SlideShare a Scribd company logo
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org ||Volume 5 Issue 4|| April 2016 || PP.40-48
www.ijesi.org 40 | Page
Decomposition formulas for B
H - hypergeometric functions of
three variables
Mosaed M. Makky
Mathematics Department, Faculty of Science (Qena) South Valley University (Qena , Egypt)
ABSTRACT: In this paper we investigate several decomposition formulas associated with hypergeometric
functions B
H in three variables. Many operator identities involving these pairs of symbolic operators are first
constructed for this purpose. By means of these operator identities, as many as 5 decomposition formulas are
then found, which express the aforementioned triple hypergeometric functions in terms of such simpler functions
as the products of the Gauss and Appell's hypergeometric functions.
Keywords: Decomposition formulas; Srivastava’s hypergeometric functions; Multiple hypergeometric
functions; Gauss hypergeometric function; Appell’s hypergeometric functions; Generalized hypergeometric
function.
I. Introduction
Hardly there is a necessity to speak about importance of properties of hypergeometric functions for any
scientist and the engineer dealing with practical application of differential equations. The solution of various
problems concerning a thermal conduction and dynamics, electromagnetic oscillations and aerodynamics, a
quantum mechanics and the theory of potentials, leads to hypergeometric functions. More often they appear at
solving of partial differential equations by the method of a separation of variables.
A variety of the problems leading hypergeometric functions, has called fast growth of number of the functions,
applied in applications (for example, in the monographs [22] 205 hypergeometric functions are studied). There
were monographs and papers on the theory of special functions. But in these mono-graphs there is no formula of
expansion and an analytic continuation of the generalized hypergeometric function. In this paper, using similar
symbolical method Burchnall and Chaundy, we shall construct formulas of expansion for the generalized
hypergeometric function. By means of the obtained formulas of expansion we find the formulas of an analytic
continuation of hypergeometric function of Clausen. The found formulas of an analytic continuation express
known hypergeometric Appell function.
A great interest in the theory of multiple hypergeometric functions (that is, hypergeometric functions of
several variables) is motivated essentially by the fact that the solutions of many applied problems involving (for
example) partial differential equations are obtainable with the help of such hypergeometric functions (see, for
details, [22]; see also the recent works [12,13] and the references cited therein).
For instance, the energy absorbed by some non ferromagnetic conductor sphere included in an internal magnetic
field can be calculated with the help of such functions [10]. Hypergeometric functions of several variables are
used in physical and quantum chemical applications as well (cf. [11,20]).
We note that Riemann’s functions and the fundamental solutions of the degenerate second- order
partial differential equations are expressible by means of hypergeometric functions of several variables [6]. In
investigation of the boundary value problems for these partial differential equations, we need decompositions
for hypergeometric functions of several variables in terms of simpler hypergeometric functions of (for example)
the Gauss and Appell's types.
Suppose that a hypergeometric function in the form (c.f. [4] and [14]) :
(1.1)  2 1
1
( ) ( )
, ; ; 1
!( )
nn n
n n
F z z
n
 
  



  
for  neither zero nor a negative integer.
Now we consider B
H - hypergeometric function defined in [19] as follows :
(1.2) B
H =  1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z        
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  
  

  
Decomposition formulas for B
H - hypergeometric…
www.ijesi.org 41 | Page
since
1 2 3
; ; ; 2 1r z s z t z r s t rst      
which were introduced and investigated, over four decades ago, by Srivastava (see, for details, [16,17]; see also
[19] and [20]).
Also, we study the B
H - hypergeometric function, where it is regular in the unit hypersphere (c.f. [2,3]), for the
B
H - function, we can define as contiguous to it each of the following functions, which are samples by
uppering or lowering one of the parameters by unity.
(1.3) B
H ( +) = 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 3
1 2 3
, , 0 1 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n
z z z
n n n
  
   
  

 
  
(1.4) B
H ( -) = 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31
1 2 3
, , 0 1 1 3 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
1 ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n n n
  
   
  

  
  

(1.5) B
H ( +,  +)
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 3 2 1 2
1 2 3
, , 0 1 2 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z
n n n
   
    
  

   
   ,
(1.6) 


3
1j
j
dD , ; 1, 2 , 3j j
j
d z j
z


 
and the way we effect it with the recursions relations as it is found in the second part of the research.
By applying the operator D in (1.6) to (1.2), we find the following set of operator identities involving the Gauss
function 2 1
F , the Appell's functions, and Srivastava’s hypergeometric functions B
H defined by (1.2) is
(1.7) D  1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z        
= D 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  
  

  
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( )( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n
z z z
n n n
  
  
  

 
  
1 2 1
1 2 3 1 2 3 1 2 3
1
( 1, 1, ; 1, , ; , , )B B
z
D H H z z z
 
     

       
2 3 2
1 2 3 1 2 3 1 2 3
2
( , 1, 1; , 1, ; , , )B
z
H z z z
 
     

      
1 3 3
1 2 3 1 2 3 1 2 3
3
( 1, , 1; , , 1; , , )B
z
H z z z
 
     

       .
and
2 3 21 2 1
1 2 1 2 3 2
1 2
1 3 3
1 3 3
3
( , ; ) ( , ; )
( , ; )
B B B
B
zz
D H H H
z
H
  
     
 
 
  

        
   
i.e. the partial differential equation
Decomposition formulas for B
H - hypergeometric…
www.ijesi.org 42 | Page


2 3 21 2 1
1 2 1 2 3 2
1 2
1 3 3
1 3 3
3
( , ; ) ( , ; )
( , ; ) 0
B B B
B
zz
D H H H
z
H
  
     
 
 
  

       
    
has a solution in the form :
 
1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
1 2 3
1 2 3
, , 0 1 2 3 1 2 3
, , ; , , ; , ,
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
B
n n n n n n nn n
n n n n n n
H z z z
z z z
n n n
     
  
  
  

  
   
II. The main pairs of symbolic operators
Over six decades ago, Burchnall and Chaundy [1,2] and Chaundy [3] systematically presented a
number of expansion and decomposition formulas for some double hypergeometric functions in series of
simpler hypergeometric functions. Their method is based upon the following inverse pairs of symbolic
operators:
(2.1)
   
   
   
 1 2
1 21 2
01 2
( )
!
k k
z z
k
k
d dh d d h
h
d h d h h k


    
  
   

(2.2)
   
   
   
 1 2
1 21 2
01 2 1 2
( )
1 !
k k
z z
k
k
d dd h d h
h
h d d h h d d k


    
  
      

=
       
     
1 22
0 1 2
1
1 !
k
k k k
k
k k k
h d d
h k d h d h k


  
   

and
(2.3)
       
       1 2 1 2
1 2 1 2
1 2 1 2
( ) ( )z z z z
h d d h d g d g
h g
d h d h g d d g
       
  
       
       
     
1 22
0 1 2
1 !
k k k k
k
k k k
g h g d d
g k d g d g k


  

   

     
   
1 2
0 1 2
1 !
k k k
k
k k
g h d d
h g d d k


  

  

since
j
jj
z
zd


 ; j=1,2.
We now recall here the following multivariable analogues of the Burchnall–Chaundy symbolic operators
1 2
( )z z
h and 1 2
( )z z
h defined by (2.1) and (2.2), respectively (cf. [6] and [16]; see also [18] for the case
when r = 3):
(2.4)
   
   1 2 3
1 2 3
:
1 2 3
( )z z z
h d d d h
h
d h d d h
    
 
    
     
 
2 3 2 3
2 3
2 3
1 2 3
, 0 2 3
! !
n n n n
n n
n n
d d d
h n n




  
 
since
j
jj
z
zd


 ; j=1,2,3
and
(2.5)
   
   1 2 3
1 2 3
:
1 2 3
( )z z z
d h d d h
h
h d d d h
    
 
    
Decomposition formulas for B
H - hypergeometric…
www.ijesi.org 43 | Page
     
 
2 3 2 3
2 3
2 3
1 2 3
, 0 1 2 3 2 3
1 ! !
n n n n
n n
n n
d d d
h d d d n n




  

   

     
   
 
     
   
2 3
2 3 2 3 2 3 2 3
2 3
2 3 2 3 2 3
2 3 1 2 32
, 0 2 3 2 3 2 3 1 2 3
1
! ! 1 ! !
n n
n n n n n n n n
n n
n n n n n n
h d d d d d
n n h n n n n d h d d h


