SlideShare a Scribd company logo
1 of 8
Download to read offline
International Journal of Engineering Science Invention
ISSN (Online): 2319 โ€“ 6734, ISSN (Print): 2319 โ€“ 6726
www.ijesi.org ||Volume 5 Issue 3|| March 2016 || PP.37-44
www.ijesi.org 37 | Page
New classes of Adomian polynomials for the Adomian
decomposition method
Hytham.A.Alkresheh1
1
School of Mathematical Sciences, Universiti Sains Malaysia (USM)
ABSTRACT: In this paper, we proposed two new classes of the Adomian polynomials for the well-known
Adomian decomposition method (ADM). The regular polynomials ๐ด ๐‘› in the ADM method is replaced by the new
classes to solve nonlinear ordinary, partial and fractional differential equations. Numerical test examples
indicates that the use of the proposed polynomials in the ADM method gives more accurate approximate
solutions than the regular Adomian polynomials ๐ด ๐‘› for the same number of solution components.
KEYWORDS:Adomian decomposition method, Adomian polynomials, nonlinear differential equations
I. INTRODUCTION
The Adomian decomposition method introduced by G.Adomian in the 1980's [1-3] has proven to be an
efficient and powerful method to find the approximate solutions for a wide class of ordinary differential
equations, partial differential equations,integral differential equations andfractional differential equations [4].
Some of the advantages of ADM method include the ability to solve nonlinear problems without linearization
and perturbation or guessing the initial term and it is requires less number of calculation work than traditional
approaches. In addition it gives series analytical solution which in general converge very rapidly for most
problems. Many studies have been devoted to study the convergence for the ADM method include Hosseini [5],
Bougoffa [6],Babolian [7], Abdelrazec [8]
For nonlinear equations, the ADM method replaces the nonlinear term by a special series what are
called Adomian polynomials ๐ด ๐‘› , so that the polynomials ๐ด ๐‘› are generated for each nonlinearity. Several studies
such as Rach [9], Adomian [10, 11], Behiry and Hashish [12] have been proposed to modified the regular
Adomian polynomials ๐ด ๐‘› .
In this paper we use the general Taylor series expansion to construct two new classes of Adomian
polynomials. The convergence of the analytical approximate solution by using these two classes in ADM
method is faster than the Adomian polynomials ๐ด ๐‘› . More over the simple definition of the two classes makes
the generation of these two polynomials more easy by computer programs.
II. THE ADOMIAN DECOMPOSITION METHOD
Consider the nonlinear equation in the form
๐ฟ๐‘ข + ๐‘…๐‘ข + ๐‘๐‘ข = ๐‘” ๐‘ก .
(1)
Where๐ฟ is easily invertible differential operator, ๐‘… is a remainder linear differential operator, ๐‘ is an analytic
nonlinear terms and ๐‘” is a known function.
Taking the inverse linear operator ๐ฟโˆ’1
(. ) to both sides of Eq.(1) yields,
๐‘ข = ๐‘ ๐‘ก โˆ’ ๐ฟโˆ’1
๐‘…๐‘ข โˆ’ ๐ฟโˆ’1
๐‘๐‘ข + ๐ฟโˆ’1
๐‘”
(2)
where ๐‘(๐‘ก) represents the terms arising from using the given conditions.The Adomian decomposition method
introduces the solution by decomposing ๐‘ข(๐‘ก) to an infinite series ๐‘ข ๐‘ก = ๐‘ข ๐‘›
โˆž
๐‘›=0 and the nonlinear term ๐‘๐‘ข by
the infinite series ๐‘๐‘ข = ๐ด ๐‘›
โˆž
๐‘›=0 where ๐ด ๐‘› are the Adomian polynomials which are generated for each
nonlinearity and can be found by the formula
๐ด ๐‘› = ๐ด ๐‘› ๐‘ข0, ๐‘ข1, โ€ฆ . . , ๐‘ข ๐‘› =
1
๐‘›!
๐‘‘ ๐‘›
๐‘‘๐œ† ๐‘›
๐‘ ๐œ†๐‘–
๐‘ข๐‘–
โˆž
๐‘›=0 ๐œ†=0
, ๐‘› = 0,1,2, โ€ฆ โ€ฆ. (3)
New classes of Adomian polynomialsโ€ฆ
www.ijesi.org 38 | Page
A number of algorithms to compute the regular Adomian polynomials ๐ด ๐‘› have been proposed. See, for
example, Rach [13], Wazwaz [14], Abdelwahid [15] and Zhu [16].
The first five Adomian polynomials for the one variable ๐‘๐‘ข = ๐‘“(๐‘ข(๐‘ก)) are given by,
๐ด0 = ๐‘“ ๐‘ข0
๐ด1 = ๐‘ข1 ๐‘“โ€ฒ
๐‘ข0
๐ด2 = ๐‘ข2 ๐‘“โ€ฒ
๐‘ข0 +
1
2!
๐‘ข1
2
๐‘“โ€ฒโ€ฒ
๐‘ข0 (4)
๐ด3 = ๐‘ข3 ๐‘“โ€ฒ
๐‘ข0 + ๐‘ข1 ๐‘ข2 ๐‘“โ€ฒโ€ฒ
๐‘ข0 +
1
3!
๐‘ข1
3
๐‘“(3)
๐‘ข0
๐ด4 = ๐‘ข4 ๐‘“โ€ฒ
๐‘ข0 + ๐‘ข1 ๐‘ข3 +
1
2!
๐‘ข2
2
๐‘“โ€ฒโ€ฒ
๐‘ข0 +
1
2!
๐‘ข1
2
๐‘ข2 ๐‘“ 3
๐‘ข0 +
1
4!
๐‘ข1
4
๐‘“ 4
๐‘ข0 .
Hence Eq.(2) become,
๐‘ข ๐‘› = ๐‘ ๐‘ก + ๐ฟโˆ’1
๐‘” โˆ’ ๐ฟโˆ’1
๐‘… ๐‘ข ๐‘› โˆ’ ๐ฟโˆ’1
๐‘… โˆ’ ๐ฟโˆ’1
๐ด ๐‘›
โˆž
๐‘›=0
โˆž
๐‘›=0
โˆž
๐‘›=0
(5)
Consequently, we can write
๐‘ข0 = ๐‘ ๐‘ก + ๐ฟโˆ’1
๐‘”
๐‘ข 1 = โˆ’๐ฟโˆ’1
๐‘…๐‘ข0 โˆ’ ๐ฟโˆ’1
๐ด0
๐‘ข 2 = โˆ’๐ฟโˆ’1
๐‘…๐‘ข1 โˆ’ ๐ฟโˆ’1
๐ด1 (6)
๐‘ข 3 = โˆ’๐ฟโˆ’1
๐‘…๐‘ข2 โˆ’ ๐ฟโˆ’1
๐ด2
:
๐‘ข ๐‘› = โˆ’๐ฟโˆ’1
๐‘…๐‘ข ๐‘›โˆ’1 โˆ’ ๐ฟโˆ’1
๐ด ๐‘›โˆ’1.
Finally, the ๐‘› th-term approximation solution for the Adomian decomposition method is given by ๐œ™ ๐‘› =
๐‘ข ๐‘˜, ๐‘› โ‰ฅ 1๐‘›โˆ’1
๐‘˜=0 and the solution ๐‘ข(๐‘ก) = lim ๐‘›โ†’โˆž โˆ… ๐‘› .
III. MAIN RESULTS
The regular Adomian polynomials ๐ด ๐‘› can be obtained by rearranging the terms of the Taylor series
expansion for the nonlinear terms around the initial solution๐‘ข0, such that ๐ด0depends only on ๐‘ข0, ๐ด1depends only
on ๐‘ข0 and ๐‘ข1 , ๐ด2 depends only on ๐‘ข0, ๐‘ข1, ๐‘ข2 and so on. This fact mean the Adomian polynomials ๐ด ๐‘› are not
uniquely defined. In this section we used two different formulas to rearrange the terms of the Taylor series
expansion for the nonlinear term ๐‘๐‘ข = ๐‘“(๐‘ข) to construct the two new classes of Adomian polynomials; the first
polynomials will be denoted by ๐ด ๐‘›
โˆ—
and the second polynomials will be denoted by ๐ด ๐‘›
โˆ—โˆ—
.
3.1 The class ๐‘จ ๐’
โˆ—
Define ๐‘† ๐‘› = ๐‘ข ๐‘˜
๐‘›
๐‘˜=0 and using Taylor series expansion about ๐‘ข0 for the nonlinear term ๐‘“(๐‘ข) to define
