Eigen Values by Jacobi Method
by
Dr. Rajendra N. Khapre
Civil Engineering Department
Shri Ramdeobaba College of Engineering and
Management, Nagpur
In the Jacobi method, the given matrix is converted to a diagonal
matrix. The diagonal elements of this diagonal matrix are nothing
but the Eigen values. In order to convert the given matrix into
diagonal matrix, transformation method is used. In this method, the
given matrix is multiplied by orthogonal matrix in the following
fashion
Eigen Values by Jacobi Method
]
[P
]
][
][
[
]
[ 1
1
1 P
A
P
A
T

Here is the orthogonal matrix such that . The shape of
this matrix depends on the element of matrix that has to be
transformed. For instance, matrix is of size and we wish to
reduce its element to zero, then the matrix will be as follows
]
[ 1
P
1
1
1 ]
[
]
[ 
 P
P
T
]
[A
]
[A 3
3
12
a ]
[ 1
P









 

1
0
0
0
cos
sin
1
sin
cos
]
[ 1 



P
Eigen Values by Jacobi Method
Once matrix is obtained, it will contain elements involving terms
like and . The unknown entity can be obtained by
equating the term at location with zero. After substituting the
value of in matrices and , we get them in their numerical
form.
This process transformation continues for all non-diagonal elements.
Newly generated matrix is used for further calculations. In order
to convert element to zero, following expression is used.
Where
]
[ 1
A

cos 
sin 
12
a
 ]
[ 1
A ]
[ 1
P
]
[ 1
A
13
a
]
][
][
[
]
[ 2
1
2
2 P
A
P
A
T










 

1
0
0
cos
sin
0
sin
cos
1
]
[ 2 



P
Eigen Values by Jacobi Method
Once transformation of all non-diagonal elements is over, matrix
becomes a diagonal matrix. The diagonal elements of this matrix are
the Eigen values. To compute their corresponding Eigen vectors,
product of matrices , , , … is obtained. For matrix of
size , six transformation matrices are required in order to convert
it to a diagonal element. Hence we need to find the product of
The matrix will be of size . Each column of this matrix
represents the Eigen vector corresponding to the Eigen value belongs
to the same column in matrix .
]
[A
]
[ 1
P ]
[ 2
P ]
[ 3
P ]
[A
3
3
]
][
][
][
][
][
[
]
[ 6
5
4
3
2
1 P
P
P
P
P
P
P 
]
[P 3
3
]
[A
Eigen Values by Jacobi Method
Problem
Find out the Eigen values and Eigen vectors for the following matrix
using Jacobi method
Solution
In the Jacobi method, the given matrix must be converted into a
diagonal matrix. This process is sequential and hence converting the
first element of matrix to zero.















2
1
0
1
2
1
0
1
2
]
[A
12
a ]
[A
Eigen Values by Jacobi Method
Step 1: Converting
where
Above equation becomes
0
12 
a
]
][
][
[
]
[ 1
1
1 P
A
P
A
T










 

1
0
0
0
cos
sin
0
sin
cos
]
[ 1 



P









 


























1
0
0
0
cos
sin
0
sin
cos
2
1
0
1
2
1
0
1
2
1
0
0
0
cos
sin
0
sin
cos
]
[ 1 







A









 




















1
0
0
0
cos
sin
0
sin
cos
2
1
0
cos
cos
2
sin
cos
sin
2
sin
sin
2
cos
sin
cos
2
]
[ 1 













A
Eigen Values by Jacobi Method





























2
cos
sin
cos
cos
2
cos
sin
cos
sin
sin
2
cos
sin
2
sin
cos
cos
sin
2
sin
cos
sin
2
cos
sin
cos
sin
2
sin
2
cos
sin
cos
sin
cos
2
]
[ 2
2
2
2
2
2
2
2
1




























A





 cos
sin
2
cos
sin
cos
sin
2
0 2
2
12 





a
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form
 45


]
[ 1
A















2
7071
.
0
7071
.
0
7071
.
0
3
0
7071
.
0
0
1
]
[ 1
A
]
[ 1
P









 

1
0
0
0
7071
.
0
7071
.
0
0
7071
.
0
7071
.
0
]
[ 1
P
Eigen Values by Jacobi Method
Step 2: Converting
where
Above equation becomes
0
13 
a
]
][
][
[
]
[ 2
1
2
2 P
A
P
A
T










