
            current
     Φ(x)    N        P
                                       Photocurrent C
                                       Ph t         t Current:
                                                             t
                         2
                                   Φe-αx                    • Diffusion courant (electron, region 1)
                1                          3
                                                            • Generation current in SCR (region 2)
 Ohmic              xp       xn
                                                  Ohmic     • Diffusion current (holes region3)
 contact                 E                        contact
                                                                        ⎛              ⎞
            1                       3                                          qV
                         2
                                                                J = J 0 ⎜ exp      − 1 ⎟ − J ph
        p-type                    n-type                                      k BT
                                                                        ⎜              ⎟
                                                                        ⎝              ⎠
                         W
EC
                                                     J ph = J p , diff ( x n ) + J G ( x n ) + J n , diff ( x p )
                    qV                                                 1                 2                  3
                                           E Fn
 E Fp
EV

                − xp
                              xn
                                                      A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction under illumination (Space Charge Region, SCR)

  Φ(x)          N                 P          Generation current i space charge region 2
                                             G     ti         t in       h        i
                         2                                                J G ,n = J G ,p
                                  Φe-αx
                1                           3                    Continuity
                                                                 C ti it equation (for electron)
                                                                             ti (f      l t )
                                                                 ∂n 1 dJ n Δp n
Ohmic               xp       xn                                    =      −     + GL
                                                                 ∂t q dx    τp
contact                  E
                                                       Ohmic
            1
                         2          3                  contact    Steady-state
          p-type                  n-type
                                                                                                     xn
                                                                      1 dJ n
                                                                   0=        + GL             J G = q ∫ G(x)dx
                                                                      q dx                           xp

                         W                                                G(x) = Φαexp( αx)
                                                                                 Φαexp(-


                J G ,n ( x n ) = qΦ e   (   - αx p
                                                            )
                                                     − e − αx n = qΦe
                                                                        − αx p
                                                                                 (1 − e )
                                                                                       − αW




                                              A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction under illumination (diffusion current)
   Φ( )
    (x)         N                  P                       Neutral region 3       n type
                                                                                  n-type
                                                              Diffusion current: holes
                         2
                                                                                                           dΔp
                                   Φe-αx                                    J p ,dff . = qD p
                1                            3                                                              dx
                                                                                       −x / Lp              + x / Lp         Φατ p
                                                                     Δp = Ae                      + Be                 +
                    xp       xn                                                                                            1 − α 2 L2p
Ohmic
Oh i                     E
                                                         Ohmic             Boundary conditions
contact     1                        3                   contact
                         2
          p-type                  n-type
                                                          Δp = 0 x = x c → +∞ L p << d n ; 1 / α ⇒ B = 0
                                                          Δp = 0 x = x n            ( E = 0)
                                                                                        Φατ p −αx n + x n / L p
                                                                                  ⇒A=           e
                                                                                       1 - α Lp
                                                                                            2 2



                     Δp =
                                   Φατ p
                                  1− α L 2   2
                                                         (
                                                 e − αx n e − α ( x − x n ) − e
                                                                                  −( x − x n ) / L p
                                                                                                       )
                                             p

                                                          αL p
                                  J p ,diff . = −qΦ                  e − αx n
                                                        1 − αL
                                                 A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction under illumination
                                                          Neutral region 1            p type
                                                                                      p-type
 Φ(x)           N                 P
                         2                                   Diffusion current: electron
                                  Φe-αx                                                 dΔ
                                                                                        dΔn
            1                              3                        J n ,dff .   = qD n
                                                                                         dx
                                                                                        x / Lp         Φατ n
Ohmic x´c           xp       xn                 xc             Δn = Ae − x / L n + Be            +
                                                                                                     1 − α 2 L2n
contact                  E                     Ohmic
            1                       3
                                                   contact
                         2
         p-type                   n-type                 Boundary conditions
                                                        x = x p Δn = 0 (electrical field E)
                                                        x = x ´c → Δn(x ´c )
                                                        Δn(x ´c ) depends on surface recombination (S 0 )
                                                          (         p                              (
        Surface recombination
   S0

                                         ⎛ A n − xp /L n B n xp /L n    Φα 2 τ n −αx p                     ⎞
                J n,diff. ( x n ) = qD n ⎜ −
                                         ⎜ L e          +    e       −           e                         ⎟
                                                                                                           ⎟
                                         ⎝   n            Ln           1 − α Ln
                                                                            2 2
                                                                                                           ⎠
                                               A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction under illumination

                                         1
For an efficient P - N junction d p <<       ⇒      J n,diff. ≈ 0
                                         α

                                                                          (
                                              ⎧J G ( x n = W ) = −qΦ 1 − e − αW       )
                                              ⎪
       Origine at x p = 0 and x n = W         ⎨                            αL p
                                              ⎪ J p,diff. ( x n ) = −qΦ             e − αW
                                              ⎩                         1 + α 2 L2p


                                     ⎛     1           ⎞
                          J ph = −qΦ ⎜1 −       e − αW ⎟
                                     ⎜ 1 + αL          ⎟
                                     ⎝        p        ⎠
                                             1
    Maximum J ph
    M i                f αW >> 1 (W >> ) → e.g. pin - j
                       for                               i junction
                                                               ti
                                             α




                                A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
PN junction under illumination / Efficient p-n diode
                         ⎛     1           ⎞                                       ⎛        1          ⎞
           J ph   = − qΦ ⎜1 −       e − αW ⎟         Φ = Φ 0 (1− R )
                                                    ⎯⎯ ⎯ ⎯→ J ph = qΦ 0 (1 − R )   ⎜1 −         e − αW ⎟
                         ⎜ 1 + αL          ⎟                                       ⎜ 1 + αL            ⎟
                         ⎝        p        ⎠                                       ⎝          p        ⎠
                                                                        ⎛     1           ⎞
                      A = cell area → I ph   = J ph . A = AqΦ 0 (1 − R )⎜1 −       e − αW ⎟
                                                                        ⎜                 ⎟
                                                                        ⎝ 1 + αL p        ⎠
 Φ0 = Number of photon per unit area, per unit time, per wavelength increment
 incident power: Pinput = hν . Φ0 . A                        λ(nm)
                                                                       . EQE
                                                              1239
               I ph     AqΦ 0 (1 − R ) ⎛
                                       ⎜1 −   1            ⎞ q                ⎛     1           ⎞
                     =                              e − αW ⎟ =     . (1 − R ) ⎜1 −       e − αW ⎟
              Pinput       hνΦ 0 .A ⎜ 1 + αL p
                                       ⎝
                                                           ⎟ hν
                                                           ⎠
                                                                              ⎜ 1 + αL
                                                                              ⎝        p
                                                                                                ⎟
                                                                                                ⎠
Multimeter
                                        I ph
                                                                                            geometry
                                         q                  ⎛     1           ⎞
                            EQE =                = (1 − R ) ⎜1 −       e − αW ⎟
                                       Piinput              ⎜ 1 + αL          ⎟
                                                            ⎝        p        ⎠
Pyranometer
                                         hν
                                                    reflexion          Absorption    Minority carrier
       1    1   λ (nm)                                                                            g
                                                                                     diffusion length
         =    =                                                        coefficient
      hν hc     1239
      q    qλ
                                             A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: PN junction Loss in Jph




                      ⎛     1          ⎞
          η = (1 − R) ⎜ 1 −      e −αW ⎟
                      ⎜ 1 + αL         ⎟
                      ⎝        p       ⎠
   SEM image
                       A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Open circuit Voltage, VOC
                        ⎡       q
                                qV         ⎤                           nk B T ⎛ J L     ⎞
  J = J D + J ph = J 0 ⎢ exp           − 1 ⎥ − J L = 0 ⇒ V OC =              l ⎜
                                                                             ln ⎜    + 1⎟
                                                                                        ⎟
                        ⎣      nk B T      ⎦                              q     ⎝ J0    ⎠
J0 : saturation current , n : ideality factor, kB : Boltzmann ´s constant,
VOC: open circuit voltage JL or Jph photocurrent
                  voltage,           h




                      - JL    + JD
                                                    Open circuit voltage
                                                    O     i it lt
                                                         nk B T ⎛ J L     ⎞
                                                V OC   =          ⎜
                                                               ln ⎜    + 1⎟
                                                                          ⎟
                                                           q      ⎝ J0    ⎠




                                     A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Open circuit Voltage, VOC
For a given band gap EG, we need trade-offs
                                 trade offs
               nk B T ⎛ J L     ⎞                                       ⎛ D n n i2   D p n i2     ⎞
    V OC     =          ⎜
                     ln ⎜    + 1⎟                                J0 = q ⎜          +              ⎟
                 q        J0    ⎟                                       ⎜L N         Lp N D       ⎟
                        ⎝       ⎠                                       ⎝ n A                     ⎠
                     Dp 1    Dn 1     qn i w       E
 J 0 = [qN C N V (         +       )+        ]exp - G                       Diffusion length
                     τp ND   τn NA     τnτp        k BT
                                                                                 Doping
  Dn Dp          kT
     =    = VT =                   (VT = 300K = 25mV )
  μn   μp         q




                      VOC




                                         A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Power output characteristics
                                                                         mpp = Maximum Power Point
       JSC.VOC.FF
           V FF                              Jmpp.Vmpp                   J             Rmpp
 EFF.=
          PSun                                JSC.VOC                                  P=I.V

                                                           Fill Factor
                                                        J mpp x Vmpp
    Pmpp= Impp x Vmpp
                                                          J SC .VOC                                  V


                                Vmpp                                         Jmpp . Vmpp
                                                                 EFF=
                                                                                PSun
         Inverse of slope Vmpp/Impp
        is characteristic resistance
        is characteristic resistance
     Jmpp                       mmp                            Jsc           VOC              Pmax




                                       A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Importance of mobility μ and Diffusion length, Lp,n
The higher mobility μ, the better is the carrier extraction
       g           y
L : Mean free length of path (L2 = D.τ) gives how long charge carrier (Lp or Ln) can
travel in a volume of a crystall lattice before recombination takes place



                                                                          dn
                                                       J n = qμ n nE + qD
                                                                          dx

                                                                   velocity   v
                                                      Mobility μ =          =
                                                                    Field     E




                                    A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Dark current and photocurrent

             ⎡    qV     ⎤                             ⎛     qV D    ⎞
  ID   = I 0 ⎢exp     − 1⎥                     I = I 0 ⎜ exp      − 1⎟ - I L
             ⎣    nkT    ⎦                             ⎝     nkT     ⎠




             V (volt)                                        V (volt)



