Dr. Virendra Kumar Verma
Madanapalle Institute of Technology and Science (MITS)
http://butane.chem.uiuc.edu/pshapley/Environmental/L26/1.html
http://www.metafysica.nl/turing/preparation_3dim_2.html
http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/16/ac/elemente/vlu/38_56_88.vlu.html
A face centered cubic unit cell has one atom at each corner and
one atom at each face center.
 Diamond cubic structure is obtained when two FCC sublattices
interpenetrates along the body diagonal by 1/4th cube edge.
http://www.materialsdesign.com/appnote
)ˆˆˆ(
4
zyx
a

a
http://www.materialsdesign.com/appnote
)ˆˆˆ(
4
zyx
a

a
 The space group of diamond is .
 There are eight carbon atoms at the corner, creating a cube.
 The six carbon atoms in the faces create an octahedron.
 The four internal carbon
atoms (black balls in figure)
lie at ¼ of the distance along
body diagonal forming a
tetrahedran.
mdF 3
C
C F C
C
C
C F C
C
F F F F
I I
I
I
The letters on the ball mean:
C – Corner atom
F – Face atom
I – Internal atom
Square on the right hand side indicates the base of the cube.
1/4
1/4
a
a
0 0
0 0
0
1/4
1/4
The number ‘0’ denotes the height above the base.
0 0 0 0
0
a
0 0 0
0
0
0 0
0 0
01/2 1/2
1/2
1/2
1/4
1/4
The number ‘0’ and fraction ‘½’ denote the height above the base.
1/2 1/2 1/2 1/2
a
0 0 0
0
0
0 0
0 0
01/2 1/2
1/2
1/2
1/4
1/4
1/4
1/4
The number ‘0’ and fractions ‘½’ and ‘¼’ denote the height above the base.
1/2 1/2 1/2 1/2
1/4 1/4
a
0 0 0
0
0
0 0
0 0
01/2 1/2
1/2
1/2
1/4
1/43/4
3/4
1/4
1/4
The number ‘0’ and fractions ‘½’ , ‘¼’ and ‘¾’ denote the height above the base.
1/2 1/2 1/2 1/2
1/4 1/4
3/43/4
Atomic Packing Factor
n = ? and r = ?
3
3
3
4
a
rn
cellunittheofVolume
atomonetheofVolumecellunitainpresentatomsofNumber
cellunittheofVolume
cellunitainatomsbyoccupiedvolumeTotal
APF





To solve APF of diamond structure, we need ‘n’ and ‘r’.
Atomic Packing Factor
nfcc = (1/8 x 8 corner atoms) + (1/2 x 6 face atoms)
= 1+3
= 4 atoms.
n = 4+4
= 8
r = ?
 There are atoms at all eight corners and all six faces.
 In addition to that there are 4 full atoms inside the unit cell.
Total number of atoms present in a unit cell.
Atomic Packing Factor
8
3
16
3
4
4)2(
2
2
222
a
r
a
r
rrXYBut



x
r z
a/4
a/4
a/4
y
16
3
48
844
222
222
222
2
aaa
ZYXZXY
aaa
XZ




















16
3
4
3
444
)ˆˆˆ(
4
2
2
222
a
XY
aaaa
YX
zyx
a
YXVector





















OR
)ˆˆˆ(
4
zyx
a

a
X
Y
Atomic Packing Factor
34.0
16
3
8
3
3
4
8
3
4
3
3
3
3



















a
a
a
rn
cellunittheofVolume
atomonetheofVolumecellunitainpresentatomsofNumber
cellunittheofVolume
cellunitainatomsbyoccupiedvolumeTotal
APF
%34 structurediamondoffactorpackingAtomic
please contact me via email for any further suggestions/comments.
Email: virendrave@gmail.com
Visit the below website for other topics
http://sciencebank.wordpress.com/

Diamond Structure