 





cos
0
sin
0
1
0
sin
0
cos
]
[ 2
P









 


































cos
0
sin
0
1
0
sin
0
cos
2
7071
.
0
7071
.
0
7071
.
0
3
0
7071
.
0
0
1
cos
0
sin
0
1
0
sin
0
cos
]
[ 2
A









 


































cos
0
sin
0
1
0
sin
0
cos
cos
2
sin
7071
.
0
cos
7071
.
0
cos
7071
.
0
sin
7071
.
0
3
0
sin
2
cos
7071
.
0
sin
7071
.
0
sin
7071
.
0
cos
]
[ 2
A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 2
A
]
[ 2
P

























































2
2
2
2
2
2
2
2
2
cos
2
cos
sin
7071
.
0
cos
sin
7071
.
0
sin
cos
7071
.
0
cos
sin
2
sin
7071
.
0
cos
7071
.
0
cos
sin
cos
7071
.
0
3
sin
7071
.
0
cos
sin
2
cos
7071
.
0
sin
7071
.
0
cos
sin
sin
7071
.
0
sin
2
cos
sin
7071
.
0
cos
sin
7071
.
0
cos
]
[A





 cos
sin
2
cos
7071
.
0
sin
7071
.
0
cos
sin
0 2
2
13 





a
367
.
27

















366
.
2
628
.
0
0
628
.
0
3
325
.
0
0
325
.
0
634
.
0
]
[ 2
A









 

888
.
0
0
459
.
0
0
1
0
459
.
0
0
888
.
0
]
[ 2
P
Eigen Values by Jacobi Method
Step 3: Converting
where
Above equation becomes
0
23 
a
]
][
][
[
]
[ 3
2
3
3 P
A
P
A
T

















cos
sin
0
sin
cos
0
0
0
1
]
[ 3
P













































cos
sin
0
sin
cos
0
0
0
1
366
.
2
628
.
0
0
628
.
0
3
325
.
0
0
325
.
0
634
.
0
cos
sin
0
sin
cos
0
0
0
1
]
[ 3
A












































cos
sin
0
sin
cos
0
0
0
1
cos
366
.
2
sin
628
.
0
cos
628
.
0
sin
3
sin
325
.
0
sin
366
.
2
cos
628
.
0
sin
628
.
0
cos
3
cos
325
.
0
0
325
.
0
634
.
0
]
[ 3
A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 3
A
]
[ 3
P























































2
2
2
2
2
2
2
2
3
cos
366
.
2
cos
sin
628
.
0
cos
sin
628
.
0
sin
3
cos
sin
366
.
2
sin
628
.
0
cos
628
.
0
cos
sin
3
sin
325
.
0
cos
sin
366
.
2
cos
628
.
0
sin
628
.
0
cos
sin
3
sin
366
.
2
cos
sin
628
.
0
cos
sin
628
.
0
cos
3
cos
325
.
0
sin
325
.
0
cos
325
.
0
634
.
0
]
[A





 cos
sin
366
.
2
cos
628
.
0
sin
628
.
0
cos
sin
3
0 2
2
23 





a
392
.
58















386
.
3
0
277
.
0
0
979
.
1
170
.
0
277
.
0
170
.
0
634
.
0
]
[ 3
A












524
.
0
851
.
0
0
851
.
0
524
.
0
0
0
0
1
]
[ 3
P
Eigen Values by Jacobi Method
Step 4: Converting
where
Above equation becomes
0
21 
a
]
][
][
[
]
[ 4
3
4
4 P
A
P
A
T













1
0
0
0
cos
sin
0
sin
cos
]
[ 4 



P
































 

1
0
0
0
cos
sin
0
sin
cos
386
.
3
0
277
.
0
0
979
.
1
170
.
0
277
.
0
170
.
0
634
.
0
1
0
0
0
cos
sin
0
sin
cos
]
[ 4 







A




























1
0
0
0
cos
sin
0
sin
cos
386
.
3
0
277
.
0
sin
277
.
0
cos
979
.
1
sin
17
.
0
cos
170
.
0
sin
634
.
0
cos
277
.
0
sin
979
.
1
cos
170
.
0
sin
170
.
0
cos
634
.
0
]
[ 4 