 

  
    

     

since
j
jj
z
zd


 ; j=1,2,3.
where we have applied such known multiple hypergeometric summation formulas as (cf. [9]; see also [1]
B
H =  1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z        
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  
  

  
since
  1 2 3
m ax , , 1z z z 
III. A set of operator identities for B
H - hypergeometric functions.
By applying the pairs of symbolic operators in (2.1) to (2.5), we find the following set of operator
identities involving the Gauss function 2 1
F the Appell's functions 1 2 3 4
, , ,F F F F and
 1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z         defined by (1.2) :
(3.1)  1 2 3 1 1 2 3
, , ; , , ; , ,B
H z z z        
=          1 3 1 2 2 31 2 2 1 1 2 1 1 1 3 2 1 2 3
, ; ; , , ; ; ,z z z z z z
F z F z z               .
(3.2)  1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z        
=        1 3 1 21 2 2 1 1 2 1 1 2 3 2 1 2 3 2 3
, ; ; , , ; , ; ,z z z z
F z F z z              .
(3.3)  1 2 3 1 1 2 3
, , ; , , ; , ,B
H z z z        
         
 
1 3 1 2 2 3 2 31 2 3 2 1 1 2 1 1
3 3 1 2 3 2 3
, ; ;
. , , , ; ; , .
z z z z z z z z
F z
F z z
      
    
     
 
(3.4)  1 1 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z        
=          1 3 1 2 2 31 1 1 2 1 1 1 1 1 4 1 3 2 3 2 3
, ; ; , ; , ; ,z z z z z z
F z F z z               .
(3.5)  1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z        
       
   
1 3 1 2 2 31 2 3 2 1 1 2 1 1
2 1 2 3 2 2 2 1 1 3 3 3
, ; ;
. , ; ; , ; ; .
z z z z z z
F z
F z F z
     
     
    
 
In view of the known Mellin–Barnes contour integral representations for the Gauss function 2 1
F , the
Appell's functions 1 2 3 4
, , ,F F F F , and Srivastava’s triple hypergeometric functions B
H , it is not difficult to
give alternative proofs of the operator identities (3.1) to (3.5) above by using the Mellin and the inverse Mellin
transformations (see, [20,22]). The details involved in these alternative derivations of the operator identities
(3.1) to (3.5) are being omitted here.
IV. Decompositions for B
H - hypergeometric functions.
Making use of the principle of superposition of operators, from the operator identities (3.1) to (3.5) we
can derive the following decomposition formulas for B
H - hypergeometric functions:
Decomposition formulas for B
H - hypergeometric…
www.ijesi.org 44 | Page
 
 
2 3 1 31 2
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 1 2 3
1 2 3 1 1 2 3
1 2 3 2 1 2 3
, , 0 1 2 1 2 3
2 1 1 1 2 3 2 1 2 3 1 2 3 1
1 3 1
(4 .1) , , ; , , ; , ,
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ! ! !
. , ; ;
. 2
B
n n n nn n
n n n n n n n n n
n n n n n n n n n
H z z z
z z z
n n n
F n n n n n n n n z
F n n
     
  
  
  

 
     
   
   
  
        
 

 2 3 2 1 2 1 1 2 3 1 2 3 2 3
, , ; 2 ; , ;n n n n n n n n n z z            
 
 
1 2 2 1
1 2 1 2 1 2
1 2 1 2 2 1
1 2 3 1 2 3 1 2 3
1 2 3 1 2 3
, 0 1 2 3 1 2
2 1 1 1 2 2 1 2 1 1 2 1
2 3 1 2 2 1 2 1 1 2 2 3 1 2
(4 .2 ) , , ; , , ; , ,
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ! !
. , ; ;
. , , ; , ;
B
n n n n
n n n n n n
n n n n n n
H z z z
z z z
n n
F n n n n n n z
F n n n n n n n z
     
  
  
  
    

  
 
   
  
      
       

 3
, ;z
 
3 4 1 2 3 1 2 4
2 3 4 1 2 3 4 1 2 3 1 2 4
1 2 3 4 1 2 1 1 2 3 4 3 4
1 2 3 1 1 2 3
1 2 2 3 2 3 2 1 2 3
, , , 0 3 2 2 2 1 1 2 3 4
2 1 1
(4 .3) , , ; , , ; , ,
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ! ! ! !
.
B
n n n n n n n n
n n n n n n n n n n n n n
n n n n n n n n n n n n n
H z z z
z z z
n n n n
F n
     
   
   

    
        
     
   
  


 2 3 4 2 1 2 3 4 1 3 4 1
3 1 2 3 1 1 2 3 4 2 1 2 3 3 1 2 4
3
1 2 3 4 2 3
2 , ; ;
2 , , , 2 ;
. ;
2 2 ; ,
n n n n n n n n z
n n n n n n n n n n n n n
F
n n n n z z
 
   

        
             
 
 
       
 
1 3 2 31 2
1 2 3 1 2 3 1 2 2 3
1 2 3 2 1 3 1 2 2 3
1 2 3 1 2 3 1 2 3
1 2 3 3 1 2 3
, , 0 3 1 2 3 1 2 3
2 1 1 1 2 3 2 1 2 3 1 1 3
(4 .4 ) , , ; , , ; , ,
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ! ! !
. , ; ;
B
n n n nn n
n n n n n n n n n n
n n n n n n n n n n
H z z z
z z z
n n n
F n n n n n n n n
     
   
   
  
 
     
   
   
  
       

 
 
 
1
2 1 2 1 2 3 1 2 2 1 2 2
2 1 3 2 3 1 1 2 3 3 2 3 3
. , ; ;
. , ; ; ;
z
F n n n n n n z
F n n n n n n n z
  
  

      
       
Decomposition formulas for B
H - hypergeometric…
www.ijesi.org 45 | Page
 
 
2 3 1 2 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 1 2 3
1 2 3 1 1 2 2
2
1 2 3 2 1 2
, , 0 1 2 1 2 3
2 1 1 1 2 3 2 1 2 3 1 2 3 1
2 1 3 1 2 3
( 4 .5 ) , , ; , , ; , ,
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ! ! !
. , ; ;
. 2 ,
B
n n n n n
n n n n n n n n n
n n n n n n n n n
H z z z
z z
n n n
F n n n n n n n n z
F n n n
     
  
  
  

  
     
   
   
 
        
  

 1 2 1 2 3 1 2 3 2
2 2 ; 2 ; .n n n n n n z         
Decomposition (3.3) can be proved by means of equality
       
         1 3 1 2 2 3 2 3
2 3 3 1 2 1
1 2 3 4 1 2 3 4 1 2 3
3 4
1 2 1
1 2 3
1 1 2 3 3
2
1 1 2 3 1 2 3 1 3
, , , 0 1 2
1 22 1 2 3 1 3 1
3 2
1
( 4 .6 )
( ) ( ) ( ) ( ) ( ) ( )
.
( ) ( )
( ) ( )( ) ( ) ( )
.
( ) ( )
z z z z z z z z
m p m n p
n n n n n n m p
n n n n n n n n n n n
n nm n p
n n n
n n n
d dn n n n
   
    
     
 
  
 

 
     


    
  
    

1 2 3 1 2 43
1 2 3 4
( )
.
! ! ! !
n n n n n n
d
n n n n
   

Taking into account the identities (4.6), from parity (3.3), we have
   
 
2 3 3 1 2 1
1 2 3 4 1 2 3 4 1 2 3 1 2 1
3 4
1 2 3
1 2 3 1 1 2 3
2
1 1 2 3
, , , 0 1 2 3 2 1 2 3 4
1 1 2 3 2 1 2 1 1
2
4.7 , , ; , , ; , ,
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ! ! ! !
. ( ) , ; ; ( )
. ( )
B
n n n n n n
n n n n n n n n n n n n n n
n n
n n n
H z z z
n n n n
d F n n n n z
d
     
   
   
  

 
      

 
  
     


 1 2 43 3 3 1 1 3 2 3 1 2 3
( ) , , , ; ; ( ), ( ) ;n n n
d F n n n z z     
     
we have
   
 
 
3 4
3 4 2 3 4 1 2 3 4 13 4
2 3 1 2 3 4
1 1 2 3 2 1 2 1 1
2
1 2 2 3
1
1 2 1
1 2 3 4 2 1 2 3 4 1 3 4 1
4.8 ( ) , ; ; ( )
( ) ( ) ( )
1 ( )
( ) ( ) ( )
. 2 , ; ; ( ) ;
n n
n n n n n n n n n nn n
n n n n n n
d F n n n n z
z
F n n n n n n n n n z
  