๐‘‡๐‘› as follows
๐‘‡0 = ๐‘“(๐‘ข0)
New classes of Adomian polynomialsโ€ฆ
www.ijesi.org 39 | Page
๐‘‡1 = ๐‘“ ๐‘ข0 + ๐‘†1 โˆ’ ๐‘†0 ๐‘“โ€ฒ
๐‘ข0 + (๐‘†1 โˆ’ ๐‘†0)2
1
2!
๐‘“โ€ฒโ€ฒ
(๐‘ข0)
๐‘‡2 = ๐‘“ ๐‘ข0 + ๐‘†2 โˆ’ ๐‘†0 ๐‘“โ€ฒ
๐‘ข0 + ๐‘†2 โˆ’ ๐‘†0
2
1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + (๐‘†2 โˆ’ ๐‘†0)3
1
3!
๐‘“โ€ฒโ€ฒ
โ€ฒ(๐‘ข0)
๐‘‡3 = ๐‘“ ๐‘ข0 + ๐‘†3 โˆ’ ๐‘†0 ๐‘“โ€ฒ
๐‘ข0 + ๐‘†3 โˆ’ ๐‘†0
2
1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + (๐‘†3 โˆ’ ๐‘†0)3
1
3!
๐‘“โ€ฒโ€ฒ
โ€ฒ
๐‘ข0
+ (๐‘†3 โˆ’ ๐‘†0)4
1
4!
๐‘“(4)
(๐‘ข0)
:
๐‘‡๐‘› = ๐‘† ๐‘› โˆ’ ๐‘†0
๐‘˜
1
๐‘˜!
๐‘“ ๐‘˜
๐‘ข0 , ๐‘› โ‰ฅ 1
๐‘›+1
๐‘˜=0
(7)
Now, to construct the first class of Adomian polynomials we define
๐ด0
โˆ—
= ๐‘‡0 = ๐‘“(๐‘ข0) and ๐ด ๐‘›
โˆ—
= ๐‘‡๐‘› โˆ’ ๐‘‡๐‘›โˆ’1, ๐‘› โ‰ฅ 1.
Consequently
๐ด0
โˆ—
= ๐‘“ ๐‘ข0
๐ด1
โˆ—
= ๐‘ข1 ๐‘“โ€ฒ
๐‘ข0 +
1
2!
๐‘ข1
2
๐‘“โ€ฒโ€ฒ
๐‘ข0
๐ด2
โˆ—
=๐‘ข2 ๐‘“โ€ฒ
๐‘ข0 + 2๐‘ข1 ๐‘ข2 + ๐‘ข2
2 1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + (๐‘ข1
3
+ 3๐‘ข1
2
๐‘ข2 + 3๐‘ข1 ๐‘ข2
2
+ ๐‘ข2
3
)
1
3!
๐‘“ 3
๐‘ข0
(8)
๐ด3
โˆ—
= ๐‘ข3 ๐‘“โ€ฒ
๐‘ข0 + 2๐‘ข1 ๐‘ข3 + 2๐‘ข2 ๐‘ข3 + ๐‘ข3
2 1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + 3๐‘ข1
2
๐‘ข3 + 6๐‘ข1 ๐‘ข2 ๐‘ข3 + 3๐‘ข2
2
๐‘ข3 + 3๐‘ข1 ๐‘ข3
2
+ 3๐‘ข2 ๐‘ข3
2
+
๐‘ข3313!๐‘“3๐‘ข0+(๐‘ข1+๐‘ข2+๐‘ข3)414!๐‘“4๐‘ข0
:
:
To prove the convergence of this class using the definition of๐‘‡๐‘› , we take the infinity limit and obtain
lim
๐‘›โ†’โˆž
๐‘‡๐‘› = lim
๐‘›โ†’โˆž
๐‘† ๐‘› โˆ’ ๐‘†0
๐‘˜
1
๐‘˜!
๐‘“ ๐‘˜
๐‘ข0 = ๐‘ข ๐‘› โˆ’ ๐‘ข0
๐‘˜
1
๐‘˜!
๐‘“ ๐‘˜
๐‘ข0 =
โˆž
๐‘˜=0
๐‘›+1
๐‘˜=0
๐‘“ ๐‘ข0 + ๐‘ข1 + ๐‘ข2 + โ‹ฏ ๐‘“โ€ฒ
๐‘ข0
+ ๐‘ข1
2
+ 2๐‘ข1 ๐‘ข2 + ๐‘ข2
2
+ 2๐‘ข1 ๐‘ข3 + 2๐‘ข2 ๐‘ข3 + โ‹ฏ
1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0
+ ๐‘ข1
3
+ 3๐‘ข1
2
๐‘ข2 + 3๐‘ข1 ๐‘ข2
2
+ โ‹ฏ
1
3!
๐‘“ 3
๐‘ข0 + (๐‘ข1
4
+ 4๐‘ข1
3
๐‘ข2 + 6๐‘ข1
2
๐‘ข2
2
+ โ‹ฏ )
1
4!
๐‘“ 4
๐‘ข0 .
= ๐ด ๐‘˜
โˆ—โˆž
๐‘˜=0 = ๐‘“ ๐‘ข0 + ๐‘ข โˆ’ ๐‘ข0 ๐‘“โ€ฒ
๐‘ข0 + (๐‘ข โˆ’ ๐‘ข0)2 1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + (๐‘ข โˆ’ ๐‘ข0)3 1
3!
๐‘“โ€ฒโ€ฒโ€ฒ
๐‘ข0 + โ‹ฏ
Which is the Taylor series expansion for the nonlinear term ๐‘๐‘ข = ๐‘“(๐‘ข) about the initial solution ๐‘ข0, where
๐‘ข = ๐‘ข ๐‘˜
โˆž
๐‘˜=0 .
Thus
lim
๐‘›โ†’โˆž
๐‘‡๐‘› = lim
๐‘˜โ†’โˆž
๐ด ๐‘˜
โˆ—
๐‘›
๐‘˜=0
= ๐ด ๐‘˜
โˆ—
โˆž
๐‘˜=0
= ๐‘“(๐‘ข)
3.2 The class ๐‘จ ๐’
โˆ—โˆ—
Again define ๐‘† ๐‘› = ๐‘ข ๐‘˜
๐‘›
๐‘˜=0 and using Taylor series expansion about ๐‘ข0 for the nonlinear term ๐‘“(๐‘ข) to
define ๐‘‡๐‘› as follows
๐‘‡0 = ๐‘“(๐‘ข0)
๐‘‡1 = ๐‘“ ๐‘ข0 + ๐‘†1 โˆ’ ๐‘†0 ๐‘“โ€ฒ
๐‘ข0 + (๐‘†1 โˆ’ ๐‘†0)2
1
2!
๐‘“โ€ฒโ€ฒ
(๐‘ข0)
๐‘‡2 = ๐‘“ ๐‘ข0 + ๐‘†2 โˆ’ ๐‘†0 ๐‘“โ€ฒ
๐‘ข0 + ๐‘†2 โˆ’ ๐‘†0
2
1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + (๐‘†1 โˆ’ ๐‘†0)3
1
3!
๐‘“โ€ฒโ€ฒ
โ€ฒ(๐‘ข0)
New classes of Adomian polynomialsโ€ฆ
www.ijesi.org 40 | Page
๐‘‡3 = ๐‘“ ๐‘ข0 + ๐‘†3 โˆ’ ๐‘†0 ๐‘“โ€ฒ
๐‘ข0 + ๐‘†3 โˆ’ ๐‘†0
2
1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + (๐‘†2 โˆ’ ๐‘†0)3
1
3!
๐‘“โ€ฒโ€ฒ
โ€ฒ
๐‘ข0
+ (๐‘†1 โˆ’ ๐‘†0)4
1
4!
๐‘“(4)
(๐‘ข0)
:
๐‘‡๐‘› = ๐‘“ ๐‘ข0 + ๐‘† ๐‘› โˆ’ ๐‘†0 ๐‘“โ€ฒ
๐‘ข0 ๐‘† ๐‘›โˆ’๐‘˜ โˆ’ ๐‘†0
๐‘˜+2
1
(๐‘˜ + 2)!
๐‘“ ๐‘˜+2
๐‘ข0 , ๐‘› โ‰ฅ 1.
๐‘›โˆ’1
๐‘˜=0
(9)
To construct the second class of Adomian polynomials we define๐ด0
โˆ—โˆ—
= ๐‘‡0 = ๐‘“(๐‘ข0) and ๐ด ๐‘›
โˆ—โˆ—
= ๐‘‡๐‘› โˆ’ ๐‘‡๐‘›โˆ’1, ๐‘› โ‰ฅ 1.
Consequently
๐ด0
โˆ—โˆ—
= ๐‘“ ๐‘ข0
๐ด1
โˆ—โˆ—
= ๐‘ข1 ๐‘“โ€ฒ
๐‘ข0 +
1
2!
๐‘ข1
2
๐‘“โ€ฒโ€ฒ
๐‘ข0
๐ด2
โˆ—โˆ—
=๐‘ข2 ๐‘“โ€ฒ
๐‘ข0 + 2๐‘ข1 ๐‘ข2 + ๐‘ข2
2 1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + (๐‘ข1
3
)
1
3!
๐‘“ 3
๐‘ข0
(10)
๐ด3
โˆ—โˆ—
= ๐‘ข3 ๐‘“โ€ฒ
๐‘ข0 + 2๐‘ข1 ๐‘ข3 + 2๐‘ข2 ๐‘ข3 + ๐‘ข3
2
1
2!
๐‘“โ€ฒโ€ฒ
๐‘ข0 + 3๐‘ข1
2
๐‘ข2 + 3๐‘ข1 ๐‘ข2
2
+ ๐‘ข2
3
1
3!
๐‘“ 3
๐‘ข0
+
1
4!
๐‘ข1
4
๐‘“ 4
๐‘ข0
:
:
The convergence proof for this class ๐ด ๐‘›
โˆ—โˆ—
is in a similar manner of convergence prove for class ๐ด ๐‘›
โˆ—
.
In view the definition of the two classes ๐ด ๐‘›
โˆ—โˆ—
and ๐ด ๐‘›
โˆ—
, we note they are identical until ๐ด1and so the effect on
convergence gradually starts after ๐‘› = 1. The convergence of the ๐ด ๐‘›
โˆ—
is faster than the ๐ด ๐‘›
โˆ—โˆ—
but it needs more of
computation work than ๐ด ๐‘›
โˆ—
. However the convergence of the ๐ด ๐‘›
โˆ—โˆ—
and๐ด ๐‘›
โˆ—
. is faster than each of the regular
Adomian polynomials๐ด ๐‘› , the modified Adomian polynomials ๐ด ๐‘› [11] and the modified Adomian polynomials
๐ด(๐ผ๐ผ)
[9].
IV. NUMERICAL EXAMPLES
In this section we give five examples with various types of nonlinearity terms in the case of ordinary
differential equations, partial differential equations and fractional differential equations. In the first four
examples we make a comparison for the corresponding absolute error between the using of the proposed
polynomials ๐ด ๐‘›
โˆ—
, ๐ด ๐‘›
โˆ—โˆ—
in ADM method and the regular polynomials ๐ด ๐‘› . For the last example the corresponding
absolute error is computed for the using of ๐ด ๐‘›
โˆ—
, ๐ด ๐‘›
โˆ—โˆ—
,๐ด ๐‘› , ๐ด ๐‘› , ๐ด(๐ผ๐ผ)
in ADM method.
4.1Example [17]
Consider the second order initial value problem of Bratu-type
๐‘ขโ€ฒโ€ฒ
๐‘ก โˆ’ 2๐‘’ ๐‘ข
= 0, 0 โ‰ค ๐‘ก โ‰ค 1 (11)
๐‘ข 0 = 0, ๐‘ขโ€ฒ
0 = 0.
Applying the ADM method in to the Eq.(11), we obtain
๐‘ข0 = 0
๐‘ข ๐‘› = 2๐ฟโˆ’1
๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1
where ๐ฟโˆ’1
(. ) is assumed a two-flod integral operator given by๐ฟโˆ’1
(. )= . ๐‘‘๐‘ก๐‘‘๐‘ก
๐‘ก
0
๐‘ก
0
and ๐ด ๐‘› the regular Adomian
polynomials. The exact solution of this problem is given by ๐‘ข(๐‘ก) = โˆ’2๐‘™๐‘›[๐‘๐‘œ๐‘ (๐‘ก)].
Table(1) shows the exact solution ๐‘ข(๐‘ก) and the corresponding absolute error of approximate solution โˆ…5by using
each of, the regular Adomian polynomials ๐ด ๐‘› and the proposed polynomials ๐ด ๐‘›