A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 4
A
]
[ 4
P























386
.
3
sin
277
.
0
cos
277
.
0
sin
277
.
0
cos
979
.
1
cos
sin
17
.
0
cos
sin
17
.
0
sin
634
.
0
cos
sin
979
.
1
sin
17
.
0
cos
170
.
0
cos
sin
634
.
0
cos
277
.
0
cos
sin
979
.
1
cos
17
.
0
sin
17
.
0
cos
sin
634
.
0
sin
979
.
1
cos
sin
17
.
0
cos
sin
17
.
0
cos
634
.
0
]
[ 2
2
2
2
2
2
2
2
4




























A





 cos
sin
979
.
1
sin
17
.
0
cos
170
.
0
cos
sin
634
.
0
0 2
2
21 




a
738
.
93













386
.
3
275
.
0
034
.
0
275
.
0
613
.
0
0
034
.
0
0
2
]
[ 4
A












1
0
0
0
123
.
0
992
.
0
0
992
.
0
123
.
0
]
[ 4
P
Eigen Values by Jacobi Method
Step 5: Converting
where
Above equation becomes
0
31 
a
]
][
][
[
]
[ 5
4
5
5 P
A
P
A
T

















cos
0
sin
0
1
0
sin
0
cos
]
[ 5
P






























 









cos
0
sin
0
1
0
sin
0
cos
386
.
3
275
.
0
034
.
0
275
.
0
613
.
0
0
034
.
0
0
2
cos
0
sin
0
1
0
sin
0
cos
]
[ 5
A









































cos
0
sin
0
1
0
sin
0
cos
cos
386
.
3
sin
034
.
0
cos
275
.
0
cos
034
.
0
sin
2
275
.
0
613
.
0
0
sin
386
.
3
cos
034
.
0
sin
275
.
0
sin
034
.
0
cos
2
]
[ 5
A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 5
A
]
[ 5
P





















































2
2
2
2
2
2
2
2
5
cos
386
.
3
cos
sin
034
.
0
cos
sin
034
.
0
sin
2
cos
275
.
0
cos
sin
386
.
3
sin
034
.
0
cos
034
.
0
cos
sin
2
cos
275
.
0
613
.
0
sin
275
.
0
cos
sin
386
.
3
cos
034
.
0
sin
034
.
0
cos
sin
2
sin
275
.
0
sin
386
.
3
cos
sin
034
.
0
cos
sin
034
.
0
cos
2
]
[A





 cos
sin
386
.
3
sin
034
.
0
cos
034
.
0
cos
sin
2
0 2
2
31 




a
4044
.
1













387
.
3
275
.
0
0
275
.
0
613
.
0
0
0
0
2
]
[ 5
A












999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
]
[ 5
P
Eigen Values by Jacobi Method
Step 6: Converting
where
Above equation becomes
0
32 
a
]
][
][
[
]
[ 6
5
6
6 P
A
P
A
T

















cos
sin
0
sin
cos
0
0
0
1
]
[ 6
P









































cos
sin
0
sin
cos
0
0
0
1
387
.
3
275
.
0
0
275
.
0
613
.
0
0
0
0
2
cos
sin
0
sin
cos
0
0
0
1
]
[ 6
A






































cos
sin
0
sin
cos
0
0
0
1
cos
387
.
3
sin
275
.
0
cos
275
.
0
sin
613
.
0
0
sin
387
.
3
cos
275
.
0
sin
275
.
0
cos
613
.
0
0
0
0
2
]
[ 6
A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 6
A
]
[ 6
P















































2
2
2
2
2
2
2
2
6
cos
387
.
3
cos
sin
275
.
0
cos
sin
275
.
0
sin
613
.
0
cos
sin
387
.
3
sin
275
.
0
cos
275
.
0
cos
sin
613
.
0
0
cos
sin
387
.
3
cos
275
.
0
sin
275
.
0
cos
sin
613
.
0
sin
387
.
3
cos
sin
275
.
0
cos
sin
275
.
0
cos
613
.
0
0
0
0
2
]
[A





 cos
sin
387
.
3
sin
275
.
0
cos
275
.
0
cos
sin
613
.
0
0 2
2
32 




a
4044
.
1













414
.
3
0
0
0
586
.
0
0
0
0
2
]
[ 6
A












995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
]
[ 6
P
Now, the given matrix has been converted to the diagonal matrix.
The diagonal elements of this matrix are nothing but the Eigen
values. To find out their respective Eigen vectors, we need to
compute
Eigen Values by Jacobi Method
]
[A
]
][
][
][
][
][
[
]
[ 6
5
4
3
2
1 P
P
P
P
P
P
P 





















