  
  
  

     
  
     
  
         
 
 
1 2 3 1 2 4
3 4 1 2 3 1 2 4
1 2 3 4 1 2 3 1 2 3 1 2 4
3 1 1 2 3 4
2 3 3 3 1 1 3 2 3 1 2 3
2 3
1 2 3 2 3 2
2
1 3 2 2
3 1 2 3
3
( 4 .9 ) ( ) ( ) , , , ; ; ( ), ( )
1 ( ) ( )
( ) ( ) ( ) ( )
.
( ) ( ) ( )
2 ,
.
n n n n n n
n n n n n n n n
n n n n n n n n n n n n n
n n n n n n
d d F n n n z z
z z
n n n
F
    
   
  

   
    
        
  
      
   
   1 1 2 3 4 2 1 2 3
3 1 2 4 1 2 3 4 2 3
, ,
.
2 ; 2 2 ; ( ), ( )
n n n n n n n
n n n n n n n z z
 
 
       
 
 
          
Substituting identities (4.8) - (4.9) into equality (4.7), we get
Decomposition formulas for B
H - hypergeometric…
www.ijesi.org 46 | Page
 1 2 3 1 1 2 3
, , ; , , ; , ,B
H z z z        
         
 
1 3 1 2 2 3 2 31 2 3 2 1 1 2 1 1
3 3 1 2 3 2 3
, ; ;
. , , , ; ; , .
z z z z z z z z
F z
F z z
      
    
     
 
Our operational derivations of the decomposition formulas (4.1) to (4.5) would indeed run parallel to those
presented in the earlier works which we have already cited in the preceding sections.
V. Integral representations via decomposition formulas
Next we turn to a set of known double-integral representations of the Laplace type for B
H , each of
which was derived by Srivastava [20] from the following rather elementary formula :
 
 
1
0
1
(5 .1)
t n
n
e t d t




  



since   0
0 ;R n N   .
For each of the hypergeometric functions B
H . Srivastava [19,20] gave several ordinary as well as
contour integral representations of the Eulerian, Laplace, Mellin– Barnes, and Pochhammer’s double-loop types.
Here, in this section, we first observe that several known integral representations of the Eulerian type can be
deduced also from the corresponding decomposition formulas of Section 4. For example, we have [19] .
 
   1 2
1 2 3 1 2 3 1 2 3
1 1
0 1 1 1 2 3 2 3 2 3
0 0
1 2
(5 .2 ) , , ; , , ; , ,
1
; ; ; , ; ,
( ) ( )
B
s t
H z z z
e t s F z s t z s z t d s d t
 
     
   
 
 
  
  
     
 
 
since
         1 2 2 3
m in , 0 ; m ax , 1R R R z R z    ,
where 2
 denotes one of Humbert’s confluent hypergeometric functions of two variables :
 
   
1 2
1 2
1 2 1 2
1 1 2
2 1 1 2 1 2
, 0 1 2 1 2
( )
(5 .3) ; , ; ,
( ) ( ) ! !
n n
n n
n n n n
z z
z z
n n

  
 



 
    
and
     1 1
2 1 1 2 1 2 0 1 1 1 0 1 1 2
0
(5 .4 ) ; , ; , ; ; ; ;
t
z z e t F z t F z t d t

    


       
since
 1
0R   ,
which is easily derivable by combining (5.1) with the definition (5.3), we find from Srivastava’s result (5.2) that
 
     
31 2
1 2 3 1 2 3 1 2 3
11 1
0 0 0
1 2
0 1 1 1 0 1 2 2 0 1 3 3
(5 .5) , , ; , , ; , ,
1
( ) ( )
. ; ; ; ; ; ;
B
s t u
H z z z
e t s u
F z s t F z u s F z u t d s d t d u
 
     
 
  
  
   
  

 
     
  
since
      1 2 3
m in , , 0R R R    .
VI. Concluding remarks and observations
By suitably specializing the decomposition formulas (4.1) to (4.5), we can deduce a number of (known
or new) decomposition formulas including those given by (for example) Burchnall and Chaundy [1,2]. For
instance, for Appell’s hypergeometric functions, we find the following (presumably new) results:
Decomposition formulas for B
H - hypergeometric…
www.ijesi.org 47 | Page
 
   
 
2 2 2 1 2
1 1 2 2
, 0
2
4 1 2
( ) ( ) ( )
(6 .1) , ; ; ,
! !( 1) ( )
. 2 2 , ; 2 , 2 ; ,
i j i j
i j i j i
i j
i i j
z z
F z z
i ji
F i j i j i j i j z z
  
  
 
   
 

 


 
  
  
 
         

and
 
   
 
1 2 2 3 1 2
1 1 2 3 1 2
, 0 2 2
3 1 1 2 3 1 2
( ) ( ) ( )
(6 .2 ) , , ; , ; ,
( ) ( ) ! !
. 2 , 2 , , ; 2 ; , .
i j i j
i j i j i j
i j i i j
z z
F z z
i j
F i j i j i j i j i j z z
  
    
 
    
 

  
 
 
  
           

Furthermore, by making use of the decompositions (4.2), we can derive the following known reduction formulas
for Srivastava’s triple hypergeometric function B
H [19]:
 
   
       
2 1
1 2 3 1 3 3 1 2 3
2 31
2 3 4 1 2 1 3
2 3 2 3
(6 .3) , , ; , , ; , ,
( )( )
1 1 , ; , ; , .
1 1 1 1
B
H z z z
z zz
z z F
z z z z
 
     
   
 
  
  
         
Some of the most recent contributions in the theory of Srivastava’s B
H - hypergeometric series
include a paper by Harold Exton [5] and a paper by Rathie and Kim [15]. The work of Exton [5] made use of
elementary series manipulation and some wellknown analytic continuation formulas for the Gauss
hypergeometric function in order to derive a fundamental set of nine solutions of the system of partial
differential equations satisfied by the symmetrical function B
H , Rathie and Kim [15].
 1
1
( 1) (1 ) 1
2
(6 .4 ) , , ; 1;1, 1
1
( 1) ( 1) 1
2
a b b b a
F a b b a b b
a b b a b
 
         
 
     
 
         
 
since   1R b   .
However, in deriving many of their applications of the summation formula (6.4), Rathie and Kim [15] obviously
violated the constraint   1R b   associated with (6.4) at least in situations in which the hypergeometric series
involved in their investigation would not terminate.
Finally, we note that, here in this paper, we have not applied such superpositions of operators as those provided
by (for example)
             1 2 1 3 2 3 2 3 1 3 1 2 2 3
;z z z z z z z z z z z z z z
            