โˆ—
, ๐ด ๐‘›
โˆ—โˆ—
.
4.2Example [18]
Consider the first order initial value problem with ๐‘ ๐‘–๐‘›(๐‘ข) nonlinearity
๐‘ขโ€ฒ
๐‘ก โˆ’ sinโก(๐‘ข(๐‘ก)) = 0, 0 โ‰ค ๐‘ก โ‰ค 1 (12)
๐‘ข 0 = ๐‘0.
Applying ADM method in to the Eq.(12) with given initial condition, we obtain
๐‘ข0 = ๐‘0
๐‘ข ๐‘› = โˆ’๐ฟโˆ’1
๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1
New classes of Adomian polynomialsโ€ฆ
www.ijesi.org 41 | Page
where the operator ๐ฟโˆ’1
(. )is given by . ๐‘‘๐‘ก
๐‘ก
0
.The exact solution of this problem can be expressed as
๐‘ข ๐‘ก = 2๐‘๐‘œ๐‘กโˆ’1
[๐‘’ ๐‘ก
cotโก(
๐‘0
2
)]
Table(2) shows the exact solution ๐‘ข(๐‘ก) when๐‘0 =
๐œ‹
2
and the corresponding absolute error of approximate
solution โˆ…5by using each of, the regular Adomian polynomials ๐ด ๐‘› and the proposed polynomials ๐ด ๐‘›
โˆ—
, ๐ด ๐‘›
โˆ—โˆ—
.
Table (1) the exact solution and corresponding absolute error for example (1)
t exact ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ด ๐‘›
๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—โˆ— ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—
0.1 0.0100167 4.38๐ธ-13 1.46๐ธ-15 9.26๐ธ-16
0.2 0.0402695 4.54๐ธ-10 3.78๐ธ-12 1.55๐ธ-12
0.3 0.0913833 2.66๐ธ-08 4.37๐ธ-10 1.40๐ธ-10
0.4 0.1644580 4.84๐ธ-07 1.36๐ธ-08 3.87๐ธ-09
0.5 0.2611684 4.66๐ธ-06 2.03๐ธ-07 5.49๐ธ-08
0.6 0.3839303 3.01๐ธ-05 1.91๐ธ-06 5.08๐ธ-07
0.7 0.5361715 1.48๐ธ-04 1.31๐ธ-05 3.50๐ธ-06
0.8 0.7227814 6.00๐ธ-04 7.18๐ธ-05 1.96๐ธ-05
0.9 0.9508848 2.10๐ธ-03 3.32๐ธ-04 9.51๐ธ-05
1.0 1.2312529 6.64๐ธ-03 1.36๐ธ-03 4.14๐ธ-04
Table (2) the exact solution and corresponding absolute error for example (2)
t exact ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ด ๐‘›
๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—โˆ— ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—
0.1 1.4709625 4.15Eโˆ’07 5.32Eโˆ’10 1.37Eโˆ’10
0.2 1.3721164 1.31Eโˆ’05 6.70Eโˆ’08 1.69Eโˆ’08
0.3 1.2751976 9.86Eโˆ’05 1.11Eโˆ’06 2.73Eโˆ’07
0.4 1.1810552 4.07Eโˆ’04 8.04Eโˆ’06 1.89Eโˆ’06
0.5 1.0904152 1.21Eโˆ’03 3.65Eโˆ’05 8.11Eโˆ’06
0.6 1.0038607 2.93Eโˆ’03 1.23Eโˆ’04 2.54Eโˆ’05
0.7 0.9218242 6.13Eโˆ’03 3.40Eโˆ’04 6.37Eโˆ’05
0.8 0.8445915 1.15Eโˆ’02 8.06Eโˆ’04 1.33Eโˆ’04
0.9 0.7723140 1.99Eโˆ’02 1.69Eโˆ’03 2.40Eโˆ’04
1.0 0.7050268 3.24E -02 3.24E -03 3.76Eโˆ’04
4.3Example [19]
Consider the sine-Gordon hyperbolic equation
๐‘ข๐‘ก๐‘ก โˆ’ ๐‘ข ๐‘ฅ๐‘ฅ + sin ๐‘ข = 0, โˆ’ โˆž โ‰ค ๐‘ฅ โ‰ค โˆž (13)
๐‘ข ๐‘ฅ, 0 = 0, ๐‘ข๐‘ก ๐‘ฅ, 0 = 4๐‘†๐‘’๐‘๐‘•(๐‘ฅ)
Applying ADM method in to the Eq.(13) with given initial conditions, we obtain
๐‘ข0 = 4๐‘ก๐‘ ๐‘’๐‘๐‘•(๐‘ฅ)
๐‘ข ๐‘› = โˆ’๐ฟ๐‘ก๐‘ก
โˆ’1
๐‘ข ๐‘ฅ๐‘ฅ โˆ’ ๐ฟ๐‘ก๐‘ก
โˆ’1
๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1
where the operator ๐ฟ๐‘ก๐‘ก
โˆ’1
(. ) is given by . ๐‘‘๐‘ก๐‘‘๐‘ก
๐‘ก
0
๐‘ก
0
.The exact solution of this problem can be expressed as
๐‘ข(๐‘ฅ, ๐‘ก) = 4 ๐‘ก๐‘Ž๐‘›โˆ’1
[๐‘ก ๐‘ ๐‘’๐‘๐‘•(๐‘ฅ)].
Table(3) shows the exact solution ๐‘ข(๐‘ก) and the corresponding absolute error of approximate solution โˆ…5 by
using each of, the regular Adomian polynomials ๐ด ๐‘› and the proposed polynomials ๐ด ๐‘›
โˆ—
, ๐ด ๐‘›
โˆ—โˆ—
, ๐‘ ๐‘–๐‘›(๐‘ข) is expressed
in three terms of Taylor series to facilitate the computation of integrals.
4.4Example [20]
Consider the fractional differential equation with ๐‘ขnonlinearity
๐ทโˆ—
โˆ
๐‘ข =
9
4
๐‘ข + ๐‘ข, 1 โ‰คโˆโ‰ค 2, ๐‘ก โ‰ฅ 0 (14)
๐‘ข 0 = 1, ๐‘ขโ€ฒ
0 = 2
where ๐ทโˆ—
โˆ
(. ) represent the Caputo fractional derivative of order โˆ. Applying ADM method in to the Eq.(14)
with given initial conditions, we obtain
๐‘ข0 = 1 + 2๐‘ก
New classes of Adomian polynomialsโ€ฆ
www.ijesi.org 42 | Page
๐‘ข ๐‘› = ๐ฝโˆ
๐‘ข ๐‘›โˆ’1 +
9
4
๐ฝโˆ
๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1
where ๐ฝโˆ
. is the Riemann-Liouville fractional integral. For more details and some basic properties of Caputo
fractional derivative and Riemann-Liouville fractional integral we refer the reader to the reference[21]. The
exact solution of Eq.(14) whenโˆ= 2 given by๐‘ข ๐‘ก =
9
4
[
3
2
๐‘’.5๐‘ก
+
1
6
๐‘’โˆ’.5๐‘ก
โˆ’ 1]2
.
Table(4) shows the exact solution ๐‘ข(๐‘ก) when โˆ= 2 and the corresponding absolute error of approximate
solution โˆ…4 by using each of, the regular Adomian polynomials ๐ด ๐‘› and the proposed polynomials๐ด ๐‘›
โˆ—
, ๐ด ๐‘›
โˆ—โˆ—
.
Table (3) the exact solution and corresponding absolute error when x= 2.0 and x= 2.5 for example (3)
t/x 2.0 2.5
exact uexact โˆ’ โˆ…An
uexact โˆ’ โˆ…Aโˆ—โˆ— exact uexact โˆ’ โˆ…An
uexact โˆ’ โˆ…Aโˆ—โˆ—
0.2 0.2124418 2.65E-12 2.64E-12 0.1304107 9.51E-14 9.51E-14
0.4 0.4236918 2.09E-09 2.08E-09 0.2605448 8.52E-11 8.48E-11
0.6 0.6325980 1.27E-07 1.25E-07 0.3901291 5.52E-09 5.45E-09
0.8 0.8380841 2.54E-06 2.47E-06 0.5188974 1.12E-07 1.10E-07
1.0 1.0391806 2.68E-05 2.58E-05 0.6465935 1.18E-06 1.14E-06
1.2 1.2350467 1.86E-04 1.77E-04 0.7729742 8.11E-06 7.69E-06
1.4 1.4249843 9.70E-04 9.14E-04 0.8978117 4.07E-05 3.80E-05
1.5 1.5175522 2.03E-03 1.91E -03 0.9595853 8.35E-05 7.76E-05
Table (4) the exact solution whenโˆ= 2 and corresponding absolute error for example (4)
t exact ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ด ๐‘›
๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—โˆ— ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—
0.1 1.2169781 4.29Eโˆ’11 7.02Eโˆ’12 6.76Eโˆ’12
0.2 1.4709903 8.32Eโˆ’09 1.61Eโˆ’09 1.40Eโˆ’09
0.3 1.7670492 1.67Eโˆ’07 3.71Eโˆ’08 2.76Eโˆ’08
0.4 2.1107408 1.34Eโˆ’06 3.38Eโˆ’07 1.99Eโˆ’07
0.5 2.5082874 6.60Eโˆ’06 1.86Eโˆ’06 7.67Eโˆ’07
0.6 2.9666165 2.38Eโˆ’05 7.51Eโˆ’06 1.65Eโˆ’06
0.7 3.4934376 6.99Eโˆ’05 2.44Eโˆ’05 4.79Eโˆ’07
0.8 4.0973272 1.76Eโˆ’04 6.82Eโˆ’05 1.27Eโˆ’05