 









 

995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
1
0
0
0
123
.
0
992
.
0
0
992
.
0
123
.
0
524
.
0
851
.
0
0
851
.
0
524
.
0
0
0
0
1
888
.
0
0
459
.
0
0
1
0
459
.
0
0
888
.
0
1
0
0
0
7071
.
0
7071
.
0
0
7071
.
0
7071
.
0
]
[P


























































995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
1
0
0
0
123
.
0
992
.
0
0
992
.
0
123
.
0
524
.
0
851
.
0
0
851
.
0
524
.
0
0
0
0
1
8880
.
0
0
4590
.
0
3246
.
0
7071
.
0
6279
.
0
3246
.
0
7071
.
0
6279
.
0
]
[P














































995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
1
0
0
0
123
.
0
992
.
0
0
992
.
0
123
.
0
4653
.
0
7557
.
0
4590
.
0
7718
.
0
0943
.
0
6279
.
0
4317
.
0
6467
.
0
6279
.
0
]
[P
The Eigen vectors for the Eigen values are the elements in each
columns of matrix .
Hence for the given matrix Eigen values are found out to be 2, 0.586,
3.414.
Eigen Values by Jacobi Method




































995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
4653
.
0
5483
.
0
6932
.
0
7718
.
0
6345
.
0
0163
.
0
4317
.
0
5433
.
0
7188
.
0
]
[P
























995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
4475
.
0
5483
.
0
7041
.
0
7714
.
0
6345
.
0
0030
.
0
4492
.
0
5433
.
0
7073
.
0
]
[P













4990
.
0
5017
.
0
7041
.
0
7054
.
0
7069
.
0
0030
.
0
5002
.
0
4966
.
0
7073
.
0
]
[P
]
[P
Eigen Values by Jacobi Method
Problem
Find out the Eigen values and Eigen vectors for the following
matrices using Jacobi method
1)
2)