and
         1 3 1 2 2 3 2 3 1 2 3;z z z z z z z z z z z
        
REFFERENCES
[1] J.L. Burchnall, T.W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940)
249–270.
[2] J.L. Burchnall, T.W. Chaundy, Expansions of Appell’s double hypergeometric functions. II, Quart. J. Math. Oxford Ser. 12
(1941) 112–128.
[3] T.W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942) 159–171.
[4] T.W. Chaundy, On Appell’s Fourth Hypergeometric Functions. The Quart. J. Mathematical oxford (2) 17 (1966) pp.81-85.
[5] H. Exton, On Srivastava’s symmetrical triple hypergeometric function B
H , J. Indian Acad. Math. 25 (2003) 17–22.
[6] A. Hasanov, On a mixed problem for the equation sign y|y|muxx + xnuyy = 0, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 2
(1982) 28–32 and 76 (in Russian).
Decomposition formulas for B
H - hypergeometric…
www.ijesi.org 48 | Page
[7] A. Hasanov, H.M. Srivastava, Some decomposition formulas associated with the Lauricella function
( )r
A
F and other multiple
hypergeometric functions, Appl. Math. Lett. 19 (2006) 113–121.
[8] C.M. Joshi, and Bissu S.K. "Some Inequalities Of Hypergeometric Function of Three Variables". Jnanabha, Vol. 21 (1991)
pp.151-164.
[9] G. Lauricella, Sulle funzioni ipergeometriche a più variabili, Rend. Circ. Mat. Palermo 7 (1893) 111–158.
[10] G. Lohöfer, Theory of an electromagnetically deviated metal sphere. I: Absorbed power, SIAM J. Appl. Math. 49 (1989) 567–
581.
[11] A.W. Niukkanen, Generalised hypergeometric series  1
,...,
N
N
F x x arising in physical and quantum chemical
applications, J. Phys. A: Math. Gen. 16 (1983) 1813–1825.
[12] S.B. Opps, N. Saad, H.M. Srivastava, Some reduction and transformation formulas for the Appell hypergeometric function 2
F ,
J. Math. Anal. Appl. 302 (2005) 180–195.
[13] P.A. Padmanabham, H.M. Srivastava, Summation formulas associated with the Lauricella function
( )r
A
F , Appl. Math. Lett. 13
(1) (2000) 65–70.
[14] Rainville, Earld. “Special Functions”. New York (1960).
[15] A.K. Rathie, Y.S. Kim, Further results on Srivastava’s triple hypergeometric series HA and HC, Indian J. Pure Appl. Math. 35
(2004) 991–1002.
[16] K.A.M. Sayyed, and M.M. Makky, The D
N
- Operator On Sets Of Polynomials And Appell’s Functions Of Two Complex
Variables. Bull. Fac. Sci. Qena (Egypt). 1(2), pp. 113-125 (1993).
[17] K.A.M. Sayyed, and M.M. Makky, Certain Hypergeometric Functions Of Two Complex Variables Under Certain Differential
And Integral Operators. Bull. Fac. Sci. Qena (Egypt). 1(2), pp.127-146 (1993).
[18] J.P. Singhal, S.S. Bhati, Certain expansions associated with hypergeometric functions of n variables, Glasnik Mat. Ser. III 11
(31) (1976) 239–245.
[19] H.M. Srivastava, Hypergeometric functions of three variables, Gan. ita 15 (1964) 97–108.
[20] H.M. Srivastava, Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo (Ser. 2) 16 (1967) 99–
115.
[21] H.M. Srivastava, A class of generalised multiple hypergeometric series arising in physical and quantum chemical applications, J.
Phys. A: Math. Gen. 18 (1985) L227–L234.
[22] H.M. Srivastava and Per W. Karlsson, "Multiple Gaussian Hypergeometric Series". Halsted Press (Ellis Horwood Limited,
Chichester), John Wiley and Sons; New York 1985.

More Related Content

What's hot

Biseccion
BiseccionBiseccion
Biseccion
Marlon Baquedano
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式
Junpei Tsuji
 
คณิตศาสตร์ เพิ่มเติม 9
คณิตศาสตร์ เพิ่มเติม 9คณิตศาสตร์ เพิ่มเติม 9
คณิตศาสตร์ เพิ่มเติม 9
saman1
 
Algebra 1 Item No 22
Algebra 1 Item No 22Algebra 1 Item No 22
Algebra 1 Item No 22
Lappy Doods
 
On Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating TypeOn Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating Type
IOSR Journals
 
All about life and death volume 1 - a basic dictionary of life and death - ...
All about life and death   volume 1 - a basic dictionary of life and death - ...All about life and death   volume 1 - a basic dictionary of life and death - ...
All about life and death volume 1 - a basic dictionary of life and death - ...
Eases Pe'Ple
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
ijcsa
 
2014 06 22_prml_2_4
2014 06 22_prml_2_42014 06 22_prml_2_4
2014 06 22_prml_2_4
yakuzen
 
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ssusere0a682
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4
sophiabelthome
 
ロマンティックな9つの数 #ロマ数ボーイズ
ロマンティックな9つの数 #ロマ数ボーイズロマンティックな9つの数 #ロマ数ボーイズ
ロマンティックな9つの数 #ロマ数ボーイズ
Junpei Tsuji
 
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
Junpei Tsuji
 
Steady Flow in Pipes of Rectangular Cross-Section Through Porous Medium
Steady Flow in Pipes of Rectangular Cross-Section Through Porous MediumSteady Flow in Pipes of Rectangular Cross-Section Through Porous Medium
Steady Flow in Pipes of Rectangular Cross-Section Through Porous Medium
inventionjournals
 
รายงานการเขียนคำสั่งควบคุมแบบวนซ้ำ กลุ่ม 4 ม. 6 ห้อง2
รายงานการเขียนคำสั่งควบคุมแบบวนซ้ำ กลุ่ม 4 ม. 6 ห้อง2รายงานการเขียนคำสั่งควบคุมแบบวนซ้ำ กลุ่ม 4 ม. 6 ห้อง2
รายงานการเขียนคำสั่งควบคุมแบบวนซ้ำ กลุ่ม 4 ม. 6 ห้อง2
Pookie Pook
 
matrices
matricesmatrices
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
Alexander Decker
 
مراجعة مركزة نهائية 2021
مراجعة مركزة  نهائية 2021مراجعة مركزة  نهائية 2021
مراجعة مركزة نهائية 2021
Rihan Rihan
 
133467 p3a2
133467 p3a2133467 p3a2
Multiplication trick(1)
Multiplication trick(1)Multiplication trick(1)
Multiplication trick(1)
Neel Patel
 
Melaka 1 ans 2010
Melaka 1 ans 2010Melaka 1 ans 2010
Melaka 1 ans 2010
sooklai
 

What's hot (20)

Biseccion
BiseccionBiseccion
Biseccion
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式
 
คณิตศาสตร์ เพิ่มเติม 9
คณิตศาสตร์ เพิ่มเติม 9คณิตศาสตร์ เพิ่มเติม 9
คณิตศาสตร์ เพิ่มเติม 9
 
Algebra 1 Item No 22
Algebra 1 Item No 22Algebra 1 Item No 22
Algebra 1 Item No 22
 
On Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating TypeOn Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating Type
 
All about life and death volume 1 - a basic dictionary of life and death - ...
All about life and death   volume 1 - a basic dictionary of life and death - ...All about life and death   volume 1 - a basic dictionary of life and death - ...
All about life and death volume 1 - a basic dictionary of life and death - ...
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
 
2014 06 22_prml_2_4
2014 06 22_prml_2_42014 06 22_prml_2_4
2014 06 22_prml_2_4
 
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4
 
ロマンティックな9つの数 #ロマ数ボーイズ
ロマンティックな9つの数 #ロマ数ボーイズロマンティックな9つの数 #ロマ数ボーイズ
ロマンティックな9つの数 #ロマ数ボーイズ
 
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
 
Steady Flow in Pipes of Rectangular Cross-Section Through Porous Medium
Steady Flow in Pipes of Rectangular Cross-Section Through Porous MediumSteady Flow in Pipes of Rectangular Cross-Section Through Porous Medium
Steady Flow in Pipes of Rectangular Cross-Section Through Porous Medium
 
รายงานการเขียนคำสั่งควบคุมแบบวนซ้ำ กลุ่ม 4 ม. 6 ห้อง2
รายงานการเขียนคำสั่งควบคุมแบบวนซ้ำ กลุ่ม 4 ม. 6 ห้อง2รายงานการเขียนคำสั่งควบคุมแบบวนซ้ำ กลุ่ม 4 ม. 6 ห้อง2
รายงานการเขียนคำสั่งควบคุมแบบวนซ้ำ กลุ่ม 4 ม. 6 ห้อง2
 
matrices
matricesmatrices
matrices
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
مراجعة مركزة نهائية 2021
مراجعة مركزة  نهائية 2021مراجعة مركزة  نهائية 2021
مراجعة مركزة نهائية 2021
 
133467 p3a2
133467 p3a2133467 p3a2
133467 p3a2
 
Multiplication trick(1)
Multiplication trick(1)Multiplication trick(1)
Multiplication trick(1)
 
Melaka 1 ans 2010
Melaka 1 ans 2010Melaka 1 ans 2010
Melaka 1 ans 2010
 

Viewers also liked

Finite Element Modeling of RCC voided Beam and it’s comparison with conventio...
Finite Element Modeling of RCC voided Beam and it’s comparison with conventio...Finite Element Modeling of RCC voided Beam and it’s comparison with conventio...
Finite Element Modeling of RCC voided Beam and it’s comparison with conventio...
inventionjournals
 
Effect of Crusher Dust, Stone and Tire Wastes as Granular Pavement Materials
Effect of Crusher Dust, Stone and Tire Wastes as Granular Pavement MaterialsEffect of Crusher Dust, Stone and Tire Wastes as Granular Pavement Materials
Effect of Crusher Dust, Stone and Tire Wastes as Granular Pavement Materials
inventionjournals
 
