SlideShare a Scribd company logo
1 of 50
Surface Integrals
Surface Integrals
Fact: Given a tilted
parallelogram in 3D over the
domain [0,1] x [0, 1].
x
y
z
1
1
Surface Integrals
Fact: Given a tilted
parallelogram in 3D over the
domain [0,1] x [0, 1].
Let M and L be the slopes
in the x–direction and in the
y–direction respectively,
x
y
z
1
1
Surface Integrals
Fact: Given a tilted
parallelogram in 3D over the
domain [0,1] x [0, 1].
Let M and L be the slopes
in the x–direction and in the
y–direction respectively,
x
y
z
M
1
1
Surface Integrals
Fact: Given a tilted
parallelogram in 3D over the
domain [0,1] x [0, 1].
Let M and L be the slopes
in the x–direction and in the
y–direction respectively,
1
1
x
y
z
M
L
Surface Integrals
Fact: Given a tilted
parallelogram in 3D over the
domain [0,1] x [0, 1].
Let M and L be the slopes
in the x–direction and in the
y–direction respectively,
1
1
x
y
z
M
L
L
Surface Integrals
Fact: Given a tilted
parallelogram in 3D over the
domain [0,1] x [0, 1].
Let M and L be the slopes
in the x–direction and in the
y–direction respectively,
by cross product, the area of
the parallelogram is M2 + L2 + 1.
1
1
x
y
z
M
L
L
Surface Integrals
1
1
x
y
z
M
L
L
In general, if the domain is
[0,Δx] x [0, Δy] instead,
then its area is
M2 + L2 + 1 ΔxΔy
Δx
Δy
x
y
z
MΔx
LΔy
LΔy
MΔx
Fact: Given a tilted
parallelogram in 3D over the
domain [0,1] x [0, 1].
Let M and L be the slopes
in the x–direction and in the
y–direction respectively,
by cross product, the area of
the parallelogram is M2 + L2 + 1.
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
x
y D
z=f(x,y)
σ
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
Let w(x, y ,z) be a density function over σ,
i.e. w gives the density at the point (x, y, z).
x
y D
z=f(x,y)
σ
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
Let w(x, y ,z) be a density function over σ,
i.e. w gives the density at the point (x, y, z).
Partition D into small rectangles ΔxΔy.
This gives a partition of σ into small surface patches.
x
y D
z=f(x,y)
σ
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
Let w(x, y ,z) be a density function over σ,
i.e. w gives the density at the point (x, y, z).
Partition D into small rectangles ΔxΔy.
This gives a partition of σ into small surface patches.
The area of the patch of surface over the rectangle
containing the point (xi, yi) may be approximated by
a "tile" from the tangent plane at (xi, yi
) *.
x
y D
z=f(x,y)
σ
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
Let w(x, y ,z) be a density function over σ,
i.e. w gives the density at the point (x, y, z).
Partition D into small rectangles ΔxΔy.
This gives a partition of σ into small surface patches.
The area of the patch of surface over the rectangle
containing the point (xi, yi) may be approximated by
a "tile" from the tangent plane at (xi, yi
) *.
x
y
(xi, yi, zi=f(xi,yi))
D
(xi, yi)
σ
z=f(x,y)
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
Let w(x, y ,z) be a density function over σ,
i.e. w gives the density at the point (x, y, z).
Partition D into small rectangles ΔxΔy.
This gives a partition of σ into small surface patches.
The area of the patch of surface over the rectangle
containing the point (xi, yi) may be approximated by
a "tile" from the tangent plane at (xi, yi
) *.
x
y
(xi, yi, zi=f(xi,yi))
D
(xi, yi)
σ
z=f(x,y)
(* Note: Not all four corners of the tile might sit on the surface.)
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
Let w(x, y ,z) be a density function over σ,
i.e. w gives the density at the point (x, y, z).
Partition D into small rectangles ΔxΔy.
This gives a partition of σ into small surface patches.
The area of the patch of surface over the rectangle
containing the point (xi, yi) may be approximated by
a "tile" from the tangent plane at (xi, yi
) *.
x
y
(xi, yi, zi=f(xi,yi))
D
(xi, yi)
σ
z=f(x,y)
(* Note: Not all four corners of the tile might sit on the surface.)
tile corner
point on the
surface
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
Let w(x, y ,z) be a density function over σ,
i.e. w gives the density at the point (x, y, z).
Partition D into small rectangles ΔxΔy.
This gives a partition of σ into small surface patches.
The area of the patch of surface over the rectangle
containing the point (xi, yi) may be approximated by