0.9 4.7878229 3.97Eโˆ’04 1.69Eโˆ’04 6.71Eโˆ’05
1.0 5.5755276 8.19Eโˆ’04 3.83Eโˆ’04 2.32Eโˆ’04
4.5Example
Consider the second order initial value problem with ๐‘ข5
nonlinearity
๐‘ขโ€ฒโ€ฒ
๐‘ก โˆ’ 3๐‘ข5
= 0, 0 โ‰ค ๐‘ก โ‰ค 1 (15)
๐‘ข 0 =
1
2
, ๐‘ขโ€ฒ
0 =
โˆ’1
8
.
Applying the ADM method in to the Eq.(15), with given initial conditions, we obtain
๐‘ข0 =
1
2
โˆ’
1
8
๐‘ก
๐‘ข ๐‘› = 3๐ฟโˆ’1
๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1
where the operator๐ฟโˆ’1
(. ) is given by . ๐‘‘๐‘ก๐‘‘๐‘ก
๐‘ก
0
๐‘ก
0
. The exact solution of this problem is given by
๐‘ข(๐‘ก) = (2๐‘ก + 4)
โˆ’1
2 .
Table(5) shows the exact solution ๐‘ข(๐‘ก) and the corresponding absolute error of approximate solution โˆ…4 by
using each of, the regular Adomian polynomials ๐ด ๐‘› , ๐ด ๐‘› [11], ๐ด(๐ผ๐ผ)
[9] and the proposed polynomials ๐ด ๐‘›
โˆ—
, ๐ด ๐‘›
โˆ—โˆ—
.
New classes of Adomian polynomialsโ€ฆ
www.ijesi.org 43 | Page
Table (5) the exact solution and corresponding absolute error for example (5)
t exact uexact โˆ’ โˆ…An
uexact โˆ’ โˆ…An uexact โˆ’ โˆ…An
(II)
uexact โˆ’ โˆ…Aโˆ—โˆ— uexact โˆ’ โˆ…Aโˆ—
0.1 0.4879500 3.33Eโˆ’16 3.33Eโˆ’16 0.000000 0.000000 0.000000
0.3 0.4662524 1.68Eโˆ’11 1.50Eโˆ’11 2.22Eโˆ’12 1.05Eโˆ’13 6.41Eโˆ’14
0.5 0.4472135 1.95Eโˆ’09 1.75Eโˆ’09 2.71Eโˆ’10 2.06Eโˆ’11 7.73Eโˆ’12
0.7 0.4303314 3.98Eโˆ’08 3.60Eโˆ’08 5.91Eโˆ’09 6.79Eโˆ’10 1.73Eโˆ’10
0.9 0.4152273 3.48Eโˆ’07 3.17Eโˆ’07 5.57Eโˆ’08 8.96Eโˆ’09 1.74Eโˆ’09
1.1 0.4016096 1.85Eโˆ’06 1.69Eโˆ’06 3.20Eโˆ’07 6.75Eโˆ’08 1.10Eโˆ’08
1.3 0.3892494 7.05Eโˆ’06 6.51Eโˆ’06 1.33Eโˆ’06 3.49Eโˆ’07 5.15Eโˆ’08
1.5 0.3779644 2.12Eโˆ’05 1.97Eโˆ’05 4.38Eโˆ’06 1.38Eโˆ’06 1.93Eโˆ’07
V. CONCLUSION
In this paper, two different formulas are used to rearrange the terms of a Taylor series expansion about
the initial solution ๐‘ข0 to produce a new classes of Adomian polynomials. Although the proposed polynomials
cost more computational work, the simple definitions make the generation by computer programs easier. The
given examples showed that using these polynomials are more accurate than the regular Adomian polynomials
๐ด ๐‘› and it's modifications๐ด ๐‘› , ๐ด(๐ผ๐ผ)
for solving nonlinear problems.
APPENDIX
1- Mathematica code for the polynomials ๐ด ๐‘›
โˆ—โˆ—
.
2- Mathematica code for the polynomials ๐ด ๐‘›
โˆ—
.
REFERENCES
[1] G. Adomian, Nonlinear Stochastic Operator Equations. 1986.
[2] G. Adomian, Solving frontier problems of physics: the decomposition method, Vol. 60, Springer Science & Business Media,
2013.
[3] G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Mathematical and
Computer Modelling 13 (7) (1990) 17-43.
[4] Hytham. A. Alkresheh, A. I. Md. Ismail, "An algorithm for positive solution of boundary value problems of nonlinear fractional
differential equations by Adomian decomposition method", Journal of Interpolation and Approximation in Scientific Computing,
Volume 2016, No. 1 (2016), 25-37.
[5] M. M. Hosseini, H. Nasabzadeh, On the convergence of Adomiandecomposition method, Applied mathematics and computation
182 (1) (2006) 536-543.
[6] L. Bougoffa, R. C. Rach, S. El-Manouni, A convergence analysis of the Adomian decomposition method for an abstract Cauchy
problem of a system of first-order nonlinear differentialequations, International Journal of Computer Mathematics 90 (2) (2013)
360-375.
[7] E. Babolian, J. Biazar, On the order of convergence of Adomian method, Applied Mathematics and Computation 130 (2) (2002)
383- 387.
[8] A. Abdelrazec, D. Pelinovsky, Convergence of the Adomian decomposition method forinitial-value problems, Numerical
Methods for Partial Differential Equations 27 (4) (2011) 749-766.
[9] B. H. Rudall, R. C. Rach, A new definition of the adomian polynomials, Kybernetes 37 (7) (2008) 910-955.
[10] G. Adomian, A review of the decomposition method in applied mathematics, Journal of mathematical analysis and applications
135 (2) (1988) 501-544.
[11] G. Adomian, R. Rach, Modified Adomian polynomials, Mathematical and computer modelling 24 (11) (1996) 39-46.
[12] S. Behiry, H. Hashish, I. El-Kalla, A. Elsaid, A new algorithm for the decomposition solution of nonlinear differential equations,
Computers & Mathematics with Applications 54 (4) (2007) 459-466.
New classes of Adomian polynomialsโ€ฆ
www.ijesi.org 44 | Page
[13] R. Rach, A convenient computational form for the Adomian polynomials, Journal of mathematical analysis and applications 102
(2) (1984) 415-419.
[14] A.-M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Applied Mathematics and
computation 111 (1) (2000) 33-51.
[15] F. Abdelwahid, A mathematical model of Adomian polynomials, Applied Mathematics and Computation 141 (2) (2003) 447-
453.
[16] Y. Zhu, Q. Chang, S. Wu, A new algorithm for calculating adomian polynomials, Applied Mathematics and Computation 169 (1)
(2005) 402-416.
[17] A.-M. Wazwaz, Adomian decomposition method for a reliable treatment of the bratu-typeequations, Applied Mathematics and
Computation 166 (3) (2005) 652-663.
[18] J.-S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by
the rach-adomian-meyers modified decompositionmethod, Applied Mathematics and Computation 218 (17) (2012) 8370-8392.
[19] M. Chowdhury, I. Hashim, Application of homotopy-perturbation method to klein-Gordon and sine-gordon equations, Chaos,
Solitons & Fractals 39 (4) (2009) 1928-1935.
[20] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional ivps, Communications in Nonlinear Science and
Numerical Simulation 14 (3) (2009) 674-684.
[21] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theoryand applications. 1993, Gordon and
Breach, Yverdon.