8
6
6
3
]
[A







6
2
2
3
]
[A

Eigen Values Jocobi Method.ppt

  • 1.
    Eigen Values byJacobi Method by Dr. Rajendra N. Khapre Civil Engineering Department Shri Ramdeobaba College of Engineering and Management, Nagpur
  • 2.
    In the Jacobimethod, the given matrix is converted to a diagonal matrix. The diagonal elements of this diagonal matrix are nothing but the Eigen values. In order to convert the given matrix into diagonal matrix, transformation method is used. In this method, the given matrix is multiplied by orthogonal matrix in the following fashion Eigen Values by Jacobi Method ] [P ] ][ ][ [ ] [ 1 1 1 P A P A T  Here is the orthogonal matrix such that . The shape of this matrix depends on the element of matrix that has to be transformed. For instance, matrix is of size and we wish to reduce its element to zero, then the matrix will be as follows ] [ 1 P 1 1 1 ] [ ] [   P P T ] [A ] [A 3 3 12 a ] [ 1 P             1 0 0 0 cos sin 1 sin cos ] [ 1     P
  • 3.
    Eigen Values byJacobi Method Once matrix is obtained, it will contain elements involving terms like and . The unknown entity can be obtained by equating the term at location with zero. After substituting the value of in matrices and , we get them in their numerical form. This process transformation continues for all non-diagonal elements. Newly generated matrix is used for further calculations. In order to convert element to zero, following expression is used. Where ] [ 1 A  cos  sin  12 a  ] [ 1 A ] [ 1 P ] [ 1 A 13 a ] ][ ][ [ ] [ 2 1 2 2 P A P A T              1 0 0 cos sin 0 sin cos 1 ] [ 2     P
  • 4.
    Eigen Values byJacobi Method Once transformation of all non-diagonal elements is over, matrix becomes a diagonal matrix. The diagonal elements of this matrix are the Eigen values. To compute their corresponding Eigen vectors, product of matrices , , , … is obtained. For matrix of size , six transformation matrices are required in order to convert it to a diagonal element. Hence we need to find the product of The matrix will be of size . Each column of this matrix represents the Eigen vector corresponding to the Eigen value belongs to the same column in matrix . ] [A ] [ 1 P ] [ 2 P ] [ 3 P ] [A 3 3 ] ][ ][ ][ ][ ][ [ ] [ 6 5 4 3 2 1 P P P P P P P  ] [P 3 3 ] [A
  • 5.
    Eigen Values byJacobi Method Problem Find out the Eigen values and Eigen vectors for the following matrix using Jacobi method Solution In the Jacobi method, the given matrix must be converted into a diagonal matrix. This process is sequential and hence converting the first element of matrix to zero.                2 1 0 1 2 1 0 1 2 ] [A 12 a ] [A
  • 6.
    Eigen Values byJacobi Method Step 1: Converting where Above equation becomes 0 12  a ] ][ ][ [ ] [ 1 1 1 P A P A T              1 0 0 0 cos sin 0 sin cos ] [ 1     P                                      1 0 0 0 cos sin 0 sin cos 2 1 0 1 2 1 0 1 2 1 0 0 0 cos sin 0 sin cos ] [ 1         A                                1 0 0 0 cos sin 0 sin cos 2 1 0 cos cos 2 sin cos sin 2 sin sin 2 cos sin cos 2 ] [ 1               A
  • 7.
    Eigen Values byJacobi Method                              2 cos sin cos cos 2 cos sin cos sin sin 2 cos sin 2 sin cos cos sin 2 sin cos sin 2 cos sin cos sin 2 sin 2 cos sin cos sin cos 2 ] [ 2 2 2 2 2 2 2 2 1                             A       cos sin 2 cos sin cos sin 2 0 2 2 12       a Solving above equation for , we get Hence matrix takes following form and matrix takes following form  45   ] [ 1 A                2 7071 . 0 7071 . 0 7071 . 0 3 0 7071 . 0 0 1 ] [ 1 A ] [ 1 P             1 0 0 0 7071 . 0 7071 . 0 0 7071 . 0 7071 . 0 ] [ 1 P
  • 8.