a "tile" from the tangent plane at (xi, yi
) *.
The area of this tile is
ΔSi =
x
y
(xi, yi, zi=f(xi,yi))
D
(xi, yi)
fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2 σ
z=f(x,y)
(* Note: Not all four corners of the tile might sit on the surface.)
tile corner
point on the
surface
Surface Integrals
Let σ be a surface defined z = f(x, y) over a domain D.
Let w(x, y ,z) be a density function over σ,
i.e. w gives the density at the point (x, y, z).
So the mass of a typical tile is
w(xi, yi, zi)ΔSi
= w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2
Partition D into small rectangles ΔxΔy.
This gives a partition of σ into small surface patches.
The area of the patch of surface over the rectangle
containing the point (xi, yi) may be approximated by
a "tile" from the tangent plane at (xi, yi
) *.
The area of this tile is
ΔSi =fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2
(* Note: Not all four corners of the tile might sit on the surface.)
x
y
(xi, yi, zi=f(xi,yi))
D
(xi, yi)
σ
z=f(x,y)
tile corner
point on the
surface
Surface Integrals
Hence the total mass of the surface σ over D is
M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2
lim Δx0
lim Δy0
Surface Integrals
Hence the total mass of the surface σ over D is
M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2
lim Δx0
lim Δy0
= ∫D
∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx
2 2
to be replaced by f(x,y)
Surface Integrals
Hence the total mass of the surface σ over D is
M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2
lim Δx0
lim Δy0
= ∫D
∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx
2 2
to be replaced by f(x,y)
Let the σ be the surface, we write this integral as
∫σ
∫ w(x, y, z) dS with z = f(x, y)
Surface Integrals
Hence the total mass of the surface σ over D is
M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2
lim Δx0
lim Δy0
= ∫D
∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx
2 2
to be replaced by f(x,y)
Let the σ be the surface, we write this integral as
∫σ
∫ w(x, y, z) dS
with dS =fx(x, y)+fy(x, y)+1 dA, i.e. dxdy or dydx.
2 2
with z = f(x, y)
Surface Integrals
Hence the total mass of the surface σ over D is
M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2
lim Δx0
lim Δy0
= ∫D
∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx
2 2
to be replaced by f(x,y)
Let the σ be the surface, we write this integral as
∫σ
∫ w(x, y, z) dS
with dS =fx(x, y)+fy(x, y)+1 dA, i.e. dxdy or dydx.
dS is called the surface differential. Often it’s easier
to visualized a surface integral problem as the sum
over dS–the areas of the small surface patches on σ,
2 2
with z = f(x, y)
Surface Integrals
Hence the total mass of the surface σ over D is
M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy
2 2
lim Δx0
lim Δy0
= ∫D
∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx
2 2
to be replaced by f(x,y)
Let the σ be the surface, we write this integral as
∫σ
∫ w(x, y, z) dS
with dS =fx(x, y)+fy(x, y)+1 dA, i.e. dxdy or dydx.
dS is called the surface differential. Often it’s easier
to visualized a surface integral problem as the sum
over dS–the areas of the small surface patches on σ,
but for the actual calculation, we need convert
dS to the dA–integral over the flat domain D.
2 2
with z = f(x, y)
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
z = 1 – x – y on the surface σ.
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
z = 1 – x – y on the surface σ.
Therefore
w(x, y, z) = xz = x(1 – x – y).
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
z = 1 – x – y on the surface σ.
Therefore
w(x, y, z) = xz = x(1 – x – y).
zx = –1, zy = –1,
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
z = 1 – x – y on the surface σ.
Therefore
w(x, y, z) = xz = x(1 – x – y).
zx = –1, zy = –1, so
dS = 12 + 12 + 1 dA
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
z = 1 – x – y on the surface σ.
Therefore
w(x, y, z) = xz = x(1 – x – y).
zx = –1, zy = –1, so
dS = 12 + 12 + 1 dA = 3 dA
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
So the mass = ∫σ
∫w(x, y , z) dS =
z = 1 – x – y on the surface σ.
Therefore
w(x, y, z) = xz = x(1 – x – y).
zx = –1, zy = –1, so
dS = 12 + 12 + 1 dA = 3 dA
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
So the mass = ∫σ
∫w(x, y , z) dS =
z = 1 – x – y on the surface σ.
Therefore