More Related Content

What's hot

Chapter 2 matrices
Chapter 2   matricesChapter 2   matrices
Chapter 2 matrices
sarkissk
ย 
Direct Methods to Solve Linear Equations Systems
Direct Methods to Solve Linear Equations SystemsDirect Methods to Solve Linear Equations Systems
Direct Methods to Solve Linear Equations Systems
Lizeth Paola Barrero
ย 
Systems of equations alg1
Systems of equations alg1Systems of equations alg1
Systems of equations alg1
Hazel Joy Chong
ย 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
Muhammad Nur Chalim
ย 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Rai University
ย 

What's hot (20)

Lesson 9 transcendental functions
Lesson 9 transcendental functionsLesson 9 transcendental functions
Lesson 9 transcendental functions
ย 
doc
docdoc
doc
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
ย 
Chapter 2 matrices
Chapter 2   matricesChapter 2   matrices
Chapter 2 matrices
ย 
Pearson's correlation
Pearson's correlationPearson's correlation
Pearson's correlation
ย 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
ย 
Crout s method for solving system of linear equations
Crout s method for solving system of linear equationsCrout s method for solving system of linear equations
Crout s method for solving system of linear equations
ย 
Direct Methods to Solve Linear Equations Systems
Direct Methods to Solve Linear Equations SystemsDirect Methods to Solve Linear Equations Systems
Direct Methods to Solve Linear Equations Systems
ย 
Systems of equations alg1
Systems of equations alg1Systems of equations alg1
Systems of equations alg1
ย 
Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5
ย 
Systems of equations and matricies
Systems of equations and matriciesSystems of equations and matricies
Systems of equations and matricies
ย 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ย 
Unidad 1 (segunda parte)
Unidad 1 (segunda parte)Unidad 1 (segunda parte)
Unidad 1 (segunda parte)
ย 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
ย 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
ย 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
ย 
MAT-314 Relations and Functions
MAT-314 Relations and FunctionsMAT-314 Relations and Functions
MAT-314 Relations and Functions
ย 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
ย 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
ย 
Numerical Solution of the Nonlocal Singularly Perturbed Problem
Numerical Solution of the Nonlocal Singularly Perturbed ProblemNumerical Solution of the Nonlocal Singularly Perturbed Problem
Numerical Solution of the Nonlocal Singularly Perturbed Problem
ย 

Viewers also liked

Effect of Wind Direction through Double Storied Building Model Configurations...
Effect of Wind Direction through Double Storied Building Model Configurations...Effect of Wind Direction through Double Storied Building Model Configurations...
Effect of Wind Direction through Double Storied Building Model Configurations...
inventionjournals
ย 
E-Voting and Credible Elections in Nigeria
E-Voting and Credible Elections in NigeriaE-Voting and Credible Elections in Nigeria
E-Voting and Credible Elections in Nigeria
inventionjournals
ย 
Comparison of Supercritical Fluid Extraction with Steam Distillation for the ...
Comparison of Supercritical Fluid Extraction with Steam Distillation for the ...Comparison of Supercritical Fluid Extraction with Steam Distillation for the ...
Comparison of Supercritical Fluid Extraction with Steam Distillation for the ...
inventionjournals
ย 

Viewers also liked (20)

Bagasse based high pressure co-generation in Pakistan
Bagasse based high pressure co-generation in PakistanBagasse based high pressure co-generation in Pakistan
Bagasse based high pressure co-generation in Pakistan
ย 
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
Multi-Mode Conceptual Clustering Algorithm Based Social Group Identification ...
ย 
Design and Fabrication of a Recreational Human-Powered Vehicle
Design and Fabrication of a Recreational Human-Powered VehicleDesign and Fabrication of a Recreational Human-Powered Vehicle
Design and Fabrication of a Recreational Human-Powered Vehicle
ย 
New binary memristor crossbar architecture based neural networks for speech r...
New binary memristor crossbar architecture based neural networks for speech r...New binary memristor crossbar architecture based neural networks for speech r...
New binary memristor crossbar architecture based neural networks for speech r...
ย 
Approaches to Administrative Leadership
Approaches to Administrative LeadershipApproaches to Administrative Leadership
Approaches to Administrative Leadership
ย 
Synaptic memristor bridge circuit with pulse width based programable weights ...
Synaptic memristor bridge circuit with pulse width based programable weights ...Synaptic memristor bridge circuit with pulse width based programable weights ...
Synaptic memristor bridge circuit with pulse width based programable weights ...
ย 
Power Aware Geocast Based Geocast Region Tracking Using Mobile Node in Wirele...
Power Aware Geocast Based Geocast Region Tracking Using Mobile Node in Wirele...Power Aware Geocast Based Geocast Region Tracking Using Mobile Node in Wirele...
Power Aware Geocast Based Geocast Region Tracking Using Mobile Node in Wirele...
ย 
An Exposition of Qualities of Leadership
An Exposition of Qualities of LeadershipAn Exposition of Qualities of Leadership
An Exposition of Qualities of Leadership
ย 
Efficient Algorithm for Constructing KU-algebras from Block Codes
Efficient Algorithm for Constructing KU-algebras from Block CodesEfficient Algorithm for Constructing KU-algebras from Block Codes
Efficient Algorithm for Constructing KU-algebras from Block Codes
ย 
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...
Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three V...
ย 
Effect of Wind Direction through Double Storied Building Model Configurations...
Effect of Wind Direction through Double Storied Building Model Configurations...Effect of Wind Direction through Double Storied Building Model Configurations...
Effect of Wind Direction through Double Storied Building Model Configurations...
ย 
E-Voting and Credible Elections in Nigeria
E-Voting and Credible Elections in NigeriaE-Voting and Credible Elections in Nigeria
E-Voting and Credible Elections in Nigeria
ย 
Middle Range Theories as Coherent Intellectual Frameworks
Middle Range Theories as Coherent Intellectual FrameworksMiddle Range Theories as Coherent Intellectual Frameworks
Middle Range Theories as Coherent Intellectual Frameworks
ย 
Importance and Functions of Bills of Quantities in the Construction Industry:...
Importance and Functions of Bills of Quantities in the Construction Industry:...Importance and Functions of Bills of Quantities in the Construction Industry:...
Importance and Functions of Bills of Quantities in the Construction Industry:...
ย 
Fuzzy random variables and Kolomogrovโ€™s important results
Fuzzy random variables and Kolomogrovโ€™s important resultsFuzzy random variables and Kolomogrovโ€™s important results
Fuzzy random variables and Kolomogrovโ€™s important results
ย 
Trust based Mechanism for Secure Cloud Computing Environment: A Survey
Trust based Mechanism for Secure Cloud Computing Environment: A SurveyTrust based Mechanism for Secure Cloud Computing Environment: A Survey
Trust based Mechanism for Secure Cloud Computing Environment: A Survey
ย 
The Case for Developing and Introducing the M-Procurement System in Nigeria, ...
The Case for Developing and Introducing the M-Procurement System in Nigeria, ...The Case for Developing and Introducing the M-Procurement System in Nigeria, ...
The Case for Developing and Introducing the M-Procurement System in Nigeria, ...
ย 
Face Recognition System Using Local Ternary Pattern and Signed Number Multipl...
Face Recognition System Using Local Ternary Pattern and Signed Number Multipl...Face Recognition System Using Local Ternary Pattern and Signed Number Multipl...
Face Recognition System Using Local Ternary Pattern and Signed Number Multipl...
ย 
Comparison of Supercritical Fluid Extraction with Steam Distillation for the ...
Comparison of Supercritical Fluid Extraction with Steam Distillation for the ...Comparison of Supercritical Fluid Extraction with Steam Distillation for the ...
Comparison of Supercritical Fluid Extraction with Steam Distillation for the ...
ย 
Numerical Study of Some Iterative Methods for Solving Nonlinear Equations
Numerical Study of Some Iterative Methods for Solving Nonlinear EquationsNumerical Study of Some Iterative Methods for Solving Nonlinear Equations
Numerical Study of Some Iterative Methods for Solving Nonlinear Equations
ย 