    Eigen Values byJacobi Method Step 2: Converting where Above equation becomes 0 13  a ] ][ ][ [ ] [ 2 1 2 2 P A P A T                  cos 0 sin 0 1 0 sin 0 cos ] [ 2 P                                              cos 0 sin 0 1 0 sin 0 cos 2 7071 . 0 7071 . 0 7071 . 0 3 0 7071 . 0 0 1 cos 0 sin 0 1 0 sin 0 cos ] [ 2 A                                              cos 0 sin 0 1 0 sin 0 cos cos 2 sin 7071 . 0 cos 7071 . 0 cos 7071 . 0 sin 7071 . 0 3 0 sin 2 cos 7071 . 0 sin 7071 . 0 sin 7071 . 0 cos ] [ 2 A
  • 9.
    Eigen Values byJacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 2 A ] [ 2 P                                                          2 2 2 2 2 2 2 2 2 cos 2 cos sin 7071 . 0 cos sin 7071 . 0 sin cos 7071 . 0 cos sin 2 sin 7071 . 0 cos 7071 . 0 cos sin cos 7071 . 0 3 sin 7071 . 0 cos sin 2 cos 7071 . 0 sin 7071 . 0 cos sin sin 7071 . 0 sin 2 cos sin 7071 . 0 cos sin 7071 . 0 cos ] [A       cos sin 2 cos 7071 . 0 sin 7071 . 0 cos sin 0 2 2 13       a 367 . 27                  366 . 2 628 . 0 0 628 . 0 3 325 . 0 0 325 . 0 634 . 0 ] [ 2 A             888 . 0 0 459 . 0 0 1 0 459 . 0 0 888 . 0 ] [ 2 P
  • 10.
    Eigen Values byJacobi Method Step 3: Converting where Above equation becomes 0 23  a ] ][ ][ [ ] [ 3 2 3 3 P A P A T                  cos sin 0 sin cos 0 0 0 1 ] [ 3 P                                              cos sin 0 sin cos 0 0 0 1 366 . 2 628 . 0 0 628 . 0 3 325 . 0 0 325 . 0 634 . 0 cos sin 0 sin cos 0 0 0 1 ] [ 3 A                                             cos sin 0 sin cos 0 0 0 1 cos 366 . 2 sin 628 . 0 cos 628 . 0 sin 3 sin 325 . 0 sin 366 . 2 cos 628 . 0 sin 628 . 0 cos 3 cos 325 . 0 0 325 . 0 634 . 0 ] [ 3 A
  • 11.
    Eigen Values byJacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 3 A ] [ 3 P                                                        2 2 2 2 2 2 2 2 3 cos 366 . 2 cos sin 628 . 0 cos sin 628 . 0 sin 3 cos sin 366 . 2 sin 628 . 0 cos 628 . 0 cos sin 3 sin 325 . 0 cos sin 366 . 2 cos 628 . 0 sin 628 . 0 cos sin 3 sin 366 . 2 cos sin 628 . 0 cos sin 628 . 0 cos 3 cos 325 . 0 sin 325 . 0 cos 325 . 0 634 . 0 ] [A       cos sin 366 . 2 cos 628 . 0 sin 628 . 0 cos sin 3 0 2 2 23       a 392 . 58                386 . 3 0 277 . 0 0 979 . 1 170 . 0 277 . 0 170 . 0 634 . 0 ] [ 3 A             524 . 0 851 . 0 0 851 . 0 524 . 0 0 0 0 1 ] [ 3 P
  • 12.
    Eigen Values byJacobi Method Step 4: Converting where Above equation becomes 0 21  a ] ][ ][ [ ] [ 4 3 4 4 P A P A T              1 0 0 0 cos sin 0 sin cos ] [ 4     P                                    1 0 0 0 cos sin 0 sin cos 386 . 3 0 277 . 0 0 979 . 1 170 . 0 277 . 0 170 . 0 634 . 0 1 0 0 0 cos sin 0 sin cos ] [ 4         A                             1 0 0 0 cos sin 0 sin cos 386 . 3 0 277 . 0 sin 277 . 0 cos 979 . 1 sin 17 . 0 cos 170 . 0 sin 634 . 0 cos 277 . 0 sin 979 . 1 cos 170 . 0 sin 170 . 0 cos 634 . 0 ] [ 4               A
  • 13.
    Eigen Values byJacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 4 A ] [ 4 P                        386 . 3 sin 277 . 0 cos 277 . 0 sin 277 . 0 cos 979 . 1 cos sin 17 . 0 cos sin 17 . 0 sin 634 . 0 cos sin 979 . 1 sin 17 . 0 cos 170 . 0 cos sin 634 . 0 cos 277 . 0 cos sin 979 . 1 cos 17 . 0 sin 17 . 0 cos sin 634 . 0 sin 979 . 1 cos sin 17 . 0 cos sin 17 . 0 cos 634 . 0 ] [ 2 2 2 2 2 2 2 2 4                             A       cos sin 979 . 1 sin 17 . 0 cos 170 . 0 cos sin 634 . 0 0 2 2 21      a 738 . 93              386 . 3 275 . 0 034 . 0 275 . 0 613 . 0 0 034 . 0 0 2 ] [ 4 A             1 0 0 0 123 . 0 992 . 0 0 992 . 0 123 . 0 ] [ 4 P
  • 14.
    Eigen Values byJacobi Method Step 5: Converting where Above equation becomes 0 31  a ] ][ ][ [ ] [ 5 4 5 5 P A P A T                  cos 0 sin 0 1 0 sin 0 cos ] [ 5 P                                          cos 0 sin 0 1 0 sin 0 cos 386 . 3 275 . 0 034 . 0 275 . 0 613 . 0 0 034 . 0 0 2 cos 0 sin 0 1 0 sin 0 cos ] [ 5 A                                          cos 0 sin 0 1 0 sin 0 cos cos 386 . 3 sin 034 . 0 cos 275 . 0 cos 034 . 0 sin 2 275 . 0 613 . 0 0 sin 386 . 3 cos 034 . 0 sin 275 . 0 sin 034 . 0 cos 2 ] [ 5 A