                        A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Limitation of VOC by I0 and JSC
At room temperature: VT = kBT/q = 26 mV
VOC increases by 0.06 V if I0 decreases by one order of magnitude
VOC increases by 0.06 V if ISC increases by one order of magnitude




                  V (volt)                                            V (volt)
 Diode saturation current density for nearly ideal Si solar cells
                                 I 0 (Si) ≈ 10 −13 A.cm −2
                                    A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Energy conversion efficiency of a solar cell
Maximum Power Point = PMPP = V MP . I MP
                                   POWER IN MPP                                         VOC . I SC
EFFICIENCY =                                                     EFFICIENCY =
                                POWER OF SUN LIGHT                                        PSun
                                                                   V MP
Optimal load resistance in the MPP R MPP =
                                     L                                           Importance of the
                                                                   I MP
                                                                                 solar cell efficiency

                                                                                   EFFECIENCY      ↑
               W/cm2)




                                                                                                         ↓
  I(A/cm2) x V(W




                                                                                MATERIAL + AREA
       m




                                                                                  COST FOR PV        ↓
                                                                                       €/Wp↓
                                          V (volt)
                                              A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
One diode model / Equivalent Circuit
    Ideal diode (dark current , ID)                        JD             J. RS (Voltage drop)
     (Shockley diode equation)
                                                                                                         J
                 ⎡     qV D    ⎤
       J D = J 0 ⎢ exp      − 1⎥
                 ⎣     nkT     ⎦
                                                     P
                                                                 VD                                 V     RLoad
   add a serie resistance RS                                               jsh . Rsh
                                       JL            N                     Current
       V = V D + J .R S                                                    loss



   Solar cell in the dark
             ⎡     q (V − J .R S )    ⎤
   J D = J 0 ⎢ exp                 − 1⎥       Solar cell under illumination J D = J 0 ⎡ exp q (V − J .R S ) − 1⎤ − J L
                                                                                      ⎢                        ⎥
             ⎣          nkT           ⎦                                               ⎣          nk
                                                                                                 nkT           ⎦
           ⎡ Dn ni2 D p ni2 ⎤                 Dark characteristics being shifted down by photocurrent
     J0 = q⎢       +        ⎥                                which depend on light intensity.
           ⎢
           ⎣ Ln N A L p N D ⎥
                            ⎦                                                 J = I/A
   add a shunt resistance
Photogenerated carriers can also flow through the crystal           J0                   Forward
                                                                                                                VOC
                                                                                 0
 surfaces or grain boundaries in polycrystalline devices
                                                                     Reverse                                      V
              i sh .R sh = V + J .R S                                                4TH Q d t
                                                                                         Quadrant
                                                                           JSC
           ⎡     q ( V − J.R S ) ⎤           V + J.R S                                      - JL
   J = J 0 ⎢ exp                − 1⎥ - J L +
           ⎣          nkT          ⎦           R Sh
Two diodes model / Equivalent Circuit
  4th Quadrant
         ⎡     q (V − J .R S )    ⎤        ⎡     q (V − J .R S )    ⎤ V + J.R S
J = J 01 ⎢ exp                 − 1⎥ + J 02 ⎢ exp                 − 1⎥ +                    - JL
         ⎣         n1 kT          ⎦        ⎣         n 2 kT         ⎦   R Sh

                                                                        J
                                                      RS            +
                                                                                     J
          JL                                        Rsh         V        RLoad
                            J01,n1     J02,n2                                       1st Quadrant


                                                                    -               4th Quadrant
                                                                                                    V

  1st Quadrant
                ⎡     q (V − J .R S )    ⎤        ⎡     q (V − J .R S )    ⎤ V + J.R S
 J = J L − J 01 ⎢ exp                 − 1⎥ − J 02 ⎢ exp                 − 1⎥ −
                ⎣         n1 kT          ⎦        ⎣         n 2 kT         ⎦   R Sh



                                     A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Role of Rsh (Rp) for I-V-characteristics of solar cells
During operation, the efficiency of solar cells is reduced by the dissipation of power across
internal resistances which can be modeled as a parallel shunt resistance (RSH) and series
resistance (RS). For an ideal cell, RSH would be infinite and would not provide an alternate path
for current to flow, while RS would be zero, resulting in no further voltage drop before the load.




                                                                            Voltage (Volt)
                      Voltage (Volt)
                      V lt    (V lt)
Using LabVIEW analysis capabilities you can assess the main performance parameters for PV
cells and modules.



                                         A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Role of Iph for the influence of RS

FF↓ and η↓ with increasing ISC




                                     Voltage (Volt)
                                          g (     )


                                 A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: solar cell is a sensor for solar radiation
The efficiency increases with increasing light intensity.
             y                         g g             y
We Compare the efficiency at two light intensities PSun and PSun > PSun
                                                    0               0


No additional heating I 0 (T0 ) = I 0 (T) = I 0
                                              0           Linearity I Sun ∝ PSun
                                                                         VOC . I SC
                                                              η = FF
                                                                           PSun
                                                                          0      0
                                                                         VOC . I SC
                                                              η 0 = FF 0     0
                                                                            PSun

                                                               nk B T ⎛ I ph       ⎞ I
                                                                      ln ⎜
                                                                         ⎜ I   + 1 ⎟ SC
                                                                                   ⎟P
                                                      η    FF    q       ⎝ 0       ⎠ Sun
                                                    ⇒    =
                                                      η 0 FF 0 nk B T0 ⎛ I ph0
                                                                                    ⎞ I SC
                                                                                        0
                                                                       ln ⎜ 0 + 1 ⎟ 0
                                                                 q        ⎜         ⎟
                                                                          ⎝ I0      ⎠ PSun
                                                                ⎛ I ph   ⎞ I SC
                                                             ln ⎜        ⎟
                                                  η    FF T ⎜ I 0
                                                                ⎝
                                                                         ⎟P
                                                                         ⎠ Sun        PSun  I ph
                                                     ≈                                     = 0 =X
                                                  η 0 FF 0 T0 ⎛ I ph0
                                                                         ⎞ I SC
                                                                             0         0
                                                                                      PSun  I ph
                                                             ln ⎜ 0      ⎟
                                                                ⎜ I      ⎟ P0
                                                                ⎝ 0      ⎠ Sun
                                       A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: solar cell is a sensor for solar radiation
The efficiency increases with increasing light intensity.
             y                         g g             y
                                                    Two light intensities
                                                   PS0 and PS > PS0
                                                    Sun     Sun  Sun


                                                  ⎛ I ph ⎞0                           0
                                                                                    I ph
                                               ln ⎜X          ⎟        ln X + ln
                                      η    FF     ⎜ I0 ⎟                             I0
                                         =        ⎝           ⎠ = FF
                                      η 0 FF 0      ⎛ I ph ⎞
                                                        0
                                                                  FF 0       ⎛ I ph ⎞
                                                                                 0

                                                ln ⎜        ⎟             ln ⎜      ⎟
                                                    ⎜ I0 ⎟                   ⎜ I0 ⎟
                                                    ⎝       ⎠                ⎝      ⎠


                                                             0
                                                           I ph          ⎛                ⎞
                                                                         ⎜                ⎟
                                                lnX + ln
                                     η    FF                 I0     FF ⎜         lnX ⎟
                                        =                         =      ⎜1 +             ⎟>1
                                     η 0 FF 0         ⎛ I ph ⎞
                                                          0
                                                                    FF 0 ⎜       ⎛ I ph ⎞ ⎟
                                                                                     0

                                                   ln ⎜      ⎟           ⎜    ln ⎜      ⎟
                                                      ⎜ I0 ⎟             ⎜       ⎜ I0 ⎟ ⎟ ⎟
                                                      ⎝      ⎠           ⎝       ⎝      ⎠⎠




                             A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: solar cell is a sensor for solar radiation
  As light intensity changes
       g           y     g
 Φ: Photon flux photons/sec/cm²
                     dΦ
         G(x) = −           = αΦe − αx
                      dx
• JSC change much greater than VOC.
• Low light intensity still produces voltage.
• JSC increases proportionally with irradiance.
                p p            y
• MPP indicates Rload to achieve maximum power use.


                                                                ⎡    qV     ⎤ V + I.R S
                        1 sun                         I = I 0 . ⎢exp     − 1⎥ +         - IL
                                     MPP                        ⎣    nkT    ⎦   R Sh
JSC
                0.8 sun                                            ⎡    q(V − I.R S )    ⎤
                                                         I = I 0 . ⎢exp               − 1⎥ - I L
              0.6
              0 6 sun                                              ⎣      n.k T
                                                                          n k B .T       ⎦
                                                                         nkT ⎛ J L    ⎞
                                                                 VOC =      ln ⎜
                                                                               ⎜J  + 1⎟
                                                                                      ⎟
                                                                          q    ⎝ 0    ⎠
                                                                                    ⎡ D n n i2   D p n i2 ⎤
                                                 J L = qG(L n + L p + W)     J 0 = q⎢          +          ⎥
                                                                                    ⎢
                                                                                    ⎣ LnN A LpND ⎥        ⎦
                                           VOC
                                       A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Temperature Effects
 Solar cell operate best at lower temperature.
 As the temperature decreases, the output voltage and efficiency increase.