Similar to New classes of Adomian polynomials for the Adomian decomposition method

Similar to New classes of Adomian polynomials for the Adomian decomposition method (20)

AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
ย 
A0280106
A0280106A0280106
A0280106
ย 
C0560913
C0560913C0560913
C0560913
ย 
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
ย 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
ย 
New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation
ย 
Section 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & CosetsSection 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & Cosets
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
ย 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
ย 
Adomian decomposition Method and Differential Transform Method to solve the H...
Adomian decomposition Method and Differential Transform Method to solve the H...Adomian decomposition Method and Differential Transform Method to solve the H...
Adomian decomposition Method and Differential Transform Method to solve the H...
ย 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
ย 
P2-Chp3-SequencesAndSeries from pure maths 2.pptx
P2-Chp3-SequencesAndSeries from pure maths 2.pptxP2-Chp3-SequencesAndSeries from pure maths 2.pptx
P2-Chp3-SequencesAndSeries from pure maths 2.pptx
ย 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
ย 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
ย 
Learning group em - 20171025 - copy
Learning group   em - 20171025 - copyLearning group   em - 20171025 - copy
Learning group em - 20171025 - copy
ย 
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
ย 
Lesson 21: More Algebra
Lesson 21: More AlgebraLesson 21: More Algebra
Lesson 21: More Algebra
ย 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
ย 
lecture-3 laplce and poisson.pptx .
lecture-3 laplce and poisson.pptx                .lecture-3 laplce and poisson.pptx                .
lecture-3 laplce and poisson.pptx .
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
ย 

Recently uploaded

+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
Health
ย 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
ย 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
ย 
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
ย 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
ย 

Recently uploaded (20)

Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
ย 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptx
ย 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
ย 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
ย 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
ย 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
ย 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
ย 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
ย 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
ย 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
ย 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
ย 
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
ย 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
ย 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
ย 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
ย 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
ย 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
ย 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
ย 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
ย 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
ย 