w(x, y, z) = xz = x(1 – x – y).
zx = –1, zy = –1, so
dS = 12 + 12 + 1 dA = 3 dA
∫
D
∫x(1 – x – y)3 dA
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
So the mass = ∫σ
∫w(x, y , z) dS =
z = 1 – x – y on the surface σ.
Therefore
w(x, y, z) = xz = x(1 – x – y).
zx = –1, zy = –1, so
dS = 12 + 12 + 1 dA = 3 dA
∫
D
∫x(1 – x – y)3 dA
=∫
x=0
∫x(1 – x – y)3 dydx =
1
y=0
1–x
x
y
1
1
D
σ
1
Surface Integrals
Example A. Given w(x, y, z) = xz be the density
function over the surface x + y + z = 1 in the first
octant, find its mass.
So the mass = ∫σ
∫w(x, y , z) dS =
z = 1 – x – y on the surface σ.
Therefore
w(x, y, z) = xz = x(1 – x – y).
zx = –1, zy = –1, so
dS = 12 + 12 + 1 dA = 3 dA
∫
D
∫x(1 – x – y)3 dA
=∫
x=0
∫x(1 – x – y)3 dydx =
1
y=0
1–x
3/24
x
y
1
1
D
σ
1
Surface Integrals
Example B. Find the surface integral
∫ ∫(x2 + y2)z dS
σ
x2 + y2 + z2 = 4 above the plane z = 1
where σ is the portion of the sphere
Surface Integrals
Example B. Find the surface integral
∫ ∫(x2 + y2)z dS
σ
x2 + y2 + z2 = 4 above the plane z = 1
where σ is the portion of the sphere
σ
D
Surface Integrals
Example B. Find the surface integral
z = 4 – x2 – y2
∫ ∫(x2 + y2)z dS
σ
x2 + y2 + z2 = 4 above the plane z = 1
where σ is the portion of the sphere
σ
D
Surface Integrals
Example B. Find the surface integral
z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2.
∫ ∫(x2 + y2)z dS
σ
x2 + y2 + z2 = 4 above the plane z = 1
where σ is the portion of the sphere
σ
D
Surface Integrals
Example B. Find the surface integral
z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2.
∫ ∫(x2 + y2)z dS
σ
x2 + y2 + z2 = 4 above the plane z = 1
where σ is the portion of the sphere
zx =
4 – x2 – y2
zx = –x
4 – x2 – y2
zy = –y
σ
D
Surface Integrals
Example B. Find the surface integral
z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2.
∫ ∫(x2 + y2)z dS
σ
x2 + y2 + z2 = 4 above the plane z = 1
where σ is the portion of the sphere
zx =
4 – x2 – y2
zx = –x
4 – x2 – y2
zy = –y
zx + zy + 1 =
2 2
4 – x2 – y2
4
σ
D
Surface Integrals
Example B. Find the surface integral
z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2.
∫ ∫(x2 + y2)z dS
σ
x2 + y2 + z2 = 4 above the plane z = 1
where σ is the portion of the sphere
zx =
So dS = 
4 – x2 – y2
zx = –x
4 – x2 – y2
zy = –y
zx + zy + 1 =
2 2
4 – x2 – y2
4
zx + zy + 1
2 2
σ
D
dA
Surface Integrals
Example B. Find the surface integral
z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2.
∫ ∫(x2 + y2)z dS
σ
x2 + y2 + z2 = 4 above the plane z = 1
where σ is the portion of the sphere
zx =
So dS = 
4 – x2 – y2
zx = –x
4 – x2 – y2
zy = –y
zx + zy + 1 =
2 2
4 – x2 – y2
4
 4 – x2 – y2
2
zx + zy + 1
2 2
= dA
σ
D
dA
Surface Integrals
The integrand
= (x2 + y2)4 – x2 – y2 *
 4 – x2 – y2
2
(x2 + y2)z dS is
dA
Surface Integrals
The integrand
= (x2 + y2)4 – x2 – y2 *
 4 – x2 – y2
2
(x2 + y2)z dS is
dA
= 2(x2 + y2)dA,
Surface Integrals
The integrand
= (x2 + y2)4 – x2 – y2 *
 4 – x2 – y2
2
(x2 + y2)z dS is
dA
= 2(x2 + y2)dA, integrated over the domain D of σ.
Surface Integrals
The integrand
= (x2 + y2)4 – x2 – y2 *
 4 – x2 – y2
2
(x2 + y2)z dS is
dA
= 2(x2 + y2)dA, integrated over the domain D of σ.
D is the circle x2 + y2 ≤ 3.
Using the polar form, we get:
Surface Integrals
The integrand
= (x2 + y2)4 – x2 – y2 *
 4 – x2 – y2
2
(x2 + y2)z dS is
dA
= 2(x2 + y2)dA, integrated over the domain D of σ.
∫σ
∫w(x, y , z) dS = ∫ ∫2(x2 + y2) dA =
D
D is the circle x2 + y2 ≤ 3.
Using the polar form, we get:
Surface Integrals
The integrand
= (x2 + y2)4 – x2 – y2 *
 4 – x2 – y2
2
(x2 + y2)z dS is
dA
= 2(x2 + y2)dA, integrated over the domain D of σ.
∫σ
∫w(x, y , z) dS = ∫ ∫ 2r2 * rdrd
r=0
3
=0
2π
∫ ∫2(x2 + y2) dA =
D
D is the circle x2 + y2 ≤ 3.
Using the polar form, we get:
Surface Integrals
The integrand
= (x2 + y2)4 – x2 – y2 *
 4 – x2 – y2
2
(x2 + y2)z dS is
dA
= 2(x2 + y2)dA, integrated over the domain D of σ.
∫σ
∫w(x, y , z) dS = ∫ ∫ 2r2 * rdrd
r=0
=0
2π
∫ ∫ 2r3 dr
r=0
=0
2π
= d *
∫ ∫2(x2 + y2) dA =
D
D is the circle x2 + y2 ≤ 3.
Using the polar form, we get:
3
3
Surface Integrals
The integrand
= (x2 + y2)4 – x2 – y2 *
 4 – x2 – y2
2
(x2 + y2)z dS is
dA
= 2(x2 + y2)dA, integrated over the domain D of σ.
∫σ
∫w(x, y , z) dS = ∫ ∫ 2r2 * rdrd
r=0
=0
2π
∫ ∫ 2r3 dr
r=0
=0
2π
= d *
= 2π* 9/2 = 9π
∫ ∫2(x2 + y2) dA =
D
D is the circle x2 + y2 ≤ 3.
Using the polar form, we get:
3
3