The output voltage Voc, when Voc >> nkBT/q,
            nkT ⎛ J L    ⎞ nkT   J
  V OC    =    ln ⎜
                  ⎜J  + 1⎟ ≈
                         ⎟     ln L
             q    ⎝ 0    ⎠   q   J0

JL increase proportionally with irradiance
                 JL = K . I
           nkT ⎛ KI ⎞
            kT            eV oc
                           V       ⎛ KI      ⎞
  V oc   =     ln ⎜
                  ⎜ J ⎟ ⇒ nkT = ln ⎜ J
                      ⎟            ⎜         ⎟
                                             ⎟
            e     ⎝ 0⎠             ⎝ 0       ⎠
 J0 is reverse saturation current and strongly
                                           gy
 depend on temperature:
        ⎡ Dn ni2 D p ni2 ⎤                           −
                                                         EG
  J0 = q⎢       +        ⎥     n. p = n ≈ T e
                                       2
                                       i
                                                 3       kT

        ⎢
        ⎣ Ln N A L p N D ⎥
                         ⎦

                                     A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Temperature Effects
                                 nkT ⎛ J L    ⎞ nkT   J
                        V OC   =    ln ⎜
                                       ⎜J  + 1⎟ ≈
                                              ⎟     ln L
                                  q    ⎝ 0    ⎠   q   J0

Assuming n = 1, at two different temperatures T1 and
         g     ,                    p
T2 and the same illumination:
 eVoc 2 eVoc1      ⎛ KI      ⎞      ⎛ KI ⎞      ⎛ J 01 ⎞      ⎛ ni2 ⎞
       −      = ln ⎜
                   ⎜J        ⎟ - ln ⎜
                             ⎟      ⎜J ⎟ ⎟ = ln ⎜
                                                ⎜J ⎟   ⎟ ≈ ln ⎜ 21 ⎟
                                                              ⎜n ⎟
  kT2    kT1       ⎝ 02      ⎠      ⎝ 01 ⎠      ⎝ 02 ⎠        ⎝ i2 ⎠
                                                     Eg ⎛ 1 1 ⎞
ni2 = N c N v exp(− E g   kT ) ⇒ oc 2 − oc1 =
                                   eV      eV
                                                         ⎜ − ⎟
                                    kT2     kT1       k ⎜ T2 T1 ⎟
                                                         ⎝          ⎠
                               ⎛ T2 ⎞ E g ⎛ T2 ⎞
                Voc 2   = Voc1 ⎜ ⎟ +
                               ⎜ T ⎟ e ⎜1 − T ⎟
                                          ⎜    ⎟
                               ⎝ 1⎠       ⎝  1 ⎠
                                                                                                  0.493V

Example, Si solar cell has Voc1 = 0.55 V at 20 oC (T1 = 293 K), at 50 oC (T2 = 323 K),

                                   ⎛ 323 ⎞           ⎛ 323 ⎞
                  Voc 2 = (0.55 V )⎜     ⎟ + (1.1 V )⎜1 −  ⎟ = 0.493 V
                                   ⎝ 293 ⎠           ⎝ 293 ⎠
                                               A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: Examples
Consider a p–n junction diode at 25 °C
with a reverse saturation current of 10−9 A. Find the voltage drop across the diode when it is carrying the
following: (a) no current (open-circuit voltage), (b) 1 A, (c) 10 A.
q =1.602 × 10−19 C, k =1.381 × 10−23 J/K), n = 1 and T=25°C
(a) In the open-circuit condition ID = 0 and VD = 0
             open circuit condition,     0,            0.
(b) With ID = 1 A, we can find VD by rearranging the Shockley diode equation
                                ⎡                            ⎤
          ⎡
J D = J 0 ⎢ exp
                qV D
                nkT
                        ⎤
                     − 1⎥ = J 0 ⎢ exp
                                      1 .602 x 10 −19 V D
                                      1 .381 x 10 − 23 T
                                                                     ⎡             V     ⎤
                                                                                                                   [          ]
                                                          − 1⎥ = J 0 ⎢ exp 11 .600 D − 1⎥ at T = 25 °C J D = J 0 e 38 .9V D − 1
                                                                                  T (K ) ⎦
          ⎣             ⎦       ⎣                            ⎦       ⎣
           1      ⎛J      ⎞     1       ⎛ 1       ⎞
 (b) V D =     ln ⎜ D + 1 ⎟ =
                  ⎜J                 ln ⎜ − 9 + 1 ⎟ = 0 .532
                          ⎟ 38 .9 ⎝ 10
          38 .9 ⎝ 0       ⎠                       ⎠
           1      ⎛ 10      ⎞
 ( ) VD =
 (c)           ln ⎜ − 9 + 1 ⎟ = 0 .592
          38 .9 ⎝ 10        ⎠
Consider a 100 cm2 PV cell
photovoltaic cell with reverse saturation current I0 = 10−12 A/cm2. In full sun, it produces a short-circuit
current of 40 mA/cm2 at 25°C Find th open-circuit voltage at full sun and again f 50% sunlight. Pl t
        t f      A/      t 25°C. Fi d the       i it lt         t f ll        d      i for        li ht Plot
the results.
The reverse saturation current J0 is 10−12 A/cm2 × 100 cm2 = 1 × 10−10 A.
At full sun JSC is 0.040 A/cm2 × 100 cm2 = 4.0 A. The open-circuit voltage is
                                                         p                  g
                                                         ⎛J         ⎞
                   [            ]                                                     ⎛ 4       ⎞
   J = J L − J 0 e 38 .9V − 1 = 0 ⇒ V OC = 0 .0257 ln ⎜ Sc + 1 ⎟ = 0 .0257 ln ⎜ −10 + 1 ⎟ = 0 .627 V
                          D
                                                         ⎜ J        ⎟
                                                         ⎝ 0        ⎠                 ⎝ 10      ⎠
                                                    A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Basic: One diode model / Equivalent Circuit
Since short-circuit current is proportional to solar intensity, at half sun ISC = 2 A and the open-circuit
      short circuit                                                                           open circuit
voltage is                                      ⎛ 2          ⎞
                             V OC = 0 .0257 ln ⎜ −10 + 1 ⎟ = 0 .610 V
                                                ⎝ 10         ⎠
Plotting the relation belo gi es us the follo ing
                      below gives s     following:




                                            A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Lab. work
                                     Varied d
                                     V i d and measured parameters
                                                      d       t
                                   current
                                   voltage
                                   temperature
                                   light intensity
                                   wavelength of the light


           ⎡    q(V − I . R S )    ⎤        V + I.R S
 I = I 0 . ⎢exp                 − 1⎥      +           - I ph
           ⎣       n.k.T           ⎦          R sh
                                     Solar cell parameters: diode saturation
                                   current density
                                   ideality factor
                                   series resistance
                                   parallel resistance
                                   short circuit current density
Derived parameters:      fill factor FF energy , conversion efficiency thermal
                              factor,
                         activation energy, Ea
Sources: FU-Berlin              A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Lab. Work: ISC-VOC measurements
Very simple measurement no need for a load resistance with one multimeter only
   y    p                                                                    y
Light intensity variation: ideality, I0 and Rp from ISC-VOC – characteristics
Temperature variation: thermal activation energy of I0

           ⎡     qV1    ⎤       decade
I D1 = I 0 ⎢ exp     − 1⎥                        qV1
           ⎣     nkT    ⎦                    exp
                               I D1      1       nkT
                                      =    ≈
                               I D2     10       qV 2
             ⎡     qV 2    ⎤                 exp
 I D 2 = I 0 ⎢ exp      − 1⎥                     nkT
             ⎣     nkT     ⎦




                                                                                     k BT
                                                                      ln10 = 2.3          = 26mV
                                                                                       q
                                                                        ΔU/decade = U 2 − U 1
                                                                            k BT
                                                                       =n        .ln10 → n.60mV
                                                                              q
                                                                     Room T: ΔU/decade = n.60mV
                                                                          (Si: n = 1.1 – 1.3)

Sources: FU-Berlin                         A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Lab. Work: ISC-VOC measurements




Sources: FU-Berlin      A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Lab-Work: Activation energy
Determination of EA from the slope in Arrhenius plots



EA = 0.5 eV corresponds to
about 2 orders of magnitude
for T1 = 300 K and T2 = 400 K




Sources: FU-Berlin                A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Lab-Work: Activation energy
  Consequence of EA: Temperature dependence of VOC
       q                p          p




Sources: FU-Berlin          A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Lab-Work: Measurements with loads
   What is RL ?               RL is the power taken from the illuminated solar cell.

                                                                        V
                                                                 RL   =         and P = V.I
                                                                        I

  Each RL corresponds to one point on I-V curve.
  Simplest way: RL known, V measured.
      (high accuracy for low cost)
  Set-up: just using a voltmeter variation of known R
  Good for ranges of RL between 1 Ω and 100 kΩ
(Si solar cells with small area, thi fil mini-modules)
       l    ll ith      ll       thin film i i   d l )




          sources of errors: accuracy of RL:                                    Voltage (Volt)
                                                                                     g (     )
                              resistances of wires and contacts
                                  i t       f i        d    t t
                              internal resistance of the voltmeter

 Sources: FU-Berlin                       A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Lab-Work: Measurements with loads
 Choice of load resistance (RL) for simplest I-V measurements
                                             IV
1. VOC and ISC are measured with a multimeter
2. RL* is calculated RL* = VOC / ISC (RL* is close to Maximum Power Point, MPP)
3. RL is changed towards ISC
                    RL is decreased by taking about 10 values up to RL ≤ RL*/10
4. RL is changed towards VOC
                    RL is increased by taking about 10 values up to RL ≥ 10 RL*




        Determination of Rp
                ΔV
         Rp = −
                ΔI           V→0




                                                                       Voltage (Volt)
Sources: FU-Berlin                  A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Lab-Work: Measurements with loads

  Determination of RS
Measurement at two light intensities
Rp large enough
determination of the potentials
    U1 at currents I1 = ISC1 - ΔI
    U2 at currents I2 = ISC2 - ΔI


          ⎡    ⎛ q. (U 1 − I 1 .R S ) ⎞    ⎤
               ⎜
ΔI = I 0. ⎢exp ⎜                      ⎟ − 1⎥
                                      ⎟
          ⎣    ⎝        k BT          ⎠    ⎦
           ⎡    ⎛ q. (U 2 − I 2 .R S ) ⎞    ⎤
ΔI = I 0. ⎢exp ⎜⎜                      ⎟ − 1⎥
                                       ⎟
           ⎣    ⎝        k BT          ⎠    ⎦                          Voltage (Volt)


           U1 − U 2                                    Works well for conventional solar cells
      RS =                                             FF is relatively l
                                                          i l ti l large
           I 2 − I1
Sources: FU-Berlin                        A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii
Ennaoui cours rabat part ii

More Related Content

What's hot

L08 power amplifier (class a)
L08 power amplifier (class a)L08 power amplifier (class a)
L08 power amplifier (class a)
hasanen22
 
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
Toru Hara
 

What's hot (20)

spintronics
 spintronics spintronics
spintronics
 
DOUBLE GATE MOSFET-BASICS
DOUBLE GATE MOSFET-BASICSDOUBLE GATE MOSFET-BASICS
DOUBLE GATE MOSFET-BASICS
 
Power
PowerPower
Power
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
 
Solar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsSolar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to Photovoltaics
 
Difference between bjt and fet
Difference between bjt and fetDifference between bjt and fet
Difference between bjt and fet
 
How to make symbol of mosfet model(LTspice)
How to make symbol of mosfet model(LTspice)How to make symbol of mosfet model(LTspice)
How to make symbol of mosfet model(LTspice)
 
Analysis of Power Dissipation & Low Power VLSI Chip Design
Analysis of Power Dissipation & Low Power VLSI Chip DesignAnalysis of Power Dissipation & Low Power VLSI Chip Design
Analysis of Power Dissipation & Low Power VLSI Chip Design
 
Special technique in Low Power VLSI design
Special technique in Low Power VLSI designSpecial technique in Low Power VLSI design
Special technique in Low Power VLSI design
 
Power Electronics Introduction
Power Electronics IntroductionPower Electronics Introduction
Power Electronics Introduction
 
Ideal transformer
Ideal transformerIdeal transformer
Ideal transformer
 
L08 power amplifier (class a)
L08 power amplifier (class a)L08 power amplifier (class a)
L08 power amplifier (class a)
 
Band theory
Band theoryBand theory
Band theory
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...
 