Finite Element Analysis of Effect of Punching Shear in Flat Slab Using Ansys ...
Finite Element Analysis of Effect of Punching Shear in Flat Slab Using Ansys ...Finite Element Analysis of Effect of Punching Shear in Flat Slab Using Ansys ...
Finite Element Analysis of Effect of Punching Shear in Flat Slab Using Ansys ...
inventionjournals
 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
inventionjournals
 
Craig Curk - QC Electronics
Craig Curk - QC ElectronicsCraig Curk - QC Electronics
Craig Curk - QC Electronics
Craig Curk
 
Arquitectura de bases de datos
Arquitectura de bases de datosArquitectura de bases de datos
Arquitectura de bases de datos
Jony Junior
 
Wave energy
Wave energyWave energy
Wave energy
lakshmi prasana
 
Proyecto final
Proyecto finalProyecto final
Proyecto final
HEFPAME
 
Wave energy
Wave energyWave energy
Wave energy
lakshmi prasana
 
НТБ. Сергей Шерстюк. "Система контроля привилегированных пользователей SafeI...
НТБ. Сергей Шерстюк. "Система контроля  привилегированных пользователей SafeI...НТБ. Сергей Шерстюк. "Система контроля  привилегированных пользователей SafeI...
НТБ. Сергей Шерстюк. "Система контроля привилегированных пользователей SafeI...
Expolink
 
Matemat
MatematMatemat
Matemat
Andre Ferrer
 
Referencia 2- GESTOR DE REFERENCIAS BIBLIOGRÁFICAS
Referencia 2- GESTOR DE REFERENCIAS BIBLIOGRÁFICAS Referencia 2- GESTOR DE REFERENCIAS BIBLIOGRÁFICAS
Referencia 2- GESTOR DE REFERENCIAS BIBLIOGRÁFICAS
Diana Catherine Castro Jiménez
 
Approaches to Administrative Leadership
Approaches to Administrative LeadershipApproaches to Administrative Leadership
Approaches to Administrative Leadership
inventionjournals
 
Bagasse based high pressure co-generation in Pakistan
Bagasse based high pressure co-generation in PakistanBagasse based high pressure co-generation in Pakistan
Bagasse based high pressure co-generation in Pakistan
inventionjournals
 
Synaptic memristor bridge circuit with pulse width based programable weights ...
Synaptic memristor bridge circuit with pulse width based programable weights ...Synaptic memristor bridge circuit with pulse width based programable weights ...
Synaptic memristor bridge circuit with pulse width based programable weights ...
inventionjournals
 
New classes of Adomian polynomials for the Adomian decomposition method
New classes of Adomian polynomials for the Adomian decomposition method New classes of Adomian polynomials for the Adomian decomposition method
New classes of Adomian polynomials for the Adomian decomposition method
inventionjournals
 
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
inventionjournals
 
An Exposition of Qualities of Leadership
An Exposition of Qualities of LeadershipAn Exposition of Qualities of Leadership
An Exposition of Qualities of Leadership
inventionjournals
 
New binary memristor crossbar architecture based neural networks for speech r...
New binary memristor crossbar architecture based neural networks for speech r...New binary memristor crossbar architecture based neural networks for speech r...
New binary memristor crossbar architecture based neural networks for speech r...
inventionjournals
 
Design and Fabrication of a Recreational Human-Powered Vehicle
Design and Fabrication of a Recreational Human-Powered VehicleDesign and Fabrication of a Recreational Human-Powered Vehicle
Design and Fabrication of a Recreational Human-Powered Vehicle
inventionjournals
 

Viewers also liked (20)

Finite Element Modeling of RCC voided Beam and it’s comparison with conventio...
Finite Element Modeling of RCC voided Beam and it’s comparison with conventio...Finite Element Modeling of RCC voided Beam and it’s comparison with conventio...
Finite Element Modeling of RCC voided Beam and it’s comparison with conventio...
 
Effect of Crusher Dust, Stone and Tire Wastes as Granular Pavement Materials
Effect of Crusher Dust, Stone and Tire Wastes as Granular Pavement MaterialsEffect of Crusher Dust, Stone and Tire Wastes as Granular Pavement Materials
Effect of Crusher Dust, Stone and Tire Wastes as Granular Pavement Materials
 
Finite Element Analysis of Effect of Punching Shear in Flat Slab Using Ansys ...
Finite Element Analysis of Effect of Punching Shear in Flat Slab Using Ansys ...Finite Element Analysis of Effect of Punching Shear in Flat Slab Using Ansys ...
Finite Element Analysis of Effect of Punching Shear in Flat Slab Using Ansys ...
 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
 
Craig Curk - QC Electronics
Craig Curk - QC ElectronicsCraig Curk - QC Electronics
Craig Curk - QC Electronics
 
Arquitectura de bases de datos
Arquitectura de bases de datosArquitectura de bases de datos
Arquitectura de bases de datos
 
Wave energy
Wave energyWave energy
Wave energy
 
Proyecto final
Proyecto finalProyecto final
Proyecto final
 
Wave energy
Wave energyWave energy
Wave energy
 
НТБ. Сергей Шерстюк. "Система контроля привилегированных пользователей SafeI...
НТБ. Сергей Шерстюк. "Система контроля  привилегированных пользователей SafeI...НТБ. Сергей Шерстюк. "Система контроля  привилегированных пользователей SafeI...
НТБ. Сергей Шерстюк. "Система контроля привилегированных пользователей SafeI...
 
Matemat
MatematMatemat
Matemat
 
Referencia 2- GESTOR DE REFERENCIAS BIBLIOGRÁFICAS
Referencia 2- GESTOR DE REFERENCIAS BIBLIOGRÁFICAS Referencia 2- GESTOR DE REFERENCIAS BIBLIOGRÁFICAS
Referencia 2- GESTOR DE REFERENCIAS BIBLIOGRÁFICAS
 
Approaches to Administrative Leadership
Approaches to Administrative LeadershipApproaches to Administrative Leadership
Approaches to Administrative Leadership
 
Bagasse based high pressure co-generation in Pakistan
Bagasse based high pressure co-generation in PakistanBagasse based high pressure co-generation in Pakistan
Bagasse based high pressure co-generation in Pakistan
 
Synaptic memristor bridge circuit with pulse width based programable weights ...
Synaptic memristor bridge circuit with pulse width based programable weights ...Synaptic memristor bridge circuit with pulse width based programable weights ...
Synaptic memristor bridge circuit with pulse width based programable weights ...
 
New classes of Adomian polynomials for the Adomian decomposition method
New classes of Adomian polynomials for the Adomian decomposition method New classes of Adomian polynomials for the Adomian decomposition method
New classes of Adomian polynomials for the Adomian decomposition method
 
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
 
An Exposition of Qualities of Leadership
An Exposition of Qualities of LeadershipAn Exposition of Qualities of Leadership
An Exposition of Qualities of Leadership
 
New binary memristor crossbar architecture based neural networks for speech r...
New binary memristor crossbar architecture based neural networks for speech r...New binary memristor crossbar architecture based neural networks for speech r...
New binary memristor crossbar architecture based neural networks for speech r...
 
Design and Fabrication of a Recreational Human-Powered Vehicle
Design and Fabrication of a Recreational Human-Powered VehicleDesign and Fabrication of a Recreational Human-Powered Vehicle
Design and Fabrication of a Recreational Human-Powered Vehicle
 

Similar to Decomposition formulas for H B - hypergeometric functions of three variables

On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -Functions
IJMER
 
D41024030
D41024030D41024030
D41024030
ijceronline
 
A04 07 0105
A04 07 0105A04 07 0105
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
IOSRJM
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
inventionjournals
 
D028036046
D028036046D028036046
D028036046
inventionjournals
 
End sem solution
End sem solutionEnd sem solution
End sem solution
Gopi Saiteja
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
Alexander Decker
 
Arts revealed in calculus and its extension
Arts revealed in calculus and its extensionArts revealed in calculus and its extension
Arts revealed in calculus and its extension
Premier Publishers
 
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
IOSR Journals
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
Maxim Eingorn
 
Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...
Alexander Decker
 
+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english medium
Mdk Raja
 
E024033041
E024033041E024033041
E024033041
inventionjournals
 
Mathematics sample assignment
Mathematics sample assignmentMathematics sample assignment
Mathematics sample assignment
All Assignment Experts
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
sophiabelthome
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Editor IJCATR
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
International Journal of Innovation Engineering and Science Research
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte Växjö
Richard Gill
 

Similar to Decomposition formulas for H B - hypergeometric functions of three variables (20)

On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -Functions
 
D41024030
D41024030D41024030
D41024030
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
D028036046
D028036046D028036046
D028036046
 
End sem solution
End sem solutionEnd sem solution
End sem solution
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
Arts revealed in calculus and its extension
Arts revealed in calculus and its extensionArts revealed in calculus and its extension
Arts revealed in calculus and its extension
 
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...
 