More Related Content

What's hot

24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinatemath267
 
26 triple integrals
26 triple integrals26 triple integrals
26 triple integralsmath267
 
28 work and line integrals
28 work and line integrals28 work and line integrals
28 work and line integralsmath267
 
23 general double integrals
23 general double integrals23 general double integrals
23 general double integralsmath267
 
22 double integrals
22 double integrals22 double integrals
22 double integralsmath267
 
4 areas in polar coordinates
4 areas in polar coordinates4 areas in polar coordinates
4 areas in polar coordinatesmath267
 
29 conservative fields potential functions
29 conservative fields potential functions29 conservative fields potential functions
29 conservative fields potential functionsmath267
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces xmath266
 
Lesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, AccelerationLesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, AccelerationMatthew Leingang
 
19 min max-saddle-points
19 min max-saddle-points19 min max-saddle-points
19 min max-saddle-pointsmath267
 
17 tangent planes and total differentials
17 tangent planes and total differentials17 tangent planes and total differentials
17 tangent planes and total differentialsmath267
 
5.4 more areas
5.4 more areas5.4 more areas
5.4 more areasmath265
 
20 the chain rule
20 the chain rule20 the chain rule
20 the chain rulemath267
 
16 partial derivatives
16 partial derivatives16 partial derivatives
16 partial derivativesmath267
 
3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus xmath266
 
18 directional derivatives and gradient
18 directional  derivatives and gradient18 directional  derivatives and gradient
18 directional derivatives and gradientmath267
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpointoaishnosaj
 

What's hot (20)

24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
 
26 triple integrals
26 triple integrals26 triple integrals
26 triple integrals
 
28 work and line integrals
28 work and line integrals28 work and line integrals
28 work and line integrals
 
23 general double integrals
23 general double integrals23 general double integrals
23 general double integrals
 
Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
 
22 double integrals
22 double integrals22 double integrals
22 double integrals
 
4 areas in polar coordinates
4 areas in polar coordinates4 areas in polar coordinates
4 areas in polar coordinates
 
29 conservative fields potential functions
29 conservative fields potential functions29 conservative fields potential functions
29 conservative fields potential functions
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
Lesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, AccelerationLesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, Acceleration
 
19 min max-saddle-points
19 min max-saddle-points19 min max-saddle-points
19 min max-saddle-points
 
17 tangent planes and total differentials
17 tangent planes and total differentials17 tangent planes and total differentials
17 tangent planes and total differentials
 
5.4 more areas
5.4 more areas5.4 more areas
5.4 more areas
 
20 the chain rule
20 the chain rule20 the chain rule
20 the chain rule
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
16 partial derivatives
16 partial derivatives16 partial derivatives
16 partial derivatives
 
3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x
 
18 directional derivatives and gradient
18 directional  derivatives and gradient18 directional  derivatives and gradient
18 directional derivatives and gradient
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
 
Analysis Solutions CVI
Analysis Solutions CVIAnalysis Solutions CVI
Analysis Solutions CVI
 

Similar to 30 surface integrals

Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienNhan Nguyen
 
math vysh.pptx
math vysh.pptxmath vysh.pptx
math vysh.pptxVyshali6
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3neenos
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arcLawrence De Vera
 