Semiconductor devices
Semiconductor devicesSemiconductor devices
Semiconductor devices
 
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott Insulators
 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water Splitting
 
Electronics 1: Chapter # 01 : Electric Circuit analysis Review
Electronics 1: Chapter # 01 : Electric Circuit analysis ReviewElectronics 1: Chapter # 01 : Electric Circuit analysis Review
Electronics 1: Chapter # 01 : Electric Circuit analysis Review
 

Similar to Ennaoui cours rabat part ii

L02 circuit+analysis i (1)
L02 circuit+analysis i (1)L02 circuit+analysis i (1)
L02 circuit+analysis i (1)
gulfambhatti786
 
Electric circuits-chapter-1 Basic Concept
Electric circuits-chapter-1 Basic ConceptElectric circuits-chapter-1 Basic Concept
Electric circuits-chapter-1 Basic Concept
rahman84
 
Dc electrical current power point prentation v2.0
Dc electrical current power point prentation v2.0Dc electrical current power point prentation v2.0
Dc electrical current power point prentation v2.0
camponen
 
N 5-antenna fandamentals-f13
N 5-antenna fandamentals-f13N 5-antenna fandamentals-f13
N 5-antenna fandamentals-f13
15010192
 
Energi-Leketromagnetik---MIT8_21s09_lec05.pdf
Energi-Leketromagnetik---MIT8_21s09_lec05.pdfEnergi-Leketromagnetik---MIT8_21s09_lec05.pdf
Energi-Leketromagnetik---MIT8_21s09_lec05.pdf
mukhtareffendi2
 
structure of atom crash course .pptx
structure of atom crash course .pptxstructure of atom crash course .pptx
structure of atom crash course .pptx
Tincymolck
 

Similar to Ennaoui cours rabat part ii (20)

L02 circuit+analysis i (1)
L02 circuit+analysis i (1)L02 circuit+analysis i (1)
L02 circuit+analysis i (1)
 
Dielectric property measurement
Dielectric property measurementDielectric property measurement
Dielectric property measurement
 
Atomic Physics and photoelectric effect
Atomic Physics and photoelectric effectAtomic Physics and photoelectric effect
Atomic Physics and photoelectric effect
 
Network_theorems
Network_theoremsNetwork_theorems
Network_theorems
 
Potential-diff-resistance.ppt
Potential-diff-resistance.pptPotential-diff-resistance.ppt
Potential-diff-resistance.ppt
 
Electrical engineering, students notes
Electrical engineering, students notesElectrical engineering, students notes
Electrical engineering, students notes
 
Electric circuits-chapter-1 Basic Concept
Electric circuits-chapter-1 Basic ConceptElectric circuits-chapter-1 Basic Concept
Electric circuits-chapter-1 Basic Concept
 
Electrical Quantities
Electrical QuantitiesElectrical Quantities
Electrical Quantities
 
Dc electrical current power point prentation v2.0
Dc electrical current power point prentation v2.0Dc electrical current power point prentation v2.0
Dc electrical current power point prentation v2.0
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES
 
N 5-antenna fandamentals-f13
N 5-antenna fandamentals-f13N 5-antenna fandamentals-f13
N 5-antenna fandamentals-f13
 
Energi-Leketromagnetik---MIT8_21s09_lec05.pdf
Energi-Leketromagnetik---MIT8_21s09_lec05.pdfEnergi-Leketromagnetik---MIT8_21s09_lec05.pdf
Energi-Leketromagnetik---MIT8_21s09_lec05.pdf
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Em theory lecture
Em theory lectureEm theory lecture
Em theory lecture
 
Exp SPA - Chp 17 Current of Electricity
Exp SPA - Chp 17 Current of ElectricityExp SPA - Chp 17 Current of Electricity
Exp SPA - Chp 17 Current of Electricity
 
structure of atom crash course .pptx
structure of atom crash course .pptxstructure of atom crash course .pptx
structure of atom crash course .pptx
 
Electricity and magnetism
Electricity and magnetism Electricity and magnetism
Electricity and magnetism
 
Ekeeda backlinks
Ekeeda backlinksEkeeda backlinks
Ekeeda backlinks
 
Ekeeda - First Year Enginering - Basic Electrical Engineering
Ekeeda - First Year Enginering - Basic Electrical EngineeringEkeeda - First Year Enginering - Basic Electrical Engineering
Ekeeda - First Year Enginering - Basic Electrical Engineering
 

More from Prof. Dr. Ahmed Ennaoui

More from Prof. Dr. Ahmed Ennaoui (6)

مقدمة لتحويل الطاقة الشمسية / Lecture, June 21st. 2013 / El Jadida, Morocco
مقدمة لتحويل الطاقة الشمسية / Lecture, June 21st. 2013 / El Jadida, Moroccoمقدمة لتحويل الطاقة الشمسية / Lecture, June 21st. 2013 / El Jadida, Morocco
مقدمة لتحويل الطاقة الشمسية / Lecture, June 21st. 2013 / El Jadida, Morocco
 
Thin-Film Photovoltaics R&D: Innovation, Opportunities_Ennaoui
Thin-Film Photovoltaics R&D: Innovation, Opportunities_EnnaouiThin-Film Photovoltaics R&D: Innovation, Opportunities_Ennaoui
Thin-Film Photovoltaics R&D: Innovation, Opportunities_Ennaoui
 
Lecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiLecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaoui
 
Ennaoui cours rabat part III
Ennaoui cours rabat part IIIEnnaoui cours rabat part III
Ennaoui cours rabat part III
 
Workshop problems solving
Workshop problems solvingWorkshop problems solving
Workshop problems solving
 
Ennaoui cours rabat part i
Ennaoui cours rabat part iEnnaoui cours rabat part i
Ennaoui cours rabat part i
 