+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english medium
 
E024033041
E024033041E024033041
E024033041
 
Mathematics sample assignment
Mathematics sample assignmentMathematics sample assignment
Mathematics sample assignment
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte Växjö
 

Recently uploaded

2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
amsjournal
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Introduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptxIntroduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptx
MiscAnnoy1
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
john krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptxjohn krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptx
Madan Karki
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 

Recently uploaded (20)

2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Introduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptxIntroduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptx
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
john krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptxjohn krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptx
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 

Decomposition formulas for H B - hypergeometric functions of three variables

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 5 Issue 4|| April 2016 || PP.40-48 www.ijesi.org 40 | Page Decomposition formulas for B H - hypergeometric functions of three variables Mosaed M. Makky Mathematics Department, Faculty of Science (Qena) South Valley University (Qena , Egypt) ABSTRACT: In this paper we investigate several decomposition formulas associated with hypergeometric functions B H in three variables. Many operator identities involving these pairs of symbolic operators are first constructed for this purpose. By means of these operator identities, as many as 5 decomposition formulas are then found, which express the aforementioned triple hypergeometric functions in terms of such simpler functions as the products of the Gauss and Appell's hypergeometric functions. Keywords: Decomposition formulas; Srivastava’s hypergeometric functions; Multiple hypergeometric functions; Gauss hypergeometric function; Appell’s hypergeometric functions; Generalized hypergeometric function. I. Introduction Hardly there is a necessity to speak about importance of properties of hypergeometric functions for any scientist and the engineer dealing with practical application of differential equations. The solution of various problems concerning a thermal conduction and dynamics, electromagnetic oscillations and aerodynamics, a quantum mechanics and the theory of potentials, leads to hypergeometric functions. More often they appear at solving of partial differential equations by the method of a separation of variables. A variety of the problems leading hypergeometric functions, has called fast growth of number of the functions, applied in applications (for example, in the monographs [22] 205 hypergeometric functions are studied). There were monographs and papers on the theory of special functions. But in these mono-graphs there is no formula of expansion and an analytic continuation of the generalized hypergeometric function. In this paper, using similar symbolical method Burchnall and Chaundy, we shall construct formulas of expansion for the generalized hypergeometric function. By means of the obtained formulas of expansion we find the formulas of an analytic continuation of hypergeometric function of Clausen. The found formulas of an analytic continuation express known hypergeometric Appell function. A great interest in the theory of multiple hypergeometric functions (that is, hypergeometric functions of several variables) is motivated essentially by the fact that the solutions of many applied problems involving (for example) partial differential equations are obtainable with the help of such hypergeometric functions (see, for details, [22]; see also the recent works [12,13] and the references cited therein). For instance, the energy absorbed by some non ferromagnetic conductor sphere included in an internal magnetic field can be calculated with the help of such functions [10]. Hypergeometric functions of several variables are used in physical and quantum chemical applications as well (cf. [11,20]). We note that Riemann’s functions and the fundamental solutions of the degenerate second- order partial differential equations are expressible by means of hypergeometric functions of several variables [6]. In investigation of the boundary value problems for these partial differential equations, we need decompositions for hypergeometric functions of several variables in terms of simpler hypergeometric functions of (for example) the Gauss and Appell's types. Suppose that a hypergeometric function in the form (c.f. [4] and [14]) : (1.1)  2 1 1 ( ) ( ) , ; ; 1 !( ) nn n n n F z z n            for  neither zero nor a negative integer. Now we consider B H - hypergeometric function defined in [19] as follows : (1.2) B H =  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z         = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n             
  • 2. Decomposition formulas for B H - hypergeometric… www.ijesi.org 41 | Page since 1 2 3 ; ; ; 2 1r z s z t z r s t rst       which were introduced and investigated, over four decades ago, by Srivastava (see, for details, [16,17]; see also [19] and [20]). Also, we study the B H - hypergeometric function, where it is regular in the unit hypersphere (c.f. [2,3]), for the B H - function, we can define as contiguous to it each of the following functions, which are samples by uppering or lowering one of the parameters by unity. (1.3) B H ( +) = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 3 1 2 3 , , 0 1 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n z z z n n n                 (1.4) B H ( -) = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 2 3 , , 0 1 1 3 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) 1 ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n n n                   (1.5) B H ( +,  +) = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 3 2 1 2 1 2 3 , , 0 1 2 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z n n n                     , (1.6)    3 1j j dD , ; 1, 2 , 3j j j d z j z     and the way we effect it with the recursions relations as it is found in the second part of the research. By applying the operator D in (1.6) to (1.2), we find the following set of operator identities involving the Gauss function 2 1 F , the Appell's functions, and Srivastava’s hypergeometric functions B H defined by (1.2) is (1.7) D  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z         = D 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n              = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n z z z n n n                1 2 1 1 2 3 1 2 3 1 2 3 1 ( 1, 1, ; 1, , ; , , )B B z D H H z z z                  2 3 2 1 2 3 1 2 3 1 2 3 2 ( , 1, 1; , 1, ; , , )B z H z z z                 1 3 3 1 2 3 1 2 3 1 2 3 3 ( 1, , 1; , , 1; , , )B z H z z z                 . and 2 3 21 2 1 1 2 1 2 3 2 1 2 1 3 3 1 3 3 3 ( , ; ) ( , ; ) ( , ; ) B B B B zz D H H H z H                               i.e. the partial differential equation