Superficies regulares planos tangentes y normales
Superficies regulares  planos tangentes y  normales Superficies regulares  planos tangentes y  normales
Superficies regulares planos tangentes y normales EDESMITCRUZ1
 
Math 2 Application of integration
Math 2 Application of integrationMath 2 Application of integration
Math 2 Application of integrationlightspeed2
 
19 General Double Integrals and Volumes.pptx
19 General Double Integrals and Volumes.pptx19 General Double Integrals and Volumes.pptx
19 General Double Integrals and Volumes.pptxmath267
 
19 General Double Integrals and Volumes.pptx
19 General Double Integrals and Volumes.pptx19 General Double Integrals and Volumes.pptx
19 General Double Integrals and Volumes.pptxmath267
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptxTabrijiIslam
 
The Calculus Crusaders Volume
The Calculus Crusaders VolumeThe Calculus Crusaders Volume
The Calculus Crusaders Volumeazn_punkyfish07
 
Introduccio al calculo vectorial
Introduccio  al calculo vectorialIntroduccio  al calculo vectorial
Introduccio al calculo vectorialEDESMITCRUZ1
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integralsmihir jain
 
Area between curves
Area between curvesArea between curves
Area between curvesjnaveena j
 
Section 6.1.pdf
Section 6.1.pdfSection 6.1.pdf
Section 6.1.pdfCalculusII
 
Transformation of random variables
Transformation of random variablesTransformation of random variables
Transformation of random variablesTarun Gehlot
 

Similar to 30 surface integrals (20)

Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bien
 
math vysh.pptx
math vysh.pptxmath vysh.pptx
math vysh.pptx
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arc
 
Double integration
Double integrationDouble integration
Double integration
 
Line integrals
Line integralsLine integrals
Line integrals
 
Superficies regulares planos tangentes y normales
Superficies regulares  planos tangentes y  normales Superficies regulares  planos tangentes y  normales
Superficies regulares planos tangentes y normales
 
Math 2 Application of integration
Math 2 Application of integrationMath 2 Application of integration
Math 2 Application of integration
 
19 General Double Integrals and Volumes.pptx
19 General Double Integrals and Volumes.pptx19 General Double Integrals and Volumes.pptx
19 General Double Integrals and Volumes.pptx
 
19 General Double Integrals and Volumes.pptx
19 General Double Integrals and Volumes.pptx19 General Double Integrals and Volumes.pptx
19 General Double Integrals and Volumes.pptx
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
 
0 calc7-1
0 calc7-10 calc7-1
0 calc7-1
 
The Calculus Crusaders Volume
The Calculus Crusaders VolumeThe Calculus Crusaders Volume
The Calculus Crusaders Volume
 
Introduccio al calculo vectorial
Introduccio  al calculo vectorialIntroduccio  al calculo vectorial
Introduccio al calculo vectorial
 
metric spaces
metric spacesmetric spaces
metric spaces
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integrals
 
Area between curves
Area between curvesArea between curves
Area between curves
 
Section 6.1.pdf
Section 6.1.pdfSection 6.1.pdf
Section 6.1.pdf
 
Transformation of random variables
Transformation of random variablesTransformation of random variables
Transformation of random variables
 

Recently uploaded

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 

Recently uploaded (20)