Ennaoui cours rabat part ii

  • 1. Photovoltaic Solar Energy Conversion (PVSEC) ‫إﻧﺘﺎج اﻟﻜﻬﺮﺑﺎء ﻣﻦ اﻟﻄﺎﻗﺔ اﻟﺸﻤﺴﻴﺔ‬ ‫ﻴ‬ ‫ا‬ ‫إ ج ا ﻬﺮﺑ ء ﻦ ا‬ Courses on photovoltaic for Moroccan academic staff; 23-27 April, ENIM / Rabat 23 27 Ingot PVSEC-Part PVSEC P t II crystal Fundamental and application of Photovoltaic solar cells and system Ahmed Ennaoui Wafer Helmholtz-Zentrum Berlin für Materialien und Energie ennaoui@helmholtz-berlin.de Solar cell
  • 2. Highlight:Photovoltaic Solar Energy Conversion (PVSEC) Highlights Basic of solar cells and Modules Light absorption and band to band transition g p Quantum efficiency and absorption coefficient Generation and recombination processes Shockley-Read Hall Recombination (SRH) Continuity equation and Transport process Silicon to binary and ternary compounds From silicon solar cell as example of PN j ti F ili l ll l f junction Performance of solar cells Equivalent Circuit model: series (Rs) and shunt resistance (Rsh) Change in cell performance with Rs and Rsh Change in short circuit current and open-circuit with solar radiation Change in short circuit current and open-circuit with the temperature open circuit Performance measurement standard conditions Prof. Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 3. Basic of solar cells and Modules Sun has roughly T = 5800 K Solar cell has roughly T = 300 K Two basic functions of a solar cell 1. 1 Light absorption: generation of free excess charge carriers photocurrent, I Power 2. Charge separation: separate/extraction of excess electrons and holes IxV p photovoltage, V g , Conversion of the Sun light in the „Black Box“ • To absorb the solar spectrum as efficient as possible • To collect photogenerated charge carriers • Charge transport must be possible • To make electron go to one side and holes to another current flow Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 4. Basic: Task of Photovoltaic Key aim is to g y generate electricity from solar spectrum y p Power = Voltage x Current J [A/cm ] 2 . J xV . (J ,V ) m m [Watt/cm2] [Volt ] [A/cm2] Jm m m Two challenges Generating a large current. V [Volt ] Generating a large voltage. Vm High current. High voltage But low voltage But low current E Excess energy l t t h t lost to heat Sub-band gap light is lost Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 5. Basic: Absorption-Separation-Collection Photons absorbed Electron flow Electrical current Photon flux gives number of photons/unit time/unit area/wavelength Φ(λ) = Φ 0 .exp(−α λ x) ⎯R(λ )→ ⎯⎯ Φ(λ) = Φ 0 (λ).(1 − R λ ).exp(−α λ x) Electrons collected dΦ Load G(x) = − = αΦe−αx dx dp J = σE Dp dx ceptor P = Voltage x Current Voltage Δ = μe – μh μe V lt Δμ Acc μ = chemical potential Rec Voc or μh Dono 0 W Ln La= 1/α Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 6. Basic: Quantum efficiency • Photoccurrent = how much light converted? This ratio can be measured Maximum short circuit current Electrons collected / Photons absorbed • Limited information on the electronic properties • Information on the optical properties of the device electrons N out = J A/cm 2 [ ] e[Coulomb] hc 1239 hν = ⇒ EG (eV ) = λ λ (nm) N photons = [ Φ Watt/cm 2 ] hν [Joule ] in Load L d External Quantum Efficiency, EQE cceptor dp J = σE D p N electron 1 J ( λ ) hc dx EQE = photons = Q out N in Φ (λ ) e λ Ac → → ∇p μe E Internal Quantum Efficiency EQE Rec R Voc IQE = 1 − R (λ ) μh Origine of the photovoltage or Chemical potential Dono x=0 La= 1/α x=W x = Ln EF,n = μe EF,h = μh Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 7. Basic: Quantum efficiency measurements current/charge of 1 electron External Quantum Efficiency" EQE" = EQE Total power of photon/energy of 1 photon Beam splitter Monochromator Chopper equipped with more gratings* EQE vs. λ EG *Gratings should have line density as high as possible for achieving high resolution and high power throughput. (600 – 3000 lines/mm). 1 - Reference measurement 2 – Cell Measurement 3 – Final Result J sc = q.EQE REF .Φ1 REF J sc = q.EQECELL .Φ2 CELL CELL MON,1 J sc J sc EQE CELL = MON,2 . REF EQE REF J MON,1 sc = q.EQE q Q MON .aΦ 1 J MON,2 sc = q.EQE q Q MON .aΦ 2 J sc J sc MON,1 CELL J sc J sc EQE MON .a = EQECELL .a = MON,2 .EQEMON .a qΦ 1 J sc Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 8. Basic: EQE and and absorption coefficient ( ) E(k) p Photon absorption in a direct band-gap e.g. GaAs Conduction Band semiconductor B α= (h ν − E G ) 2 EC hν 1 Direct Bandgap Eg EV Photon (α .h ν )2 vs. (hν − E G ) → E G Valence Band Cut-off λ vs. EG 1.24 -k +k λ G [μm] = E G [eV] J sc = q ∫ Φ (λ ) EQE (λ ) dλ E(k) λ e.g. Si Conduction Photon absorption in an Band indirect band-gap semiconductor 1 EG+Ep Phonon EC A Eg α = (hν − EG ) 2 Photon EV hν Valence Ep (α .h ν )2 vs. (h ν − E G ) → E G Band -k +k Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 9. Basic: absorption coefficient and absorption length Light absorption E G (T) = E g (0) − A.f(T) Si Ge GaAs EG (eV) 1 12 1.12 0.66 0 66 1.42 1 42 Temperature changes: EG ↑ as T ↓, Changing the absorption edge Absorption ↔ Generation hν Φ = Φ0 .(1 − R λ ).e−αx 1 Φ Φ0(E) α λ = − . ln d Φ0 .(1 − R λ ) ΦA(E) Φt(x) dΦ G(E, x) = − = Φ o (E).(1 - R).α). -αx dx Φ0 = ΦR + ΦA + ΦT Depth x Φ Surface x =1/α Φr(E) 100% = R λ + A λ + Tλ Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 10. Basic: absorption coefficient and absorption length 100 nm Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 11. Basic: improuvement, Light traping Influence of the layer thickness on the photocurrent of Si Realization: • Etching and texturing of semiconductors. • Implementation of particles for scattering deposition on rough or structured surfaces d ii h d f Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 12. Basic: Challenging parameters Important cost factor All device parameters Reflection Loss Material parameter € J sc = q . ∫ [η(λ) . (1 − R λ ).Φ 0 (λ ) . exp - α λ .d ]dλ η( ) ( ) p EG Decisive Material parameter Light trapping η(λ) =↑ % EQE or η or IPCE - incident photon to electron conversion efficiency) p y) 1 J ph hc EQE = . Φ(λ) q λ Resistive loss Reflection loss Top contact “loss” loss Recombination loss Back contact „Loss“ Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 13. Basic: Close look to EQE 1 J ph (λ ) hc η(λ) = EQE = . Φ(λ) q λ (2) Losses due to reflection (3) Losses due to rear surface and low diffusion length passivation and reduced absorption at long wavelengths and low diffusion length (4) Complete loss due to missing absorption (1) Losses due to front surface recombination and absorption Wavelength at 1.24 λ G [μm] = in passivation and antirection the band gap E G [eV] coating layers Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 14. Basic: PN junction Loss in Jph Good surface passivation. Texturing in the form of pyramids so that Antireflection coatings. light is trapped at the surface (<60nm) Low metal coverage of the top surface. Light trapping or thick material (but not thicker than diffusion length). High diffusion length in the material. Junction depth optimized for absorption in emitter and base. Low reflection by texturing Resistive loss Reflection loss Top contact “loss” “l ” Recombination loss Back contact „Loss“
  • 15. Generation vs. recombination processes Generation (g) requires an input of energy given to an electron: gy g - Phonons - vibrational energy of the lattice - Photons - Light, or electromagnetic waves - Kinetic energy from another carrier (Impact ionization ) Electron El t EC thermalizes Generation to band edge Ekin K.E. = E − EC EV EC Generation energy > EG Ekin energy = EG energy < EG EV - Impact ionization The electron hits an atom, and break a covalent bond to generate an electron-hole pair, if the kinetic energy is larger than the energy needed to t generate th pair. Th process continues with th newly generated t the i The ti ith the l t d electrons, leading to avalanche generation (e-h). Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 16. Generation vs. recombination processes Recombination (r) is the opposite of generation, leading to voltage and current loss. Non-radiative recombination phonons, lattice vibrations. Radiative recombination photons (dominating in a direct bandgap materials ) Auger recombination charge carrier may give its energy to the other carrier. Recombination processes are characterized b th minority carrier lif ti τ. R bi ti h t i d by the i it i lifetime Equilibrium: charge distributions np = ni2 Out of equilibrium: The system tries to restore itself towards equilibrium through R-G Steady-state rates: deviation from equilibrium y q r = B .pn ⎫ ( ⎬ R = r − g = B pn − ni 2 ) B(Si) = 2 × 10 −15 cm 3 /s g = B.p0 n0 = Bni2 ⎭ Electron thermalizes to band edge bination xcess energy given rrier in EC EC y th same band d EC Auger recomb to another car Radiative Non-radiative E(eV) recombination recombination Phonon he Ex o A EV EV EV Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 17. Shockley-Read Hall Recombination (SRH) The impurities create deep-level-traps (ET) within the bad gap The electron in transition between bands passes through ET EC (1)+(3): one electron reduced from Conduction band (1) (2) and one‐hole reduced from valence‐band and ET (2)+(4): one hole created in valence band and (3) (4) one electron created in conduction band EV Steady state Steady-state rates: R = A (np-ni2) = deviation from equilibrium: (np n n, p and NT inside Δx are held constant by the balancing effect of distinct different process np − n i2 R= ⎛ 1 ⎞ ⎛ ⎞ ⎜ ⎟(n + n1) + ⎜ 1 ⎟(p + p1) cp,n: capture coefficient of the recombination process ⎜c N ⎟ ⎜c N ⎟ 1⎝ p T ⎠ ⎝ n T⎠ NT: density of the recombination levels. τp = ↑ 1 ↑ τn = σn,p: capture cross sections for e and h. σ p v t ,h N T σ n v t ,n NT ET: energy levels inside the energy gap. ( ET −Ei ) − ( E T −Ei ) vth: average thermal velocity of e and h. pT, nT: number of empty states available n1 = n i e k BT p1 = n i e k BT n, p: number of electrons or holes n1 , p1: number of electrons and holes at ET Low level i j ti L l l injection Δn Δp n - type material R SRH = p − type material R SRH = τn τp Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 18. Summary: Generation & Recombination Auger recombination (dominant effect at high carrier concentration) Ekin= -qELsc q EC Direct Loss to thermal Shockley-Read Hall recombination vibrations Ekin recombination direct band EV Impact ionization is a generation mechanism. ⎛ 1 1 1 ⎞ When the electron hits an R = RSRH + RDirect + RAuger = Δn⎜ + + ⎟ atom, it may break a ⎜τ ⎟ ⎝ SRH τ Direct τ Auger ⎠ covalent bond to generate ( = Δn cn NT + BN D + cn,Auger .N D 2 ) an electron-hole pair. ( ⇒ τ eff = cn NT + BN D + cn,Auger .N N D ) 2 −1 The process continues with the newly generated electrons leading to avalanche electrons, generation of electrons and holes. τ : average time it takes an excess minority carrier to recombine (1 ns to 1 ms) in Si τ τ : depends on the density of metallic impurities and the density t/teff of crystalline defects. Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 19. What we have learned? Photo absorption and photo generation, Direct and indirect band gap, EQE, IQE absorption coefficient, absorption length, excess minority carrier , carrier lifetime Recombination: Non Radiative, Radiative, Auger Shockley-Read Hall Recombination (dominant process in Si) There are wide variety of generation‐recombination events that allow restoration of equilibrium once the stimulus is removed. Direct recombination is photon‐assisted, indirect recombination phonon assisted. Recombination lifetime in Si is controlled by Auger recombination at high carrier concentration Recombination life time in Si is controlled by SRH at low carrier densities and depends on the amount of impurities and defects. http://en.wikipedia.org/wiki/Main_Page Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 20. Basic: Continuity equation and Transport process Continuity equation for minority carriers: y q y ∂ ( A . Δx . n ) A . J n (x) - A . J n (x + dx) = + A . g n . Δx − A . rn . Δx ∂t −q Φ = Φ0 .(1 − Rλ ).exp(−αx) Light flux ∂n J n (x) - J n (x + dx) 1 = + g n − rn = ∇.J n + g n − rn ∂t − q.Δx q ∂ ∇ ⋅ (∇ × H ) = ∇ ⋅ J cond + ∇⋅D = 0 ∂t ( ) ∇ ⋅ Jn + J p + ∂ρ ∂t = 0, ρ = q( p − n + N D − N A ) Maxwell ⎧ ∂n = 1 ∇ ⋅ J + G − R ⎪ ∂t q n n n ⇒ ⎨ ∂p 1 ⎪ = − ∇ ⋅ J p + Gp − Rp ⎩ ∂t q Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 21. Basic: Continuity equation and Transport process rain Evaporation p In flow Rate of Out flow dn increase of = (in flow – out flow) + Rain - Evaporation water level t l l dt 1 in lake = ∇ .J n + gn - rn q ∂n 1 ∂p 1 = ∇ .J n + g n - rn = ∇ .J p + g p - r p ∂t q ∂t q J n = qnμn E + qDn∇ n J p = qnμ p E + qD p ∇ p Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 22. Basic: Continuity equation and Transport process Carriers are collected when they are: Generated closer t th j ti G t d l to the junction Generated within a diffusion length of the junction ∂n =0 Key parameters for high collection are: ∂t Minority carrier diffusion y Surface recombination Difficult to achieve high collection near front surface and also rear Differential equation is simple only when G = constant. d 2 Δn Δn G(λ( x) d 2 Δp Δp G(λ( x) 2 = 2 − 2 = 2 − dx Ln Dn dx Lp Dp −x +x Δn(x) = Aexp + Bexp + Gτ n ← Bondary conditions Ln Ln Acceptor p(-αx) ΕF,n=μe Donor ΕF,p=μh Φ= 0(1-R)exp D A Acceptor Rec Rec Voc =Φ or ΕF,p=μh A ΕF,n=μe Dono La= 1/α Lp W 0 0 W Ln La= 1/α Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 23. Basic Diode J-V equation dΔp n Applying the same boundary conditions as in the ideal diode case case. J p = qD p dx Differentiating to find the current dΔn p Equating the currents on the n-type and p-type sides, we get: J n = qD n dx ⎛ Dn Dp ⎞ J= ⎜q n p,0 + q p n,0 V ⎟ (exp qV − 1) − qG(L + L + W) ⎜ L Lp ⎟ k BT n p ⎝ n ⎠ J0 Photocurre nt J L - JL + JD ⎛ qV ⎞ J = J 0 ⎜ exp n.k B T − 1⎟ − J L ⎜ ⎟ ⎝ 1 4 42 4 43 ⎠ Dark current, J D J0 : saturation current kB : Boltzmann`s constant, 1.381 10-23 J/Kelvin n : ideality factor ⎡ D n n i2 D p n i2 ⎤ J0 = q⎢ + ⎥ ni: carrier concentration ⎢ Ln N A L p N D ⎣ ⎥ ⎦ NA,ND. Doping concentration Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 24. Silicon (Diamond) to Chalcopyrite (Tetragonal) Diamond structure IV nq N + mqM Grimm Sommerfeld rulea Grimm-Sommerfeld-rulea =4 Si n + m + ... N,M elements, n,m atoms/unit cell and qN, qM valence electrons sp3 hybrid bonds III-V zincblende structure II-VI Epitaxial film: Polycrystalline thin film: GaAs , InP… CdTe, ZnS II-IV-V2 I-III-VI2 Epitaxial film: Polycrystalline thin film: ZnGeAs, … Cu(In,Ga)(Se,S)2 (Chalcopyrite and related compounds) I-III-VI2 Alloy: Group I= Cu, Group III= In and Ga, Group VI = Se and S Ahmed Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 25. Basic: how to make a solar cell: The p-n junction IB IIB IIIB IVB VB VIB Si Periodic Table 5 8 Ge 6 7 B C N O GaAs 13 14 15 16 Al Si P S CdTe 29 30 31 32 33 34 Cu Zn Ga Ge As Se I P InP 48 49 50 51 52 Cd In Sn Sb Te AlSb CIGS CZTS Metallurgical Junction NA ND - - - - - - + + + + + - - - - - - + + + + + P - - - - - - + + + + + N - - - - - - + + + + + Space ionized acceptors Charge Region ionized donors E-Field h+ diffusion = h+ drift e- diffusion = e- drift
  • 26. Basic: PN junction at equilibrium ⎧p p0 ≈ N A ⎧ n no ≈ N D ⎪ ⎪ ⎨ n 2 ⎨ ni 2 ⎪n p0 ≈ i ⎪ p n0 ≈ ⎩ EC NA ⎩ ND n = p = ni qVbi n i = BT 3 e −EG 2 kT Ei EF EV 300K : n i ≅ 1.5 × 10 10 cm −3 ρ(x) W + qND Built-in voltage Vbi -qNA - N x qVb = ( Ei − E F ) p + ( E F − Ei )n bi V (x) nn0 = ni exp[( E F − Ei ) k BT ] Vbi p p 0 = ni exp[Ei − E F k BT ] p E(x) x ⎛ ⎞ k BT ⎜ p p 0 nn0 ⎟ ⎛ N AND ⎞ Vbi = ln ≈ VT ln⎜ ⎟ − xp xn q ⎜ n2 ⎟ ⎜ 2 ⎟ ⎝ i ⎠ ⎝ ni ⎠ Emax x A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 27. Basic: PN junction in the dark Depletion region width: Solve 1D Poisson equation using depletion charge approximation, subject to the following boundary conditions: V ( − x p ) = 0, V ( xn ) = Vbi , E (− xn ) = E ( x p ) = 0 p-side: V p ( x) = qN A 2k s ε 0 (x + x p )2 qN D n-side: Vn ( x) = − ( xn − x )2 + Vbi 2k s ε 0 Use the continuity of the two solutions at x=0, and charge neutrality, to obtain the expression for the depletion region width W: xn + x p = W ⎫ V p (0) = Vn (0) ⎪ → W = 2k s ε0 ( N A + N D )Vbi ⎬ ⎪ qN A N D N A x p = N D xn ⎭ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 28. Basic: PN junction in the dark Depletion layer capacitance: Consider a p+n, or one-sided junction, for which: 2k s ε 0 (Vbi m V ) W= qN D The depletion layer capacitance is calculated using: dQc qN D dW qN D k s ε 0 1 2(Vbi m V ) C= = = → 2= 1 C2 dV dV 2(Vbi m V ) C qN D k s ε0 1 Measurement setup: slope ∝ ND W dW Reverse bias Forward bias vac ~ V Vbi − V V A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 29. Basic: PN junction in the dark Ideal Current-Voltage Characteristics: Assumptions: • Abrupt depletion layer approximation • Low level injection Low-level injected minority carrier density much smaller than the majority carrier density • No generation-recombination within the space-charge region (SCR) Depletion l D l ti layer: EC W n.p = n exp(V / VT ) 2 i qV p n (x n ) = n n0 exp(V/VT ) EF Fn E Fp EV n p ( −x p ) = n p0 exp(V/VT ) k BT − xp VT = xn q A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 30. Basic: PN junction in the dark Forward bias: Reverse bias: EC W Ln qV EC q(Vbi + V ) q(Vbi − V ) E Fp qV EV E Fn E Fn E Fp p EV Lp W Reverse saturation current is due to minority carriers being collected over a distance on the order of the diffusion length.