  • 3. Decomposition formulas for B H - hypergeometric… www.ijesi.org 42 | Page   2 3 21 2 1 1 2 1 2 3 2 1 2 1 3 3 1 3 3 3 ( , ; ) ( , ; ) ( , ; ) 0 B B B B zz D H H H z H                               has a solution in the form :   1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 , , ; , , ; , , ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) B n n n n n n nn n n n n n n n H z z z z z z n n n                        II. The main pairs of symbolic operators Over six decades ago, Burchnall and Chaundy [1,2] and Chaundy [3] systematically presented a number of expansion and decomposition formulas for some double hypergeometric functions in series of simpler hypergeometric functions. Their method is based upon the following inverse pairs of symbolic operators: (2.1)              1 2 1 21 2 01 2 ( ) ! k k z z k k d dh d d h h d h d h h k                (2.2)              1 2 1 21 2 01 2 1 2 ( ) 1 ! k k z z k k d dd h d h h h d d h h d d k                   =               1 22 0 1 2 1 1 ! k k k k k k k k h d d h k d h d h k           and (2.3)                1 2 1 2 1 2 1 2 1 2 1 2 ( ) ( )z z z z h d d h d g d g h g d h d h g d d g                                  1 22 0 1 2 1 ! k k k k k k k k g h g d d g k d g d g k                      1 2 0 1 2 1 ! k k k k k k g h d d h g d d k           since j jj z zd    ; j=1,2. We now recall here the following multivariable analogues of the Burchnall–Chaundy symbolic operators 1 2 ( )z z h and 1 2 ( )z z h defined by (2.1) and (2.2), respectively (cf. [6] and [16]; see also [18] for the case when r = 3): (2.4)        1 2 3 1 2 3 : 1 2 3 ( )z z z h d d d h h d h d d h                     2 3 2 3 2 3 2 3 1 2 3 , 0 2 3 ! ! n n n n n n n n d d d h n n          since j jj z zd    ; j=1,2,3 and (2.5)        1 2 3 1 2 3 : 1 2 3 ( )z z z d h d d h h h d d d h            
  • 4. Decomposition formulas for B H - hypergeometric… www.ijesi.org 43 | Page         2 3 2 3 2 3 2 3 1 2 3 , 0 1 2 3 2 3 1 ! ! n n n n n n n n d d d h d d d n n                                    2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 1 2 32 , 0 2 3 2 3 2 3 1 2 3 1 ! ! 1 ! ! n n n n n n n n n n n n n n n n n n h d d d d d n n h n n n n d h d d h                      since j jj z zd    ; j=1,2,3. where we have applied such known multiple hypergeometric summation formulas as (cf. [9]; see also [1] B H =  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z         = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n              since   1 2 3 m ax , , 1z z z  III. A set of operator identities for B H - hypergeometric functions. By applying the pairs of symbolic operators in (2.1) to (2.5), we find the following set of operator identities involving the Gauss function 2 1 F the Appell's functions 1 2 3 4 , , ,F F F F and  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z         defined by (1.2) : (3.1)  1 2 3 1 1 2 3 , , ; , , ; , ,B H z z z         =          1 3 1 2 2 31 2 2 1 1 2 1 1 1 3 2 1 2 3 , ; ; , , ; ; ,z z z z z z F z F z z               . (3.2)  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z         =        1 3 1 21 2 2 1 1 2 1 1 2 3 2 1 2 3 2 3 , ; ; , , ; , ; ,z z z z F z F z z              . (3.3)  1 2 3 1 1 2 3 , , ; , , ; , ,B H z z z                     1 3 1 2 2 3 2 31 2 3 2 1 1 2 1 1 3 3 1 2 3 2 3 , ; ; . , , , ; ; , . z z z z z z z z F z F z z                     (3.4)  1 1 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z         =          1 3 1 2 2 31 1 1 2 1 1 1 1 1 4 1 3 2 3 2 3 , ; ; , ; , ; ,z z z z z z F z F z z               . (3.5)  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z                     1 3 1 2 2 31 2 3 2 1 1 2 1 1 2 1 2 3 2 2 2 1 1 3 3 3 , ; ; . , ; ; , ; ; . z z z z z z F z F z F z                    In view of the known Mellin–Barnes contour integral representations for the Gauss function 2 1 F , the Appell's functions 1 2 3 4 , , ,F F F F , and Srivastava’s triple hypergeometric functions B H , it is not difficult to give alternative proofs of the operator identities (3.1) to (3.5) above by using the Mellin and the inverse Mellin transformations (see, [20,22]). The details involved in these alternative derivations of the operator identities (3.1) to (3.5) are being omitted here. IV. Decompositions for B H - hypergeometric functions. Making use of the principle of superposition of operators, from the operator identities (3.1) to (3.5) we can derive the following decomposition formulas for B H - hypergeometric functions:
  • 5. Decomposition formulas for B H - hypergeometric… www.ijesi.org 44 | Page     2 3 1 31 2 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 1 2 3 1 2 3 1 1 2 3 1 2 3 2 1 2 3 , , 0 1 2 1 2 3 2 1 1 1 2 3 2 1 2 3 1 2 3 1 1 3 1 (4 .1) , , ; , , ; , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ! ! ! . , ; ; . 2 B n n n nn n n n n n n n n n n n n n n n n n n n H z z z z z z n n n F n n n n n n n n z F n n                                                 2 3 2 1 2 1 1 2 3 1 2 3 2 3 , , ; 2 ; , ;n n n n n n n n n z z                 1 2 2 1 1 2 1 2 1 2 1 2 1 2 2 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 , 0 1 2 3 1 2 2 1 1 1 2 2 1 2 1 1 2 1 2 3 1 2 2 1 2 1 1 2 2 3 1 2 (4 .2 ) , , ; , , ; , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ! ! . , ; ; . , , ; , ; B n n n n n n n n n n n n n n n n H z z z z z z n n F n n n n n n z F n n n n n n n z                                                   3 , ;z   3 4 1 2 3 1 2 4 2 3 4 1 2 3 4 1 2 3 1 2 4 1 2 3 4 1 2 1 1 2 3 4 3 4 1 2 3 1 1 2 3 1 2 2 3 2 3 2 1 2 3 , , , 0 3 2 2 2 1 1 2 3 4 2 1 1 (4 .3) , , ; , , ; , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ! ! ! ! . B n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n H z z z z z z n n n n F n                                              2 3 4 2 1 2 3 4 1 3 4 1 3 1 2 3 1 1 2 3 4 2 1 2 3 3 1 2 4 3 1 2 3 4 2 3 2 , ; ; 2 , , , 2 ; . ; 2 2 ; , n n n n n n n n z n n n n n n n n n n n n n F n n n n z z                                             1 3 2 31 2 1 2 3 1 2 3 1 2 2 3 1 2 3 2 1 3 1 2 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 , , 0 3 1 2 3 1 2 3 2 1 1 1 2 3 2 1 2 3 1 1 3 (4 .4 ) , , ; , , ; , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ! ! ! . , ; ; B n n n nn n n n n n n n n n n n n n n n n n n n n n H z z z z z z n n n F n n n n n n n n                                                    1 2 1 2 1 2 3 1 2 2 1 2 2 2 1 3 2 3 1 1 2 3 3 2 3 3 . , ; ; . , ; ; ; z F n n n n n n z F n n n n n n n z                      
  • 6. Decomposition formulas for B H - hypergeometric… www.ijesi.org 45 | Page     2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 1 2 3 1 2 3 1 1 2 2 2 1 2 3 2 1 2 , , 0 1 2 1 2 3 2 1 1 1 2 3 2 1 2 3 1 2 3 1 2 1 3 1 2 3 ( 4 .5 ) , , ; , , ; , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ! ! ! . , ; ; . 2 , B n n n n n n n n n n n n n n n n n n n n n n n H z z z z z n n n F n n n n n n n n z F n n n                                                  1 2 1 2 3 1 2 3 2 2 2 ; 2 ; .n n n n n n z          Decomposition (3.3) can be proved by means of equality                  1 3 1 2 2 3 2 3 2 3 3 1 2 1 1 2 3 4 1 2 3 4 1 2 3 3 4 1 2 1 1 2 3 1 1 2 3 3 2 1 1 2 3 1 2 3 1 3 , , , 0 1 2 1 22 1 2 3 1 3 1 3 2 1 ( 4 .6 ) ( ) ( ) ( ) ( ) ( ) ( ) . ( ) ( ) ( ) ( )( ) ( ) ( ) . ( ) ( ) z z z z z z z z m p m n p n n n n n n m p n n n n n n n n n n n n nm n p n n n n n n d dn n n n                                                1 2 3 1 2 43 1 2 3 4 ( ) . ! ! ! ! n n n n n n d n n n n      Taking into account the identities (4.6), from parity (3.3), we have       2 3 3 1 2 1 1 2 3 4 1 2 3 4 1 2 3 1 2 1 3 4 1 2 3 1 2 3 1 1 2 3 2 1 1 2 3 , , , 0 1 2 3 2 1 2 3 4 1 1 2 3 2 1 2 1 1 2 4.7 , , ; , , ; , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ! ! ! ! . ( ) , ; ; ( ) . ( ) B n n n n n n n n n n n n n n n n n n n n n n n n n H z z z n n n n d F n n n n z d                                           1 2 43 3 3 1 1 3 2 3 1 2 3 ( ) , , , ; ; ( ), ( ) ;n n n d F n n n z z            we have         3 4 3 4 2 3 4 1 2 3 4 13 4 2 3 1 2 3 4 1 1 2 3 2 1 2 1 1 2 1 2 2 3 1 1 2 1 1 2 3 4 2 1 2 3 4 1 3 4 1 4.8 ( ) , ; ; ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) . 2 , ; ; ( ) ; n n n n n n n n n n n nn n n n n n n n d F n n n n z z F n n n n n n n n n z                                              1 2 3 1 2 4 3 4 1 2 3 1 2 4 1 2 3 4 1 2 3 1 2 3 1 2 4 3 1 1 2 3 4 2 3 3 3 1 1 3 2 3 1 2 3 2 3 1 2 3 2 3 2 2 1 3 2 2 3 1 2 3 3 ( 4 .9 ) ( ) ( ) , , , ; ; ( ), ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) . ( ) ( ) ( ) 2 , . n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n d d F n n n z z z z n n n F                                                 1 1 2 3 4 2 1 2 3 3 1 2 4 1 2 3 4 2 3 , , . 2 ; 2 2 ; ( ), ( ) n n n n n n n n n n n n n n z z                            Substituting identities (4.8) - (4.9) into equality (4.7), we get