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 

30 surface integrals

  • 2. Surface Integrals Fact: Given a tilted parallelogram in 3D over the domain [0,1] x [0, 1]. x y z 1 1
  • 3. Surface Integrals Fact: Given a tilted parallelogram in 3D over the domain [0,1] x [0, 1]. Let M and L be the slopes in the x–direction and in the y–direction respectively, x y z 1 1
  • 4. Surface Integrals Fact: Given a tilted parallelogram in 3D over the domain [0,1] x [0, 1]. Let M and L be the slopes in the x–direction and in the y–direction respectively, x y z M 1 1
  • 5. Surface Integrals Fact: Given a tilted parallelogram in 3D over the domain [0,1] x [0, 1]. Let M and L be the slopes in the x–direction and in the y–direction respectively, 1 1 x y z M L
  • 6. Surface Integrals Fact: Given a tilted parallelogram in 3D over the domain [0,1] x [0, 1]. Let M and L be the slopes in the x–direction and in the y–direction respectively, 1 1 x y z M L L
  • 7. Surface Integrals Fact: Given a tilted parallelogram in 3D over the domain [0,1] x [0, 1]. Let M and L be the slopes in the x–direction and in the y–direction respectively, by cross product, the area of the parallelogram is M2 + L2 + 1. 1 1 x y z M L L
  • 8. Surface Integrals 1 1 x y z M L L In general, if the domain is [0,Δx] x [0, Δy] instead, then its area is M2 + L2 + 1 ΔxΔy Δx Δy x y z MΔx LΔy LΔy MΔx Fact: Given a tilted parallelogram in 3D over the domain [0,1] x [0, 1]. Let M and L be the slopes in the x–direction and in the y–direction respectively, by cross product, the area of the parallelogram is M2 + L2 + 1.
  • 9. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. x y D z=f(x,y) σ
  • 10. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. Let w(x, y ,z) be a density function over σ, i.e. w gives the density at the point (x, y, z). x y D z=f(x,y) σ
  • 11. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. Let w(x, y ,z) be a density function over σ, i.e. w gives the density at the point (x, y, z). Partition D into small rectangles ΔxΔy. This gives a partition of σ into small surface patches. x y D z=f(x,y) σ
  • 12. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. Let w(x, y ,z) be a density function over σ, i.e. w gives the density at the point (x, y, z). Partition D into small rectangles ΔxΔy. This gives a partition of σ into small surface patches. The area of the patch of surface over the rectangle containing the point (xi, yi) may be approximated by a "tile" from the tangent plane at (xi, yi ) *. x y D z=f(x,y) σ
  • 13. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. Let w(x, y ,z) be a density function over σ, i.e. w gives the density at the point (x, y, z). Partition D into small rectangles ΔxΔy. This gives a partition of σ into small surface patches. The area of the patch of surface over the rectangle containing the point (xi, yi) may be approximated by a "tile" from the tangent plane at (xi, yi ) *. x y (xi, yi, zi=f(xi,yi)) D (xi, yi) σ z=f(x,y)
  • 14. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. Let w(x, y ,z) be a density function over σ, i.e. w gives the density at the point (x, y, z). Partition D into small rectangles ΔxΔy. This gives a partition of σ into small surface patches. The area of the patch of surface over the rectangle containing the point (xi, yi) may be approximated by a "tile" from the tangent plane at (xi, yi ) *. x y (xi, yi, zi=f(xi,yi)) D (xi, yi) σ z=f(x,y) (* Note: Not all four corners of the tile might sit on the surface.)
  • 15. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. Let w(x, y ,z) be a density function over σ, i.e. w gives the density at the point (x, y, z). Partition D into small rectangles ΔxΔy. This gives a partition of σ into small surface patches. The area of the patch of surface over the rectangle containing the point (xi, yi) may be approximated by a "tile" from the tangent plane at (xi, yi ) *. x y (xi, yi, zi=f(xi,yi)) D (xi, yi) σ z=f(x,y) (* Note: Not all four corners of the tile might sit on the surface.) tile corner point on the surface
  • 16. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. Let w(x, y ,z) be a density function over σ, i.e. w gives the density at the point (x, y, z). Partition D into small rectangles ΔxΔy. This gives a partition of σ into small surface patches. The area of the patch of surface over the rectangle containing the point (xi, yi) may be approximated by a "tile" from the tangent plane at (xi, yi ) *. The area of this tile is ΔSi = x y (xi, yi, zi=f(xi,yi)) D (xi, yi) fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 σ z=f(x,y) (* Note: Not all four corners of the tile might sit on the surface.) tile corner point on the surface