  • 31. Basic: PN junction in the dark Quantitative p-n Diode Solution / Little MATH Q. neutral Region Q. neutral Region Depletion Region P-type N-type E≠0 E=0 E=0 -∞ -xp Electrical field +xn +∞ ∂Δn p d Δn p 2 Δn p ∂Δp n d 2 Δp n Δp n = Dn − + G L existe in the depletion = Dp − + GL ∂t dx 2 τn region the minority ∂t dx 2 τp d 2 Δn p Δn p carrier diffusion i diff i 0 = Dn − Does not apply here d 2 Δp n Δp n dx 2 τn 0 = Dp − dx 2 τp Boundary condition Boundary condition Boundary condition Boundary condition Δn p ( x → −∞) = 0 Δn p ( x → − x p ) = ? Δp n ( x → x n ) = ? Δp n ( x → +∞) = 0 n i2 ⎛ qV ⎞ n i2 ⎛ qV ⎞ Δn p (x = − x p ) = ⎜ exp ⎜ − 1⎟ ⎟ Δp n (x = x p ) = ⎜ exp ⎜ − 1⎟ ⎟ NA ⎝ k BT ⎠ ND ⎝ k BT ⎠
  • 32. Basic: PN junction in the dark Total current density: y • Total current equals the sum of the minority carrier diffusion currents defined at the edges of the SCR: I tot = I diff ( n ) + I diff ( −x p ) p (x n ⎛ D p p n0 D n n p0 ⎞ V/V I D = qA ⎜ ⎜ L + Ln ⎟ ( ⎟ e T −1 ) ⎝ p ⎠ • Reverse saturation current density: I 0 = J 0 . A current Current density area V (volt) 2 2 ni p n0 ≈ ND n p0 ≈ ni NA ⎛ D p p n0 D n n p0 ⎞ ⎛ Dp Dn ⎞ I 0 = qA ⎜ + ⎟ = qAn i2 ⎜ + ⎟ ⎜ L Ln ⎟ ⎜L N ⎟ ⎝ p ⎠ ⎝ p D LnN A ⎠ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 33. Basic: How to make a solar cell: Dark current + Dark current Φ(x) N P Photocurrent C Ph t t Current: t 2 Φe-αx • Diffusion courant (electron, region 1) 1 3 • Generation current in SCR (region 2) Ohmic xp xn Ohmic • Diffusion current (holes region3) contact E contact ⎛ ⎞ 1 3 qV 2 J = J 0 ⎜ exp − 1 ⎟ − J ph p-type n-type k BT ⎜ ⎟ ⎝ ⎠ W EC J ph = J p , diff ( x n ) + J G ( x n ) + J n , diff ( x p ) qV 1 2 3 E Fn E Fp EV − xp xn A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 34. Basic: PN junction under illumination (Space Charge Region, SCR) Φ(x) N P Generation current i space charge region 2 G ti t in h i 2 J G ,n = J G ,p Φe-αx 1 3 Continuity C ti it equation (for electron) ti (f l t ) ∂n 1 dJ n Δp n Ohmic xp xn = − + GL ∂t q dx τp contact E Ohmic 1 2 3 contact Steady-state p-type n-type xn 1 dJ n 0= + GL J G = q ∫ G(x)dx q dx xp W G(x) = Φαexp( αx) Φαexp(- J G ,n ( x n ) = qΦ e ( - αx p ) − e − αx n = qΦe − αx p (1 − e ) − αW A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 35. Basic: PN junction under illumination (diffusion current) Φ( ) (x) N P Neutral region 3 n type n-type Diffusion current: holes 2 dΔp Φe-αx J p ,dff . = qD p 1 3 dx −x / Lp + x / Lp Φατ p Δp = Ae + Be + xp xn 1 − α 2 L2p Ohmic Oh i E Ohmic Boundary conditions contact 1 3 contact 2 p-type n-type Δp = 0 x = x c → +∞ L p << d n ; 1 / α ⇒ B = 0 Δp = 0 x = x n ( E = 0) Φατ p −αx n + x n / L p ⇒A= e 1 - α Lp 2 2 Δp = Φατ p 1− α L 2 2 ( e − αx n e − α ( x − x n ) − e −( x − x n ) / L p ) p αL p J p ,diff . = −qΦ e − αx n 1 − αL A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 36. Basic: PN junction under illumination Neutral region 1 p type p-type Φ(x) N P 2 Diffusion current: electron Φe-αx dΔ dΔn 1 3 J n ,dff . = qD n dx x / Lp Φατ n Ohmic x´c xp xn xc Δn = Ae − x / L n + Be + 1 − α 2 L2n contact E Ohmic 1 3 contact 2 p-type n-type Boundary conditions x = x p Δn = 0 (electrical field E) x = x ´c → Δn(x ´c ) Δn(x ´c ) depends on surface recombination (S 0 ) ( p ( Surface recombination S0 ⎛ A n − xp /L n B n xp /L n Φα 2 τ n −αx p ⎞ J n,diff. ( x n ) = qD n ⎜ − ⎜ L e + e − e ⎟ ⎟ ⎝ n Ln 1 − α Ln 2 2 ⎠ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 37. Basic: PN junction under illumination 1 For an efficient P - N junction d p << ⇒ J n,diff. ≈ 0 α ( ⎧J G ( x n = W ) = −qΦ 1 − e − αW ) ⎪ Origine at x p = 0 and x n = W ⎨ αL p ⎪ J p,diff. ( x n ) = −qΦ e − αW ⎩ 1 + α 2 L2p ⎛ 1 ⎞ J ph = −qΦ ⎜1 − e − αW ⎟ ⎜ 1 + αL ⎟ ⎝ p ⎠ 1 Maximum J ph M i f αW >> 1 (W >> ) → e.g. pin - j for i junction ti α A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 38. PN junction under illumination / Efficient p-n diode ⎛ 1 ⎞ ⎛ 1 ⎞ J ph = − qΦ ⎜1 − e − αW ⎟ Φ = Φ 0 (1− R ) ⎯⎯ ⎯ ⎯→ J ph = qΦ 0 (1 − R ) ⎜1 − e − αW ⎟ ⎜ 1 + αL ⎟ ⎜ 1 + αL ⎟ ⎝ p ⎠ ⎝ p ⎠ ⎛ 1 ⎞ A = cell area → I ph = J ph . A = AqΦ 0 (1 − R )⎜1 − e − αW ⎟ ⎜ ⎟ ⎝ 1 + αL p ⎠ Φ0 = Number of photon per unit area, per unit time, per wavelength increment incident power: Pinput = hν . Φ0 . A λ(nm) . EQE 1239 I ph AqΦ 0 (1 − R ) ⎛ ⎜1 − 1 ⎞ q ⎛ 1 ⎞ = e − αW ⎟ = . (1 − R ) ⎜1 − e − αW ⎟ Pinput hνΦ 0 .A ⎜ 1 + αL p ⎝ ⎟ hν ⎠ ⎜ 1 + αL ⎝ p ⎟ ⎠ Multimeter I ph geometry q ⎛ 1 ⎞ EQE = = (1 − R ) ⎜1 − e − αW ⎟ Piinput ⎜ 1 + αL ⎟ ⎝ p ⎠ Pyranometer hν reflexion Absorption Minority carrier 1 1 λ (nm) g diffusion length = = coefficient hν hc 1239 q qλ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 39. Basic: PN junction Loss in Jph ⎛ 1 ⎞ η = (1 − R) ⎜ 1 − e −αW ⎟ ⎜ 1 + αL ⎟ ⎝ p ⎠ SEM image A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 40. Basic: Open circuit Voltage, VOC ⎡ q qV ⎤ nk B T ⎛ J L ⎞ J = J D + J ph = J 0 ⎢ exp − 1 ⎥ − J L = 0 ⇒ V OC = l ⎜ ln ⎜ + 1⎟ ⎟ ⎣ nk B T ⎦ q ⎝ J0 ⎠ J0 : saturation current , n : ideality factor, kB : Boltzmann ´s constant, VOC: open circuit voltage JL or Jph photocurrent voltage, h - JL + JD Open circuit voltage O i it lt nk B T ⎛ J L ⎞ V OC = ⎜ ln ⎜ + 1⎟ ⎟ q ⎝ J0 ⎠ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 41. Open circuit Voltage, VOC For a given band gap EG, we need trade-offs trade offs nk B T ⎛ J L ⎞ ⎛ D n n i2 D p n i2 ⎞ V OC = ⎜ ln ⎜ + 1⎟ J0 = q ⎜ + ⎟ q J0 ⎟ ⎜L N Lp N D ⎟ ⎝ ⎠ ⎝ n A ⎠ Dp 1 Dn 1 qn i w E J 0 = [qN C N V ( + )+ ]exp - G Diffusion length τp ND τn NA τnτp k BT Doping Dn Dp kT = = VT = (VT = 300K = 25mV ) μn μp q VOC A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 42. Power output characteristics mpp = Maximum Power Point JSC.VOC.FF V FF Jmpp.Vmpp J Rmpp EFF.= PSun JSC.VOC P=I.V Fill Factor J mpp x Vmpp Pmpp= Impp x Vmpp J SC .VOC V Vmpp Jmpp . Vmpp EFF= PSun Inverse of slope Vmpp/Impp is characteristic resistance is characteristic resistance Jmpp mmp Jsc VOC Pmax A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 43. Importance of mobility μ and Diffusion length, Lp,n The higher mobility μ, the better is the carrier extraction g y L : Mean free length of path (L2 = D.τ) gives how long charge carrier (Lp or Ln) can travel in a volume of a crystall lattice before recombination takes place dn J n = qμ n nE + qD dx velocity v Mobility μ = = Field E A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 44. Dark current and photocurrent ⎡ qV ⎤ ⎛ qV D ⎞ ID = I 0 ⎢exp − 1⎥ I = I 0 ⎜ exp − 1⎟ - I L ⎣ nkT ⎦ ⎝ nkT ⎠ V (volt) V (volt) A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 45. Limitation of VOC by I0 and JSC At room temperature: VT = kBT/q = 26 mV VOC increases by 0.06 V if I0 decreases by one order of magnitude VOC increases by 0.06 V if ISC increases by one order of magnitude V (volt) V (volt) Diode saturation current density for nearly ideal Si solar cells I 0 (Si) ≈ 10 −13 A.cm −2 A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 46. Energy conversion efficiency of a solar cell Maximum Power Point = PMPP = V MP . I MP POWER IN MPP VOC . I SC EFFICIENCY = EFFICIENCY = POWER OF SUN LIGHT PSun V MP Optimal load resistance in the MPP R MPP = L Importance of the I MP solar cell efficiency EFFECIENCY ↑ W/cm2) ↓ I(A/cm2) x V(W MATERIAL + AREA m COST FOR PV ↓ €/Wp↓ V (volt) A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 47. One diode model / Equivalent Circuit Ideal diode (dark current , ID) JD J. RS (Voltage drop) (Shockley diode equation) J ⎡ qV D ⎤ J D = J 0 ⎢ exp − 1⎥ ⎣ nkT ⎦ P VD V RLoad add a serie resistance RS jsh . Rsh JL N Current V = V D + J .R S loss Solar cell in the dark ⎡ q (V − J .R S ) ⎤ J D = J 0 ⎢ exp − 1⎥ Solar cell under illumination J D = J 0 ⎡ exp q (V − J .R S ) − 1⎤ − J L ⎢ ⎥ ⎣ nkT ⎦ ⎣ nk nkT ⎦ ⎡ Dn ni2 D p ni2 ⎤ Dark characteristics being shifted down by photocurrent J0 = q⎢ + ⎥ which depend on light intensity. ⎢ ⎣ Ln N A L p N D ⎥ ⎦ J = I/A add a shunt resistance Photogenerated carriers can also flow through the crystal J0 Forward VOC 0 surfaces or grain boundaries in polycrystalline devices Reverse V i sh .R sh = V + J .R S 4TH Q d t Quadrant JSC ⎡ q ( V − J.R S ) ⎤ V + J.R S - JL J = J 0 ⎢ exp − 1⎥ - J L + ⎣ nkT ⎦ R Sh
