@tsujimotter
2016.5.7 13
LT
お約束
以降, は素数を表す記号とするp
まとめると
p = 7 or 1, 2, 4 + 7n () p = X2
+ 7Y2
p = 7 or 1, 2, 4 + 7n () p = X2
+ 7Y2
p = 5 or 1, 9 + 20n () p = X2
+ 5Y2
p = 5 or 1, 9 + 20n () p = X2
+ 5Y2
p = 2 or 1 + 4n () p = X2
+ Y2
p = 2 or 1 + 4n () p = X2
+ Y2
p = 3 or 1 + 3n () p = X2
+ 3Y2
p = 3 or 1 + 3n () p = X2
+ 3Y2
m
59 = (-7)2
+ (-7) · 2 + 6 · 22
101 = (-5)2
+ (-5) · 4 + 6 · 42
p = X2
+ XY + 6Y2
p =
✓
X + Y
1 +
p
-23
2
◆ ✓
X + Y
1 -
p
-23
2
◆
f(q) = q
1Y
n=1
(1 - qn
)(1 - q23n
)
f(q) =
1X
n=1
anqn
ap = 2 () p = X2
+ XY + 6Y2
f	 	k
z ! i1
a, b, c, d 2 Z, ad - bc = 1
f
✓
az + b
cz + d
◆
= (cz + d)k
f(z)
保型形式のフーリエ係数
f(z) = a0 + a1q + a2q2
+ a3q3
+ · · ·
•  	
https://www.math.kyoto-u.ac.jp/insei/proceeding/2010/ito.pdf	
•  tsujimotter XX	+	XY	+	6YY	 	
http://tsujimotter.hatenablog.com/entry/6xx-xy-yy-2

素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」