New classes of Adomian polynomials for the Adomian decomposition method

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 โ€“ 6734, ISSN (Print): 2319 โ€“ 6726 www.ijesi.org ||Volume 5 Issue 3|| March 2016 || PP.37-44 www.ijesi.org 37 | Page New classes of Adomian polynomials for the Adomian decomposition method Hytham.A.Alkresheh1 1 School of Mathematical Sciences, Universiti Sains Malaysia (USM) ABSTRACT: In this paper, we proposed two new classes of the Adomian polynomials for the well-known Adomian decomposition method (ADM). The regular polynomials ๐ด ๐‘› in the ADM method is replaced by the new classes to solve nonlinear ordinary, partial and fractional differential equations. Numerical test examples indicates that the use of the proposed polynomials in the ADM method gives more accurate approximate solutions than the regular Adomian polynomials ๐ด ๐‘› for the same number of solution components. KEYWORDS:Adomian decomposition method, Adomian polynomials, nonlinear differential equations I. INTRODUCTION The Adomian decomposition method introduced by G.Adomian in the 1980's [1-3] has proven to be an efficient and powerful method to find the approximate solutions for a wide class of ordinary differential equations, partial differential equations,integral differential equations andfractional differential equations [4]. Some of the advantages of ADM method include the ability to solve nonlinear problems without linearization and perturbation or guessing the initial term and it is requires less number of calculation work than traditional approaches. In addition it gives series analytical solution which in general converge very rapidly for most problems. Many studies have been devoted to study the convergence for the ADM method include Hosseini [5], Bougoffa [6],Babolian [7], Abdelrazec [8] For nonlinear equations, the ADM method replaces the nonlinear term by a special series what are called Adomian polynomials ๐ด ๐‘› , so that the polynomials ๐ด ๐‘› are generated for each nonlinearity. Several studies such as Rach [9], Adomian [10, 11], Behiry and Hashish [12] have been proposed to modified the regular Adomian polynomials ๐ด ๐‘› . In this paper we use the general Taylor series expansion to construct two new classes of Adomian polynomials. The convergence of the analytical approximate solution by using these two classes in ADM method is faster than the Adomian polynomials ๐ด ๐‘› . More over the simple definition of the two classes makes the generation of these two polynomials more easy by computer programs. II. THE ADOMIAN DECOMPOSITION METHOD Consider the nonlinear equation in the form ๐ฟ๐‘ข + ๐‘…๐‘ข + ๐‘๐‘ข = ๐‘” ๐‘ก . (1) Where๐ฟ is easily invertible differential operator, ๐‘… is a remainder linear differential operator, ๐‘ is an analytic nonlinear terms and ๐‘” is a known function. Taking the inverse linear operator ๐ฟโˆ’1 (. ) to both sides of Eq.(1) yields, ๐‘ข = ๐‘ ๐‘ก โˆ’ ๐ฟโˆ’1 ๐‘…๐‘ข โˆ’ ๐ฟโˆ’1 ๐‘๐‘ข + ๐ฟโˆ’1 ๐‘” (2) where ๐‘(๐‘ก) represents the terms arising from using the given conditions.The Adomian decomposition method introduces the solution by decomposing ๐‘ข(๐‘ก) to an infinite series ๐‘ข ๐‘ก = ๐‘ข ๐‘› โˆž ๐‘›=0 and the nonlinear term ๐‘๐‘ข by the infinite series ๐‘๐‘ข = ๐ด ๐‘› โˆž ๐‘›=0 where ๐ด ๐‘› are the Adomian polynomials which are generated for each nonlinearity and can be found by the formula ๐ด ๐‘› = ๐ด ๐‘› ๐‘ข0, ๐‘ข1, โ€ฆ . . , ๐‘ข ๐‘› = 1 ๐‘›! ๐‘‘ ๐‘› ๐‘‘๐œ† ๐‘› ๐‘ ๐œ†๐‘– ๐‘ข๐‘– โˆž ๐‘›=0 ๐œ†=0 , ๐‘› = 0,1,2, โ€ฆ โ€ฆ. (3)
  • 2. New classes of Adomian polynomialsโ€ฆ www.ijesi.org 38 | Page A number of algorithms to compute the regular Adomian polynomials ๐ด ๐‘› have been proposed. See, for example, Rach [13], Wazwaz [14], Abdelwahid [15] and Zhu [16]. The first five Adomian polynomials for the one variable ๐‘๐‘ข = ๐‘“(๐‘ข(๐‘ก)) are given by, ๐ด0 = ๐‘“ ๐‘ข0 ๐ด1 = ๐‘ข1 ๐‘“โ€ฒ ๐‘ข0 ๐ด2 = ๐‘ข2 ๐‘“โ€ฒ ๐‘ข0 + 1 2! ๐‘ข1 2 ๐‘“โ€ฒโ€ฒ ๐‘ข0 (4) ๐ด3 = ๐‘ข3 ๐‘“โ€ฒ ๐‘ข0 + ๐‘ข1 ๐‘ข2 ๐‘“โ€ฒโ€ฒ ๐‘ข0 + 1 3! ๐‘ข1 3 ๐‘“(3) ๐‘ข0 ๐ด4 = ๐‘ข4 ๐‘“โ€ฒ ๐‘ข0 + ๐‘ข1 ๐‘ข3 + 1 2! ๐‘ข2 2 ๐‘“โ€ฒโ€ฒ ๐‘ข0 + 1 2! ๐‘ข1 2 ๐‘ข2 ๐‘“ 3 ๐‘ข0 + 1 4! ๐‘ข1 4 ๐‘“ 4 ๐‘ข0 . Hence Eq.(2) become, ๐‘ข ๐‘› = ๐‘ ๐‘ก + ๐ฟโˆ’1 ๐‘” โˆ’ ๐ฟโˆ’1 ๐‘… ๐‘ข ๐‘› โˆ’ ๐ฟโˆ’1 ๐‘… โˆ’ ๐ฟโˆ’1 ๐ด ๐‘› โˆž ๐‘›=0 โˆž ๐‘›=0 โˆž ๐‘›=0 (5) Consequently, we can write ๐‘ข0 = ๐‘ ๐‘ก + ๐ฟโˆ’1 ๐‘” ๐‘ข 1 = โˆ’๐ฟโˆ’1 ๐‘…๐‘ข0 โˆ’ ๐ฟโˆ’1 ๐ด0 ๐‘ข 2 = โˆ’๐ฟโˆ’1 ๐‘…๐‘ข1 โˆ’ ๐ฟโˆ’1 ๐ด1 (6) ๐‘ข 3 = โˆ’๐ฟโˆ’1 ๐‘…๐‘ข2 โˆ’ ๐ฟโˆ’1 ๐ด2 : ๐‘ข ๐‘› = โˆ’๐ฟโˆ’1 ๐‘…๐‘ข ๐‘›โˆ’1 โˆ’ ๐ฟโˆ’1 ๐ด ๐‘›โˆ’1. Finally, the ๐‘› th-term approximation solution for the Adomian decomposition method is given by ๐œ™ ๐‘› = ๐‘ข ๐‘˜, ๐‘› โ‰ฅ 1๐‘›โˆ’1 ๐‘˜=0 and the solution ๐‘ข(๐‘ก) = lim ๐‘›โ†’โˆž โˆ… ๐‘› . III. MAIN RESULTS The regular Adomian polynomials ๐ด ๐‘› can be obtained by rearranging the terms of the Taylor series expansion for the nonlinear terms around the initial solution๐‘ข0, such that ๐ด0depends only on ๐‘ข0, ๐ด1depends only on ๐‘ข0 and ๐‘ข1 , ๐ด2 depends only on ๐‘ข0, ๐‘ข1, ๐‘ข2 and so on. This fact mean the Adomian polynomials ๐ด ๐‘› are not uniquely defined. In this section we used two different formulas to rearrange the terms of the Taylor series expansion for the nonlinear term ๐‘๐‘ข = ๐‘“(๐‘ข) to construct the two new classes of Adomian polynomials; the first polynomials will be denoted by ๐ด ๐‘› โˆ— and the second polynomials will be denoted by ๐ด ๐‘› โˆ—โˆ— . 3.1 The class ๐‘จ ๐’ โˆ— Define ๐‘† ๐‘› = ๐‘ข ๐‘˜ ๐‘› ๐‘˜=0 and using Taylor series expansion about ๐‘ข0 for the nonlinear term ๐‘“(๐‘ข) to define ๐‘‡๐‘› as follows ๐‘‡0 = ๐‘“(๐‘ข0)
  • 3. New classes of Adomian polynomialsโ€ฆ www.ijesi.org 39 | Page ๐‘‡1 = ๐‘“ ๐‘ข0 + ๐‘†1 โˆ’ ๐‘†0 ๐‘“โ€ฒ ๐‘ข0 + (๐‘†1 โˆ’ ๐‘†0)2 1 2! ๐‘“โ€ฒโ€ฒ (๐‘ข0) ๐‘‡2 = ๐‘“ ๐‘ข0 + ๐‘†2 โˆ’ ๐‘†0 ๐‘“โ€ฒ ๐‘ข0 + ๐‘†2 โˆ’ ๐‘†0 2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + (๐‘†2 โˆ’ ๐‘†0)3 1 3! ๐‘“โ€ฒโ€ฒ โ€ฒ(๐‘ข0) ๐‘‡3 = ๐‘“ ๐‘ข0 + ๐‘†3 โˆ’ ๐‘†0 ๐‘“โ€ฒ ๐‘ข0 + ๐‘†3 โˆ’ ๐‘†0 2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + (๐‘†3 โˆ’ ๐‘†0)3 1 3! ๐‘“โ€ฒโ€ฒ โ€ฒ ๐‘ข0 + (๐‘†3 โˆ’ ๐‘†0)4 1 4! ๐‘“(4) (๐‘ข0) : ๐‘‡๐‘› = ๐‘† ๐‘› โˆ’ ๐‘†0 ๐‘˜ 1 ๐‘˜! ๐‘“ ๐‘˜ ๐‘ข0 , ๐‘› โ‰ฅ 1 ๐‘›+1 ๐‘˜=0 (7) Now, to construct the first class of Adomian polynomials we define ๐ด0 โˆ— = ๐‘‡0 = ๐‘“(๐‘ข0) and ๐ด ๐‘› โˆ— = ๐‘‡๐‘› โˆ’ ๐‘‡๐‘›โˆ’1, ๐‘› โ‰ฅ 1. Consequently ๐ด0 โˆ— = ๐‘“ ๐‘ข0 ๐ด1 โˆ— = ๐‘ข1 ๐‘“โ€ฒ ๐‘ข0 + 1 2! ๐‘ข1 2 ๐‘“โ€ฒโ€ฒ ๐‘ข0 ๐ด2 โˆ— =๐‘ข2 ๐‘“โ€ฒ ๐‘ข0 + 2๐‘ข1 ๐‘ข2 + ๐‘ข2 2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + (๐‘ข1 3 + 3๐‘ข1 2 ๐‘ข2 + 3๐‘ข1 ๐‘ข2 2 + ๐‘ข2 3 ) 1 3! ๐‘“ 3 ๐‘ข0 (8) ๐ด3 โˆ— = ๐‘ข3 ๐‘“โ€ฒ ๐‘ข0 + 2๐‘ข1 ๐‘ข3 + 2๐‘ข2 ๐‘ข3 + ๐‘ข3 2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + 3๐‘ข1 2 ๐‘ข3 + 6๐‘ข1 ๐‘ข2 ๐‘ข3 + 3๐‘ข2 2 ๐‘ข3 + 3๐‘ข1 ๐‘ข3 2 + 3๐‘ข2 ๐‘ข3 2 + ๐‘ข3313!๐‘“3๐‘ข0+(๐‘ข1+๐‘ข2+๐‘ข3)414!