  • 48. Two diodes model / Equivalent Circuit 4th Quadrant ⎡ q (V − J .R S ) ⎤ ⎡ q (V − J .R S ) ⎤ V + J.R S J = J 01 ⎢ exp − 1⎥ + J 02 ⎢ exp − 1⎥ + - JL ⎣ n1 kT ⎦ ⎣ n 2 kT ⎦ R Sh J RS + J JL Rsh V RLoad J01,n1 J02,n2 1st Quadrant - 4th Quadrant V 1st Quadrant ⎡ q (V − J .R S ) ⎤ ⎡ q (V − J .R S ) ⎤ V + J.R S J = J L − J 01 ⎢ exp − 1⎥ − J 02 ⎢ exp − 1⎥ − ⎣ n1 kT ⎦ ⎣ n 2 kT ⎦ R Sh A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 49. Role of Rsh (Rp) for I-V-characteristics of solar cells During operation, the efficiency of solar cells is reduced by the dissipation of power across internal resistances which can be modeled as a parallel shunt resistance (RSH) and series resistance (RS). For an ideal cell, RSH would be infinite and would not provide an alternate path for current to flow, while RS would be zero, resulting in no further voltage drop before the load. Voltage (Volt) Voltage (Volt) V lt (V lt) Using LabVIEW analysis capabilities you can assess the main performance parameters for PV cells and modules. A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 50. Role of Iph for the influence of RS FF↓ and η↓ with increasing ISC Voltage (Volt) g ( ) A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 51. Basic: solar cell is a sensor for solar radiation The efficiency increases with increasing light intensity. y g g y We Compare the efficiency at two light intensities PSun and PSun > PSun 0 0 No additional heating I 0 (T0 ) = I 0 (T) = I 0 0 Linearity I Sun ∝ PSun VOC . I SC η = FF PSun 0 0 VOC . I SC η 0 = FF 0 0 PSun nk B T ⎛ I ph ⎞ I ln ⎜ ⎜ I + 1 ⎟ SC ⎟P η FF q ⎝ 0 ⎠ Sun ⇒ = η 0 FF 0 nk B T0 ⎛ I ph0 ⎞ I SC 0 ln ⎜ 0 + 1 ⎟ 0 q ⎜ ⎟ ⎝ I0 ⎠ PSun ⎛ I ph ⎞ I SC ln ⎜ ⎟ η FF T ⎜ I 0 ⎝ ⎟P ⎠ Sun PSun I ph ≈ = 0 =X η 0 FF 0 T0 ⎛ I ph0 ⎞ I SC 0 0 PSun I ph ln ⎜ 0 ⎟ ⎜ I ⎟ P0 ⎝ 0 ⎠ Sun A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 52. Basic: solar cell is a sensor for solar radiation The efficiency increases with increasing light intensity. y g g y Two light intensities PS0 and PS > PS0 Sun Sun Sun ⎛ I ph ⎞0 0 I ph ln ⎜X ⎟ ln X + ln η FF ⎜ I0 ⎟ I0 = ⎝ ⎠ = FF η 0 FF 0 ⎛ I ph ⎞ 0 FF 0 ⎛ I ph ⎞ 0 ln ⎜ ⎟ ln ⎜ ⎟ ⎜ I0 ⎟ ⎜ I0 ⎟ ⎝ ⎠ ⎝ ⎠ 0 I ph ⎛ ⎞ ⎜ ⎟ lnX + ln η FF I0 FF ⎜ lnX ⎟ = = ⎜1 + ⎟>1 η 0 FF 0 ⎛ I ph ⎞ 0 FF 0 ⎜ ⎛ I ph ⎞ ⎟ 0 ln ⎜ ⎟ ⎜ ln ⎜ ⎟ ⎜ I0 ⎟ ⎜ ⎜ I0 ⎟ ⎟ ⎟ ⎝ ⎠ ⎝ ⎝ ⎠⎠ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 53. Basic: solar cell is a sensor for solar radiation As light intensity changes g y g Φ: Photon flux photons/sec/cm² dΦ G(x) = − = αΦe − αx dx • JSC change much greater than VOC. • Low light intensity still produces voltage. • JSC increases proportionally with irradiance. p p y • MPP indicates Rload to achieve maximum power use. ⎡ qV ⎤ V + I.R S 1 sun I = I 0 . ⎢exp − 1⎥ + - IL MPP ⎣ nkT ⎦ R Sh JSC 0.8 sun ⎡ q(V − I.R S ) ⎤ I = I 0 . ⎢exp − 1⎥ - I L 0.6 0 6 sun ⎣ n.k T n k B .T ⎦ nkT ⎛ J L ⎞ VOC = ln ⎜ ⎜J + 1⎟ ⎟ q ⎝ 0 ⎠ ⎡ D n n i2 D p n i2 ⎤ J L = qG(L n + L p + W) J 0 = q⎢ + ⎥ ⎢ ⎣ LnN A LpND ⎥ ⎦ VOC A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 54. Basic: Temperature Effects Solar cell operate best at lower temperature. As the temperature decreases, the output voltage and efficiency increase. The output voltage Voc, when Voc >> nkBT/q, nkT ⎛ J L ⎞ nkT J V OC = ln ⎜ ⎜J + 1⎟ ≈ ⎟ ln L q ⎝ 0 ⎠ q J0 JL increase proportionally with irradiance JL = K . I nkT ⎛ KI ⎞ kT eV oc V ⎛ KI ⎞ V oc = ln ⎜ ⎜ J ⎟ ⇒ nkT = ln ⎜ J ⎟ ⎜ ⎟ ⎟ e ⎝ 0⎠ ⎝ 0 ⎠ J0 is reverse saturation current and strongly gy depend on temperature: ⎡ Dn ni2 D p ni2 ⎤ − EG J0 = q⎢ + ⎥ n. p = n ≈ T e 2 i 3 kT ⎢ ⎣ Ln N A L p N D ⎥ ⎦ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 55. Basic: Temperature Effects nkT ⎛ J L ⎞ nkT J V OC = ln ⎜ ⎜J + 1⎟ ≈ ⎟ ln L q ⎝ 0 ⎠ q J0 Assuming n = 1, at two different temperatures T1 and g , p T2 and the same illumination: eVoc 2 eVoc1 ⎛ KI ⎞ ⎛ KI ⎞ ⎛ J 01 ⎞ ⎛ ni2 ⎞ − = ln ⎜ ⎜J ⎟ - ln ⎜ ⎟ ⎜J ⎟ ⎟ = ln ⎜ ⎜J ⎟ ⎟ ≈ ln ⎜ 21 ⎟ ⎜n ⎟ kT2 kT1 ⎝ 02 ⎠ ⎝ 01 ⎠ ⎝ 02 ⎠ ⎝ i2 ⎠ Eg ⎛ 1 1 ⎞ ni2 = N c N v exp(− E g kT ) ⇒ oc 2 − oc1 = eV eV ⎜ − ⎟ kT2 kT1 k ⎜ T2 T1 ⎟ ⎝ ⎠ ⎛ T2 ⎞ E g ⎛ T2 ⎞ Voc 2 = Voc1 ⎜ ⎟ + ⎜ T ⎟ e ⎜1 − T ⎟ ⎜ ⎟ ⎝ 1⎠ ⎝ 1 ⎠ 0.493V Example, Si solar cell has Voc1 = 0.55 V at 20 oC (T1 = 293 K), at 50 oC (T2 = 323 K), ⎛ 323 ⎞ ⎛ 323 ⎞ Voc 2 = (0.55 V )⎜ ⎟ + (1.1 V )⎜1 − ⎟ = 0.493 V ⎝ 293 ⎠ ⎝ 293 ⎠ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 56. Basic: Examples Consider a p–n junction diode at 25 °C with a reverse saturation current of 10−9 A. Find the voltage drop across the diode when it is carrying the following: (a) no current (open-circuit voltage), (b) 1 A, (c) 10 A. q =1.602 × 10−19 C, k =1.381 × 10−23 J/K), n = 1 and T=25°C (a) In the open-circuit condition ID = 0 and VD = 0 open circuit condition, 0, 0. (b) With ID = 1 A, we can find VD by rearranging the Shockley diode equation ⎡ ⎤ ⎡ J D = J 0 ⎢ exp qV D nkT ⎤ − 1⎥ = J 0 ⎢ exp 1 .602 x 10 −19 V D 1 .381 x 10 − 23 T ⎡ V ⎤ [ ] − 1⎥ = J 0 ⎢ exp 11 .600 D − 1⎥ at T = 25 °C J D = J 0 e 38 .9V D − 1 T (K ) ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ 1 ⎛J ⎞ 1 ⎛ 1 ⎞ (b) V D = ln ⎜ D + 1 ⎟ = ⎜J ln ⎜ − 9 + 1 ⎟ = 0 .532 ⎟ 38 .9 ⎝ 10 38 .9 ⎝ 0 ⎠ ⎠ 1 ⎛ 10 ⎞ ( ) VD = (c) ln ⎜ − 9 + 1 ⎟ = 0 .592 38 .9 ⎝ 10 ⎠ Consider a 100 cm2 PV cell photovoltaic cell with reverse saturation current I0 = 10−12 A/cm2. In full sun, it produces a short-circuit current of 40 mA/cm2 at 25°C Find th open-circuit voltage at full sun and again f 50% sunlight. Pl t t f A/ t 25°C. Fi d the i it lt t f ll d i for li ht Plot the results. The reverse saturation current J0 is 10−12 A/cm2 × 100 cm2 = 1 × 10−10 A. At full sun JSC is 0.040 A/cm2 × 100 cm2 = 4.0 A. The open-circuit voltage is p g ⎛J ⎞ [ ] ⎛ 4 ⎞ J = J L − J 0 e 38 .9V − 1 = 0 ⇒ V OC = 0 .0257 ln ⎜ Sc + 1 ⎟ = 0 .0257 ln ⎜ −10 + 1 ⎟ = 0 .627 V D ⎜ J ⎟ ⎝ 0 ⎠ ⎝ 10 ⎠ A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 57. Basic: One diode model / Equivalent Circuit Since short-circuit current is proportional to solar intensity, at half sun ISC = 2 A and the open-circuit short circuit open circuit voltage is ⎛ 2 ⎞ V OC = 0 .0257 ln ⎜ −10 + 1 ⎟ = 0 .610 V ⎝ 10 ⎠ Plotting the relation belo gi es us the follo ing below gives s following: A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 58. Lab. work Varied d V i d and measured parameters d t current voltage temperature light intensity wavelength of the light ⎡ q(V − I . R S ) ⎤ V + I.R S I = I 0 . ⎢exp − 1⎥ + - I ph ⎣ n.k.T ⎦ R sh Solar cell parameters: diode saturation current density ideality factor series resistance parallel resistance short circuit current density Derived parameters: fill factor FF energy , conversion efficiency thermal factor, activation energy, Ea Sources: FU-Berlin A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 59. Lab. Work: ISC-VOC measurements Very simple measurement no need for a load resistance with one multimeter only y p y Light intensity variation: ideality, I0 and Rp from ISC-VOC – characteristics Temperature variation: thermal activation energy of I0 ⎡ qV1 ⎤ decade I D1 = I 0 ⎢ exp − 1⎥ qV1 ⎣ nkT ⎦ exp I D1 1 nkT = ≈ I D2 10 qV 2 ⎡ qV 2 ⎤ exp I D 2 = I 0 ⎢ exp − 1⎥ nkT ⎣ nkT ⎦ k BT ln10 = 2.3 = 26mV q ΔU/decade = U 2 − U 1 k BT =n .ln10 → n.60mV q Room T: ΔU/decade = n.60mV (Si: n = 1.1 – 1.3) Sources: FU-Berlin A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 60. Lab. Work: ISC-VOC measurements Sources: FU-Berlin A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 61. Lab-Work: Activation energy Determination of EA from the slope in Arrhenius plots EA = 0.5 eV corresponds to about 2 orders of magnitude for T1 = 300 K and T2 = 400 K Sources: FU-Berlin A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 62. Lab-Work: Activation energy Consequence of EA: Temperature dependence of VOC q p p Sources: FU-Berlin A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 63. Lab-Work: Measurements with loads What is RL ? RL is the power taken from the illuminated solar cell. V RL = and P = V.I I Each RL corresponds to one point on I-V curve. Simplest way: RL known, V measured. (high accuracy for low cost) Set-up: just using a voltmeter variation of known R Good for ranges of RL between 1 Ω and 100 kΩ (Si solar cells with small area, thi fil mini-modules) l ll ith ll thin film i i d l ) sources of errors: accuracy of RL: Voltage (Volt) g ( ) resistances of wires and contacts i t f i d t t internal resistance of the voltmeter Sources: FU-Berlin A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 64. Lab-Work: Measurements with loads Choice of load resistance (RL) for simplest I-V measurements IV 1. VOC and ISC are measured with a multimeter 2. RL* is calculated RL* = VOC / ISC (RL* is close to Maximum Power Point, MPP) 3. RL is changed towards ISC RL is decreased by taking about 10 values up to RL ≤ RL*/10 4. RL is changed towards VOC RL is increased by taking about 10 values up to RL ≥ 10 RL* Determination of Rp ΔV Rp = − ΔI V→0 Voltage (Volt) Sources: FU-Berlin A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie
  • 65. Lab-Work: Measurements with loads Determination of RS Measurement at two light intensities Rp large enough determination of the potentials U1 at currents I1 = ISC1 - ΔI U2 at currents I2 = ISC2 - ΔI ⎡ ⎛ q. (U 1 − I 1 .R S ) ⎞ ⎤ ⎜ ΔI = I 0. ⎢exp ⎜ ⎟ − 1⎥ ⎟ ⎣ ⎝ k BT ⎠ ⎦ ⎡ ⎛ q. (U 2 − I 2 .R S ) ⎞ ⎤ ΔI = I 0. ⎢exp ⎜⎜ ⎟ − 1⎥ ⎟ ⎣ ⎝ k BT ⎠ ⎦ Voltage (Volt) U1 − U 2 Works well for conventional solar cells RS = FF is relatively l i l ti l large I 2 − I1 Sources: FU-Berlin A. Ennaoui / Helmholtz-Zentrum Berlin für Materialien und Energie