  • 17. Surface Integrals Let σ be a surface defined z = f(x, y) over a domain D. Let w(x, y ,z) be a density function over σ, i.e. w gives the density at the point (x, y, z). So the mass of a typical tile is w(xi, yi, zi)ΔSi = w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 Partition D into small rectangles ΔxΔy. This gives a partition of σ into small surface patches. The area of the patch of surface over the rectangle containing the point (xi, yi) may be approximated by a "tile" from the tangent plane at (xi, yi ) *. The area of this tile is ΔSi =fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 (* Note: Not all four corners of the tile might sit on the surface.) x y (xi, yi, zi=f(xi,yi)) D (xi, yi) σ z=f(x,y) tile corner point on the surface
  • 18. Surface Integrals Hence the total mass of the surface σ over D is M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 lim Δx0 lim Δy0
  • 19. Surface Integrals Hence the total mass of the surface σ over D is M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 lim Δx0 lim Δy0 = ∫D ∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx 2 2 to be replaced by f(x,y)
  • 20. Surface Integrals Hence the total mass of the surface σ over D is M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 lim Δx0 lim Δy0 = ∫D ∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx 2 2 to be replaced by f(x,y) Let the σ be the surface, we write this integral as ∫σ ∫ w(x, y, z) dS with z = f(x, y)
  • 21. Surface Integrals Hence the total mass of the surface σ over D is M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 lim Δx0 lim Δy0 = ∫D ∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx 2 2 to be replaced by f(x,y) Let the σ be the surface, we write this integral as ∫σ ∫ w(x, y, z) dS with dS =fx(x, y)+fy(x, y)+1 dA, i.e. dxdy or dydx. 2 2 with z = f(x, y)
  • 22. Surface Integrals Hence the total mass of the surface σ over D is M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 lim Δx0 lim Δy0 = ∫D ∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx 2 2 to be replaced by f(x,y) Let the σ be the surface, we write this integral as ∫σ ∫ w(x, y, z) dS with dS =fx(x, y)+fy(x, y)+1 dA, i.e. dxdy or dydx. dS is called the surface differential. Often it’s easier to visualized a surface integral problem as the sum over dS–the areas of the small surface patches on σ, 2 2 with z = f(x, y)
  • 23. Surface Integrals Hence the total mass of the surface σ over D is M = Σ w(xi, yi, zi)fx(xi, yi)+fy(xi, yi)+1 ΔxΔy 2 2 lim Δx0 lim Δy0 = ∫D ∫ w(x, y , z)fx(x, y)+fy(x, y)+1 dxdy or dydx 2 2 to be replaced by f(x,y) Let the σ be the surface, we write this integral as ∫σ ∫ w(x, y, z) dS with dS =fx(x, y)+fy(x, y)+1 dA, i.e. dxdy or dydx. dS is called the surface differential. Often it’s easier to visualized a surface integral problem as the sum over dS–the areas of the small surface patches on σ, but for the actual calculation, we need convert dS to the dA–integral over the flat domain D. 2 2 with z = f(x, y)
  • 24. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass.
  • 25. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. x y 1 1 D σ 1
  • 26. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. z = 1 – x – y on the surface σ. x y 1 1 D σ 1
  • 27. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. z = 1 – x – y on the surface σ. Therefore w(x, y, z) = xz = x(1 – x – y). x y 1 1 D σ 1
  • 28. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. z = 1 – x – y on the surface σ. Therefore w(x, y, z) = xz = x(1 – x – y). zx = –1, zy = –1, x y 1 1 D σ 1
  • 29. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. z = 1 – x – y on the surface σ. Therefore w(x, y, z) = xz = x(1 – x – y). zx = –1, zy = –1, so dS = 12 + 12 + 1 dA x y 1 1 D σ 1
  • 30. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. z = 1 – x – y on the surface σ. Therefore w(x, y, z) = xz = x(1 – x – y). zx = –1, zy = –1, so dS = 12 + 12 + 1 dA = 3 dA x y 1 1 D σ 1
  • 31. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. So the mass = ∫σ ∫w(x, y , z) dS = z = 1 – x – y on the surface σ. Therefore w(x, y, z) = xz = x(1 – x – y). zx = –1, zy = –1, so dS = 12 + 12 + 1 dA = 3 dA x y 1 1 D σ 1