  • 15.
    Eigen Values byJacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 5 A ] [ 5 P                                                      2 2 2 2 2 2 2 2 5 cos 386 . 3 cos sin 034 . 0 cos sin 034 . 0 sin 2 cos 275 . 0 cos sin 386 . 3 sin 034 . 0 cos 034 . 0 cos sin 2 cos 275 . 0 613 . 0 sin 275 . 0 cos sin 386 . 3 cos 034 . 0 sin 034 . 0 cos sin 2 sin 275 . 0 sin 386 . 3 cos sin 034 . 0 cos sin 034 . 0 cos 2 ] [A       cos sin 386 . 3 sin 034 . 0 cos 034 . 0 cos sin 2 0 2 2 31      a 4044 . 1              387 . 3 275 . 0 0 275 . 0 613 . 0 0 0 0 2 ] [ 5 A             999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 ] [ 5 P
  • 16.
    Eigen Values byJacobi Method Step 6: Converting where Above equation becomes 0 32  a ] ][ ][ [ ] [ 6 5 6 6 P A P A T                  cos sin 0 sin cos 0 0 0 1 ] [ 6 P                                          cos sin 0 sin cos 0 0 0 1 387 . 3 275 . 0 0 275 . 0 613 . 0 0 0 0 2 cos sin 0 sin cos 0 0 0 1 ] [ 6 A                                       cos sin 0 sin cos 0 0 0 1 cos 387 . 3 sin 275 . 0 cos 275 . 0 sin 613 . 0 0 sin 387 . 3 cos 275 . 0 sin 275 . 0 cos 613 . 0 0 0 0 2 ] [ 6 A
  • 17.
    Eigen Values byJacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 6 A ] [ 6 P                                                2 2 2 2 2 2 2 2 6 cos 387 . 3 cos sin 275 . 0 cos sin 275 . 0 sin 613 . 0 cos sin 387 . 3 sin 275 . 0 cos 275 . 0 cos sin 613 . 0 0 cos sin 387 . 3 cos 275 . 0 sin 275 . 0 cos sin 613 . 0 sin 387 . 3 cos sin 275 . 0 cos sin 275 . 0 cos 613 . 0 0 0 0 2 ] [A       cos sin 387 . 3 sin 275 . 0 cos 275 . 0 cos sin 613 . 0 0 2 2 32      a 4044 . 1              414 . 3 0 0 0 586 . 0 0 0 0 2 ] [ 6 A             995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 ] [ 6 P
  • 18.
    Now, the givenmatrix has been converted to the diagonal matrix. The diagonal elements of this matrix are nothing but the Eigen values. To find out their respective Eigen vectors, we need to compute Eigen Values by Jacobi Method ] [A ] ][ ][ ][ ][ ][ [ ] [ 6 5 4 3 2 1 P P P P P P P                                                                     995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 1 0 0 0 123 . 0 992 . 0 0 992 . 0 123 . 0 524 . 0 851 . 0 0 851 . 0 524 . 0 0 0 0 1 888 . 0 0 459 . 0 0 1 0 459 . 0 0 888 . 0 1 0 0 0 7071 . 0 7071 . 0 0 7071 . 0 7071 . 0 ] [P                                                           995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 1 0 0 0 123 . 0 992 . 0 0 992 . 0 123 . 0 524 . 0 851 . 0 0 851 . 0 524 . 0 0 0 0 1 8880 . 0 0 4590 . 0 3246 . 0 7071 . 0 6279 . 0 3246 . 0 7071 . 0 6279 . 0 ] [P                                               995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 1 0 0 0 123 . 0 992 . 0 0 992 . 0 123 . 0 4653 . 0 7557 . 0 4590 . 0 7718 . 0 0943 . 0 6279 . 0 4317 . 0 6467 . 0 6279 . 0 ] [P
  • 19.
    The Eigen vectorsfor the Eigen values are the elements in each columns of matrix . Hence for the given matrix Eigen values are found out to be 2, 0.586, 3.414. Eigen Values by Jacobi Method                                     995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 4653 . 0 5483 . 0 6932 . 0 7718 . 0 6345 . 0 0163 . 0 4317 . 0 5433 . 0 7188 . 0 ] [P                         995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 4475 . 0 5483 . 0 7041 . 0 7714 . 0 6345 . 0 0030 . 0 4492 . 0 5433 . 0 7073 . 0 ] [P              4990 . 0 5017 . 0 7041 . 0 7054 . 0 7069 . 0 0030 . 0 5002 . 0 4966 . 0 7073 . 0 ] [P ] [P
  • 20.
    Eigen Values byJacobi Method Problem Find out the Eigen values and Eigen vectors for the following matrices using Jacobi method 1) 2)        8 6 6 3 ] [A        6 2 2 3 ] [A