  • 7. Decomposition formulas for B H - hypergeometric… www.ijesi.org 46 | Page  1 2 3 1 1 2 3 , , ; , , ; , ,B H z z z                     1 3 1 2 2 3 2 31 2 3 2 1 1 2 1 1 3 3 1 2 3 2 3 , ; ; . , , , ; ; , . z z z z z z z z F z F z z                     Our operational derivations of the decomposition formulas (4.1) to (4.5) would indeed run parallel to those presented in the earlier works which we have already cited in the preceding sections. V. Integral representations via decomposition formulas Next we turn to a set of known double-integral representations of the Laplace type for B H , each of which was derived by Srivastava [20] from the following rather elementary formula :     1 0 1 (5 .1) t n n e t d t           since   0 0 ;R n N   . For each of the hypergeometric functions B H . Srivastava [19,20] gave several ordinary as well as contour integral representations of the Eulerian, Laplace, Mellin– Barnes, and Pochhammer’s double-loop types. Here, in this section, we first observe that several known integral representations of the Eulerian type can be deduced also from the corresponding decomposition formulas of Section 4. For example, we have [19] .      1 2 1 2 3 1 2 3 1 2 3 1 1 0 1 1 1 2 3 2 3 2 3 0 0 1 2 (5 .2 ) , , ; , , ; , , 1 ; ; ; , ; , ( ) ( ) B s t H z z z e t s F z s t z s z t d s d t                                 since          1 2 2 3 m in , 0 ; m ax , 1R R R z R z    , where 2  denotes one of Humbert’s confluent hypergeometric functions of two variables :       1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 2 , 0 1 2 1 2 ( ) (5 .3) ; , ; , ( ) ( ) ! ! n n n n n n n n z z z z n n                 and      1 1 2 1 1 2 1 2 0 1 1 1 0 1 1 2 0 (5 .4 ) ; , ; , ; ; ; ; t z z e t F z t F z t d t                 since  1 0R   , which is easily derivable by combining (5.1) with the definition (5.3), we find from Srivastava’s result (5.2) that         31 2 1 2 3 1 2 3 1 2 3 11 1 0 0 0 1 2 0 1 1 1 0 1 2 2 0 1 3 3 (5 .5) , , ; , , ; , , 1 ( ) ( ) . ; ; ; ; ; ; B s t u H z z z e t s u F z s t F z u s F z u t d s d t d u                                    since       1 2 3 m in , , 0R R R    . VI. Concluding remarks and observations By suitably specializing the decomposition formulas (4.1) to (4.5), we can deduce a number of (known or new) decomposition formulas including those given by (for example) Burchnall and Chaundy [1,2]. For instance, for Appell’s hypergeometric functions, we find the following (presumably new) results:
  • 8. Decomposition formulas for B H - hypergeometric… www.ijesi.org 47 | Page         2 2 2 1 2 1 1 2 2 , 0 2 4 1 2 ( ) ( ) ( ) (6 .1) , ; ; , ! !( 1) ( ) . 2 2 , ; 2 , 2 ; , i j i j i j i j i i j i i j z z F z z i ji F i j i j i j i j z z                                         and         1 2 2 3 1 2 1 1 2 3 1 2 , 0 2 2 3 1 1 2 3 1 2 ( ) ( ) ( ) (6 .2 ) , , ; , ; , ( ) ( ) ! ! . 2 , 2 , , ; 2 ; , . i j i j i j i j i j i j i i j z z F z z i j F i j i j i j i j i j z z                                          Furthermore, by making use of the decompositions (4.2), we can derive the following known reduction formulas for Srivastava’s triple hypergeometric function B H [19]:               2 1 1 2 3 1 3 3 1 2 3 2 31 2 3 4 1 2 1 3 2 3 2 3 (6 .3) , , ; , , ; , , ( )( ) 1 1 , ; , ; , . 1 1 1 1 B H z z z z zz z z F z z z z                               Some of the most recent contributions in the theory of Srivastava’s B H - hypergeometric series include a paper by Harold Exton [5] and a paper by Rathie and Kim [15]. The work of Exton [5] made use of elementary series manipulation and some wellknown analytic continuation formulas for the Gauss hypergeometric function in order to derive a fundamental set of nine solutions of the system of partial differential equations satisfied by the symmetrical function B H , Rathie and Kim [15].  1 1 ( 1) (1 ) 1 2 (6 .4 ) , , ; 1;1, 1 1 ( 1) ( 1) 1 2 a b b b a F a b b a b b a b b a b                                   since   1R b   . However, in deriving many of their applications of the summation formula (6.4), Rathie and Kim [15] obviously violated the constraint   1R b   associated with (6.4) at least in situations in which the hypergeometric series involved in their investigation would not terminate. Finally, we note that, here in this paper, we have not applied such superpositions of operators as those provided by (for example)              1 2 1 3 2 3 2 3 1 3 1 2 2 3 ;z z z z z z z z z z z z z z              and          1 3 1 2 2 3 2 3 1 2 3;z z z z z z z z z z z          REFFERENCES [1] J.L. Burchnall, T.W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940) 249–270. [2] J.L. Burchnall, T.W. Chaundy, Expansions of Appell’s double hypergeometric functions. II, Quart. J. Math. Oxford Ser. 12 (1941) 112–128. [3] T.W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942) 159–171. [4] T.W. Chaundy, On Appell’s Fourth Hypergeometric Functions. The Quart. J. Mathematical oxford (2) 17 (1966) pp.81-85. [5] H. Exton, On Srivastava’s symmetrical triple hypergeometric function B H , J. Indian Acad. Math. 25 (2003) 17–22. [6] A. Hasanov, On a mixed problem for the equation sign y|y|muxx + xnuyy = 0, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 2 (1982) 28–32 and 76 (in Russian).
  • 9. Decomposition formulas for B H - hypergeometric… www.ijesi.org 48 | Page [7] A. Hasanov, H.M. Srivastava, Some decomposition formulas associated with the Lauricella function ( )r A F and other multiple hypergeometric functions, Appl. Math. Lett. 19 (2006) 113–121. [8] C.M. Joshi, and Bissu S.K. "Some Inequalities Of Hypergeometric Function of Three Variables". Jnanabha, Vol. 21 (1991) pp.151-164. [9] G. Lauricella, Sulle funzioni ipergeometriche a più variabili, Rend. Circ. Mat. Palermo 7 (1893) 111–158. [10] G. Lohöfer, Theory of an electromagnetically deviated metal sphere. I: Absorbed power, SIAM J. Appl. Math. 49 (1989) 567– 581. [11] A.W. Niukkanen, Generalised hypergeometric series  1 ,..., N N F x x arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983) 1813–1825. [12] S.B. Opps, N. Saad, H.M. Srivastava, Some reduction and transformation formulas for the Appell hypergeometric function 2 F , J. Math. Anal. Appl. 302 (2005) 180–195. [13] P.A. Padmanabham, H.M. Srivastava, Summation formulas associated with the Lauricella function ( )r A F , Appl. Math. Lett. 13 (1) (2000) 65–70. [14] Rainville, Earld. “Special Functions”. New York (1960). [15] A.K. Rathie, Y.S. Kim, Further results on Srivastava’s triple hypergeometric series HA and HC, Indian J. Pure Appl. Math. 35 (2004) 991–1002. [16] K.A.M. Sayyed, and M.M. Makky, The D N - Operator On Sets Of Polynomials And Appell’s Functions Of Two Complex Variables. Bull. Fac. Sci. Qena (Egypt). 1(2), pp. 113-125 (1993). [17] K.A.M. Sayyed, and M.M. Makky, Certain Hypergeometric Functions Of Two Complex Variables Under Certain Differential And Integral Operators. Bull. Fac. Sci. Qena (Egypt). 1(2), pp.127-146 (1993). [18] J.P. Singhal, S.S. Bhati, Certain expansions associated with hypergeometric functions of n variables, Glasnik Mat. Ser. III 11 (31) (1976) 239–245. [19] H.M. Srivastava, Hypergeometric functions of three variables, Gan. ita 15 (1964) 97–108. [20] H.M. Srivastava, Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo (Ser. 2) 16 (1967) 99– 115. [21] H.M. Srivastava, A class of generalised multiple hypergeometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 18 (1985) L227–L234. [22] H.M. Srivastava and Per W. Karlsson, "Multiple Gaussian Hypergeometric Series". Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons; New York 1985.