  • 32. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. So the mass = ∫σ ∫w(x, y , z) dS = z = 1 – x – y on the surface σ. Therefore w(x, y, z) = xz = x(1 – x – y). zx = –1, zy = –1, so dS = 12 + 12 + 1 dA = 3 dA ∫ D ∫x(1 – x – y)3 dA x y 1 1 D σ 1
  • 33. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. So the mass = ∫σ ∫w(x, y , z) dS = z = 1 – x – y on the surface σ. Therefore w(x, y, z) = xz = x(1 – x – y). zx = –1, zy = –1, so dS = 12 + 12 + 1 dA = 3 dA ∫ D ∫x(1 – x – y)3 dA =∫ x=0 ∫x(1 – x – y)3 dydx = 1 y=0 1–x x y 1 1 D σ 1
  • 34. Surface Integrals Example A. Given w(x, y, z) = xz be the density function over the surface x + y + z = 1 in the first octant, find its mass. So the mass = ∫σ ∫w(x, y , z) dS = z = 1 – x – y on the surface σ. Therefore w(x, y, z) = xz = x(1 – x – y). zx = –1, zy = –1, so dS = 12 + 12 + 1 dA = 3 dA ∫ D ∫x(1 – x – y)3 dA =∫ x=0 ∫x(1 – x – y)3 dydx = 1 y=0 1–x 3/24 x y 1 1 D σ 1
  • 35. Surface Integrals Example B. Find the surface integral ∫ ∫(x2 + y2)z dS σ x2 + y2 + z2 = 4 above the plane z = 1 where σ is the portion of the sphere
  • 36. Surface Integrals Example B. Find the surface integral ∫ ∫(x2 + y2)z dS σ x2 + y2 + z2 = 4 above the plane z = 1 where σ is the portion of the sphere σ D
  • 37. Surface Integrals Example B. Find the surface integral z = 4 – x2 – y2 ∫ ∫(x2 + y2)z dS σ x2 + y2 + z2 = 4 above the plane z = 1 where σ is the portion of the sphere σ D
  • 38. Surface Integrals Example B. Find the surface integral z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2. ∫ ∫(x2 + y2)z dS σ x2 + y2 + z2 = 4 above the plane z = 1 where σ is the portion of the sphere σ D
  • 39. Surface Integrals Example B. Find the surface integral z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2. ∫ ∫(x2 + y2)z dS σ x2 + y2 + z2 = 4 above the plane z = 1 where σ is the portion of the sphere zx = 4 – x2 – y2 zx = –x 4 – x2 – y2 zy = –y σ D
  • 40. Surface Integrals Example B. Find the surface integral z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2. ∫ ∫(x2 + y2)z dS σ x2 + y2 + z2 = 4 above the plane z = 1 where σ is the portion of the sphere zx = 4 – x2 – y2 zx = –x 4 – x2 – y2 zy = –y zx + zy + 1 = 2 2 4 – x2 – y2 4 σ D
  • 41. Surface Integrals Example B. Find the surface integral z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2. ∫ ∫(x2 + y2)z dS σ x2 + y2 + z2 = 4 above the plane z = 1 where σ is the portion of the sphere zx = So dS =  4 – x2 – y2 zx = –x 4 – x2 – y2 zy = –y zx + zy + 1 = 2 2 4 – x2 – y2 4 zx + zy + 1 2 2 σ D dA
  • 42. Surface Integrals Example B. Find the surface integral z = 4 – x2 – y2 so (x2 + y2)z = (x2 + y2)4 – x2 – y2. ∫ ∫(x2 + y2)z dS σ x2 + y2 + z2 = 4 above the plane z = 1 where σ is the portion of the sphere zx = So dS =  4 – x2 – y2 zx = –x 4 – x2 – y2 zy = –y zx + zy + 1 = 2 2 4 – x2 – y2 4  4 – x2 – y2 2 zx + zy + 1 2 2 = dA σ D dA
  • 43. Surface Integrals The integrand = (x2 + y2)4 – x2 – y2 *  4 – x2 – y2 2 (x2 + y2)z dS is dA
  • 44. Surface Integrals The integrand = (x2 + y2)4 – x2 – y2 *  4 – x2 – y2 2 (x2 + y2)z dS is dA = 2(x2 + y2)dA,
  • 45. Surface Integrals The integrand = (x2 + y2)4 – x2 – y2 *  4 – x2 – y2 2 (x2 + y2)z dS is dA = 2(x2 + y2)dA, integrated over the domain D of σ.
  • 46. Surface Integrals The integrand = (x2 + y2)4 – x2 – y2 *  4 – x2 – y2 2 (x2 + y2)z dS is dA = 2(x2 + y2)dA, integrated over the domain D of σ. D is the circle x2 + y2 ≤ 3. Using the polar form, we get:
  • 47. Surface Integrals The integrand = (x2 + y2)4 – x2 – y2 *  4 – x2 – y2 2 (x2 + y2)z dS is dA = 2(x2 + y2)dA, integrated over the domain D of σ. ∫σ ∫w(x, y , z) dS = ∫ ∫2(x2 + y2) dA = D D is the circle x2 + y2 ≤ 3. Using the polar form, we get:
  • 48. Surface Integrals The integrand = (x2 + y2)4 – x2 – y2 *  4 – x2 – y2 2 (x2 + y2)z dS is dA = 2(x2 + y2)dA, integrated over the domain D of σ. ∫σ ∫w(x, y , z) dS = ∫ ∫ 2r2 * rdrd r=0 3 =0 2π ∫ ∫2(x2 + y2) dA = D D is the circle x2 + y2 ≤ 3. Using the polar form, we get:
  • 49. Surface Integrals The integrand = (x2 + y2)4 – x2 – y2 *  4 – x2 – y2 2 (x2 + y2)z dS is dA = 2(x2 + y2)dA, integrated over the domain D of σ. ∫σ ∫w(x, y , z) dS = ∫ ∫ 2r2 * rdrd r=0 =0 2π ∫ ∫ 2r3 dr r=0 =0 2π = d * ∫ ∫2(x2 + y2) dA = D D is the circle x2 + y2 ≤ 3. Using the polar form, we get: 3 3
  • 50. Surface Integrals The integrand = (x2 + y2)4 – x2 – y2 *  4 – x2 – y2 2 (x2 + y2)z dS is dA = 2(x2 + y2)dA, integrated over the domain D of σ. ∫σ ∫w(x, y , z) dS = ∫ ∫ 2r2 * rdrd r=0 =0 2π ∫ ∫ 2r3 dr r=0 =0 2π = d * = 2π* 9/2 = 9π ∫ ∫2(x2 + y2) dA = D D is the circle x2 + y2 ≤ 3. Using the polar form, we get: 3 3