Electromagnetism First-year course on Integral types © Frits F.M. de Mul
History       Electricity      Magnetism   EM-fields EM-waves       (Technical) Applications       Franklin Coulomb Galvani Volta Ampère Oersted Gauss Faraday Helmholtz Maxwell Lorentz Hertz Millikan Marconi 1700 1800 1900 2000              
Multidimensional integrations   Integration of charges and currents over lines, planes and volumes Line integrals (scalar, vectorial) +example Surface-integrals (scalar, vectorial) + 2 examples Volume-integrals (scalar only) + example
Line-integral (scalar) (1) Example:  Calculate average temperature  T (x) between x 1  and x 2 Meaning of F: y x x 1 x 2 f  (x) One-dimensional: F F  = area under curve
Line-integral (scalar) (2) Problem :  which integration path ? In general:  Result of integration depends  on choice of integration path. f x i x j P 1 P 2 f f = f  (….., x i  , x j  ,….) Multi-dimensional
Line-integral (scalar) (3) Special case: Conservative field:   result  in dependent of path T x y P 1 P 2 T T  (x,y) = c (2x+y) P 1  (1,1) P 2  (2,3) Example (1) (2) (1) (2) Different paths :  different results; Calculate line-integrals first and check below:
Line-integral (vectorial) dl  along integration path Consequence : if  F     dl  :  W  = 0 :  (example: centripetal force) A x y P 1 P 2 A (1) (2) Example : Work done by force: Definition:
Surface-integral (scalar) T x y P 1 P 2 T Temperature field: T = f  (x,y) = c(2x+y) Problem:  determine <  T >  over  S; Find formula and calculate: S
Surface-integral (vectorial) Definition: A e n  dx dy dS e n   = normal  unit vector,  // to  dS dS  =  e n   dS dS A x y A S
Surface Integral (vectorial): Example 1 Contribution from   -component ( //  e z   )   only ! Calculate surface integral over  x =  1..2 and  y  = 1..3 A x y A S A e n  dx dy dS e n   = normal  unit vector,  // to  dS dS  =  e n   dS dS Suppose: Area S in  z= 0 plane ; there  A (x,y,0)  =  x e x  +  2y e y  +  3 e z
Surface Integral (vectorial): Example 2 dA = u.v = (R.sin  .d  ).(Rd  ) B Suppose :  B =  r. sin     e r   +  cos     e    +  tan    e  Normal vector  e n = e r   everywhere ! R  d   d  R.sin  u v Spherical surface element Calculate surface integral of  B over  A  at radius  r   over octant (  = 0 ..  ½    ;    = 0.. ½    )
Volume-integral (scalar only) Example: Charge density:     = c(3x-2y+5z)  [C/m 3 ]  Problem : determine  total charge  Q  in  V x y z V Block   V  : limited by points (1,1,1) and (2,4,5) dV=dxdydz Define charge element  dQ  in volume element  dV :  dQ =    .dV
Volume integral: Example Suppose:  charge density  =3ar. sin  .cos    [C/m 3 ] Calculate charge  Q  in region: ( 2<r<3 ; 0<  < ½   ; - ½  <  < ½  ) the end r  d   d  r.sin  u v Spherical volume element w R dV = u.v.w = ( r .sin  . d  ).( rd  ). dr 0<    < 2   ; 0<    <    ; 0 <  r  <  R

EM integrations

  • 1.
    Electromagnetism First-year courseon Integral types © Frits F.M. de Mul
  • 2.
    History      Electricity      Magnetism   EM-fields EM-waves       (Technical) Applications       Franklin Coulomb Galvani Volta Ampère Oersted Gauss Faraday Helmholtz Maxwell Lorentz Hertz Millikan Marconi 1700 1800 1900 2000              
  • 3.
    Multidimensional integrations  Integration of charges and currents over lines, planes and volumes Line integrals (scalar, vectorial) +example Surface-integrals (scalar, vectorial) + 2 examples Volume-integrals (scalar only) + example
  • 4.
    Line-integral (scalar) (1)Example: Calculate average temperature T (x) between x 1 and x 2 Meaning of F: y x x 1 x 2 f (x) One-dimensional: F F = area under curve
  • 5.
    Line-integral (scalar) (2)Problem : which integration path ? In general: Result of integration depends on choice of integration path. f x i x j P 1 P 2 f f = f (….., x i , x j ,….) Multi-dimensional
  • 6.
    Line-integral (scalar) (3)Special case: Conservative field: result in dependent of path T x y P 1 P 2 T T (x,y) = c (2x+y) P 1 (1,1) P 2 (2,3) Example (1) (2) (1) (2) Different paths : different results; Calculate line-integrals first and check below:
  • 7.
    Line-integral (vectorial) dl along integration path Consequence : if F  dl : W = 0 : (example: centripetal force) A x y P 1 P 2 A (1) (2) Example : Work done by force: Definition:
  • 8.
    Surface-integral (scalar) Tx y P 1 P 2 T Temperature field: T = f (x,y) = c(2x+y) Problem: determine < T > over S; Find formula and calculate: S
  • 9.
    Surface-integral (vectorial) Definition:A e n  dx dy dS e n = normal unit vector, // to dS dS = e n dS dS A x y A S
  • 10.
    Surface Integral (vectorial):Example 1 Contribution from  -component ( // e z ) only ! Calculate surface integral over x = 1..2 and y = 1..3 A x y A S A e n  dx dy dS e n = normal unit vector, // to dS dS = e n dS dS Suppose: Area S in z= 0 plane ; there A (x,y,0) = x e x + 2y e y + 3 e z
  • 11.
    Surface Integral (vectorial):Example 2 dA = u.v = (R.sin  .d  ).(Rd  ) B Suppose : B = r. sin  e r + cos  e  + tan  e  Normal vector e n = e r everywhere ! R  d   d  R.sin  u v Spherical surface element Calculate surface integral of B over A at radius r over octant (  = 0 .. ½  ;  = 0.. ½  )
  • 12.
    Volume-integral (scalar only)Example: Charge density:  = c(3x-2y+5z) [C/m 3 ] Problem : determine total charge Q in V x y z V Block V : limited by points (1,1,1) and (2,4,5) dV=dxdydz Define charge element dQ in volume element dV : dQ =  .dV
  • 13.
    Volume integral: ExampleSuppose: charge density  =3ar. sin  .cos  [C/m 3 ] Calculate charge Q in region: ( 2<r<3 ; 0<  < ½  ; - ½  <  < ½  ) the end r  d   d  r.sin  u v Spherical volume element w R dV = u.v.w = ( r .sin  . d  ).( rd  ). dr 0<  < 2  ; 0<  <  ; 0 < r < R