๐‘“4๐‘ข0 : : To prove the convergence of this class using the definition of๐‘‡๐‘› , we take the infinity limit and obtain lim ๐‘›โ†’โˆž ๐‘‡๐‘› = lim ๐‘›โ†’โˆž ๐‘† ๐‘› โˆ’ ๐‘†0 ๐‘˜ 1 ๐‘˜! ๐‘“ ๐‘˜ ๐‘ข0 = ๐‘ข ๐‘› โˆ’ ๐‘ข0 ๐‘˜ 1 ๐‘˜! ๐‘“ ๐‘˜ ๐‘ข0 = โˆž ๐‘˜=0 ๐‘›+1 ๐‘˜=0 ๐‘“ ๐‘ข0 + ๐‘ข1 + ๐‘ข2 + โ‹ฏ ๐‘“โ€ฒ ๐‘ข0 + ๐‘ข1 2 + 2๐‘ข1 ๐‘ข2 + ๐‘ข2 2 + 2๐‘ข1 ๐‘ข3 + 2๐‘ข2 ๐‘ข3 + โ‹ฏ 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + ๐‘ข1 3 + 3๐‘ข1 2 ๐‘ข2 + 3๐‘ข1 ๐‘ข2 2 + โ‹ฏ 1 3! ๐‘“ 3 ๐‘ข0 + (๐‘ข1 4 + 4๐‘ข1 3 ๐‘ข2 + 6๐‘ข1 2 ๐‘ข2 2 + โ‹ฏ ) 1 4! ๐‘“ 4 ๐‘ข0 . = ๐ด ๐‘˜ โˆ—โˆž ๐‘˜=0 = ๐‘“ ๐‘ข0 + ๐‘ข โˆ’ ๐‘ข0 ๐‘“โ€ฒ ๐‘ข0 + (๐‘ข โˆ’ ๐‘ข0)2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + (๐‘ข โˆ’ ๐‘ข0)3 1 3! ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ข0 + โ‹ฏ Which is the Taylor series expansion for the nonlinear term ๐‘๐‘ข = ๐‘“(๐‘ข) about the initial solution ๐‘ข0, where ๐‘ข = ๐‘ข ๐‘˜ โˆž ๐‘˜=0 . Thus lim ๐‘›โ†’โˆž ๐‘‡๐‘› = lim ๐‘˜โ†’โˆž ๐ด ๐‘˜ โˆ— ๐‘› ๐‘˜=0 = ๐ด ๐‘˜ โˆ— โˆž ๐‘˜=0 = ๐‘“(๐‘ข) 3.2 The class ๐‘จ ๐’ โˆ—โˆ— Again define ๐‘† ๐‘› = ๐‘ข ๐‘˜ ๐‘› ๐‘˜=0 and using Taylor series expansion about ๐‘ข0 for the nonlinear term ๐‘“(๐‘ข) to define ๐‘‡๐‘› as follows ๐‘‡0 = ๐‘“(๐‘ข0) ๐‘‡1 = ๐‘“ ๐‘ข0 + ๐‘†1 โˆ’ ๐‘†0 ๐‘“โ€ฒ ๐‘ข0 + (๐‘†1 โˆ’ ๐‘†0)2 1 2! ๐‘“โ€ฒโ€ฒ (๐‘ข0) ๐‘‡2 = ๐‘“ ๐‘ข0 + ๐‘†2 โˆ’ ๐‘†0 ๐‘“โ€ฒ ๐‘ข0 + ๐‘†2 โˆ’ ๐‘†0 2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + (๐‘†1 โˆ’ ๐‘†0)3 1 3! ๐‘“โ€ฒโ€ฒ โ€ฒ(๐‘ข0)
  • 4. New classes of Adomian polynomialsโ€ฆ www.ijesi.org 40 | Page ๐‘‡3 = ๐‘“ ๐‘ข0 + ๐‘†3 โˆ’ ๐‘†0 ๐‘“โ€ฒ ๐‘ข0 + ๐‘†3 โˆ’ ๐‘†0 2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + (๐‘†2 โˆ’ ๐‘†0)3 1 3! ๐‘“โ€ฒโ€ฒ โ€ฒ ๐‘ข0 + (๐‘†1 โˆ’ ๐‘†0)4 1 4! ๐‘“(4) (๐‘ข0) : ๐‘‡๐‘› = ๐‘“ ๐‘ข0 + ๐‘† ๐‘› โˆ’ ๐‘†0 ๐‘“โ€ฒ ๐‘ข0 ๐‘† ๐‘›โˆ’๐‘˜ โˆ’ ๐‘†0 ๐‘˜+2 1 (๐‘˜ + 2)! ๐‘“ ๐‘˜+2 ๐‘ข0 , ๐‘› โ‰ฅ 1. ๐‘›โˆ’1 ๐‘˜=0 (9) To construct the second class of Adomian polynomials we define๐ด0 โˆ—โˆ— = ๐‘‡0 = ๐‘“(๐‘ข0) and ๐ด ๐‘› โˆ—โˆ— = ๐‘‡๐‘› โˆ’ ๐‘‡๐‘›โˆ’1, ๐‘› โ‰ฅ 1. Consequently ๐ด0 โˆ—โˆ— = ๐‘“ ๐‘ข0 ๐ด1 โˆ—โˆ— = ๐‘ข1 ๐‘“โ€ฒ ๐‘ข0 + 1 2! ๐‘ข1 2 ๐‘“โ€ฒโ€ฒ ๐‘ข0 ๐ด2 โˆ—โˆ— =๐‘ข2 ๐‘“โ€ฒ ๐‘ข0 + 2๐‘ข1 ๐‘ข2 + ๐‘ข2 2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + (๐‘ข1 3 ) 1 3! ๐‘“ 3 ๐‘ข0 (10) ๐ด3 โˆ—โˆ— = ๐‘ข3 ๐‘“โ€ฒ ๐‘ข0 + 2๐‘ข1 ๐‘ข3 + 2๐‘ข2 ๐‘ข3 + ๐‘ข3 2 1 2! ๐‘“โ€ฒโ€ฒ ๐‘ข0 + 3๐‘ข1 2 ๐‘ข2 + 3๐‘ข1 ๐‘ข2 2 + ๐‘ข2 3 1 3! ๐‘“ 3 ๐‘ข0 + 1 4! ๐‘ข1 4 ๐‘“ 4 ๐‘ข0 : : The convergence proof for this class ๐ด ๐‘› โˆ—โˆ— is in a similar manner of convergence prove for class ๐ด ๐‘› โˆ— . In view the definition of the two classes ๐ด ๐‘› โˆ—โˆ— and ๐ด ๐‘› โˆ— , we note they are identical until ๐ด1and so the effect on convergence gradually starts after ๐‘› = 1. The convergence of the ๐ด ๐‘› โˆ— is faster than the ๐ด ๐‘› โˆ—โˆ— but it needs more of computation work than ๐ด ๐‘› โˆ— . However the convergence of the ๐ด ๐‘› โˆ—โˆ— and๐ด ๐‘› โˆ— . is faster than each of the regular Adomian polynomials๐ด ๐‘› , the modified Adomian polynomials ๐ด ๐‘› [11] and the modified Adomian polynomials ๐ด(๐ผ๐ผ) [9]. IV. NUMERICAL EXAMPLES In this section we give five examples with various types of nonlinearity terms in the case of ordinary differential equations, partial differential equations and fractional differential equations. In the first four examples we make a comparison for the corresponding absolute error between the using of the proposed polynomials ๐ด ๐‘› โˆ— , ๐ด ๐‘› โˆ—โˆ— in ADM method and the regular polynomials ๐ด ๐‘› . For the last example the corresponding absolute error is computed for the using of ๐ด ๐‘› โˆ— , ๐ด ๐‘› โˆ—โˆ— ,๐ด ๐‘› , ๐ด ๐‘› , ๐ด(๐ผ๐ผ) in ADM method. 4.1Example [17] Consider the second order initial value problem of Bratu-type ๐‘ขโ€ฒโ€ฒ ๐‘ก โˆ’ 2๐‘’ ๐‘ข = 0, 0 โ‰ค ๐‘ก โ‰ค 1 (11) ๐‘ข 0 = 0, ๐‘ขโ€ฒ 0 = 0. Applying the ADM method in to the Eq.(11), we obtain ๐‘ข0 = 0 ๐‘ข ๐‘› = 2๐ฟโˆ’1 ๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1 where ๐ฟโˆ’1 (. ) is assumed a two-flod integral operator given by๐ฟโˆ’1 (. )= . ๐‘‘๐‘ก๐‘‘๐‘ก ๐‘ก 0 ๐‘ก 0 and ๐ด ๐‘› the regular Adomian polynomials. The exact solution of this problem is given by ๐‘ข(๐‘ก) = โˆ’2๐‘™๐‘›[๐‘๐‘œ๐‘ (๐‘ก)]. Table(1) shows the exact solution ๐‘ข(๐‘ก) and the corresponding absolute error of approximate solution โˆ…5by using each of, the regular Adomian polynomials ๐ด ๐‘› and the proposed polynomials ๐ด ๐‘› โˆ— , ๐ด ๐‘› โˆ—โˆ— . 4.2Example [18] Consider the first order initial value problem with ๐‘ ๐‘–๐‘›(๐‘ข) nonlinearity ๐‘ขโ€ฒ ๐‘ก โˆ’ sinโก(๐‘ข(๐‘ก)) = 0, 0 โ‰ค ๐‘ก โ‰ค 1 (12) ๐‘ข 0 = ๐‘0. Applying ADM method in to the Eq.(12) with given initial condition, we obtain ๐‘ข0 = ๐‘0 ๐‘ข ๐‘› = โˆ’๐ฟโˆ’1 ๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1
  • 5. New classes of Adomian polynomialsโ€ฆ www.ijesi.org 41 | Page where the operator ๐ฟโˆ’1 (. )is given by . ๐‘‘๐‘ก ๐‘ก 0 .The exact solution of this problem can be expressed as ๐‘ข ๐‘ก = 2๐‘๐‘œ๐‘กโˆ’1 [๐‘’ ๐‘ก cotโก( ๐‘0 2 )] Table(2) shows the exact solution ๐‘ข(๐‘ก) when๐‘0 = ๐œ‹ 2 and the corresponding absolute error of approximate solution โˆ…5by using each of, the regular Adomian polynomials ๐ด ๐‘› and the proposed polynomials ๐ด ๐‘› โˆ— , ๐ด ๐‘› โˆ—โˆ— . Table (1) the exact solution and corresponding absolute error for example (1) t exact ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ด ๐‘› ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—โˆ— ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ— 0.1 0.0100167 4.38๐ธ-13 1.46๐ธ-15 9.26๐ธ-16 0.2 0.0402695 4.54๐ธ-10 3.78๐ธ-12 1.55๐ธ-12 0.3 0.0913833 2.66๐ธ-08 4.37๐ธ-10 1.40๐ธ-10 0.4 0.1644580 4.84๐ธ-07 1.36๐ธ-08 3.87๐ธ-09 0.5 0.2611684 4.66๐ธ-06 2.03๐ธ-07 5.49๐ธ-08 0.6 0.3839303 3.01๐ธ-05 1.91๐ธ-06 5.08๐ธ-07 0.7 0.5361715 1.48๐ธ-04 1.31๐ธ-05 3.50๐ธ-06 0.8 0.7227814 6.00๐ธ-04 7.18๐ธ-05 1.96๐ธ-05 0.9 0.9508848 2.10๐ธ-03 3.32๐ธ-04 9.51๐ธ-05 1.0 1.2312529 6.64๐ธ-03 1.36๐ธ-03 4.14๐ธ-04 Table (2) the exact solution and corresponding absolute error for example (2) t exact ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ด ๐‘› ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—โˆ— ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ— 0.1 1.4709625 4.15Eโˆ’07 5.32Eโˆ’10 1.37Eโˆ’10 0.2 1.3721164 1.31Eโˆ’05 6.70Eโˆ’08 1.69Eโˆ’08 0.3 1.2751976 9.86Eโˆ’05 1.11Eโˆ’06 2.73Eโˆ’07 0.4 1.1810552 4.07Eโˆ’04 8.04Eโˆ’06 1.89Eโˆ’06 0.5 1.0904152 1.21Eโˆ’03 3.65Eโˆ’05 8.11Eโˆ’06 0.6 1.0038607 2.93Eโˆ’03 1.23Eโˆ’04 2.54Eโˆ’05 0.7 0.9218242 6.13Eโˆ’03 3.40Eโˆ’04 6.37Eโˆ’05 0.8 0.8445915 1.15Eโˆ’02 8.06Eโˆ’04 1.33Eโˆ’04 0.9 0.7723140 1.99Eโˆ’02 1.69Eโˆ’03 2.40Eโˆ’04 1.0 0.7050268 3.24E -02 3.24E -03 3.76Eโˆ’04 4.3Example [19] Consider the sine-Gordon hyperbolic equation ๐‘ข๐‘ก๐‘ก โˆ’ ๐‘ข ๐‘ฅ๐‘ฅ + sin ๐‘ข = 0, โˆ’ โˆž โ‰ค ๐‘ฅ โ‰ค โˆž (13) ๐‘ข ๐‘ฅ, 0 = 0, ๐‘ข๐‘ก ๐‘ฅ, 0 = 4๐‘†๐‘’๐‘๐‘•(๐‘ฅ) Applying ADM method in to the Eq.(13) with given initial conditions, we obtain ๐‘ข0 = 4๐‘ก๐‘ ๐‘’๐‘๐‘•(๐‘ฅ) ๐‘ข ๐‘› = โˆ’๐ฟ๐‘ก๐‘ก โˆ’1 ๐‘ข ๐‘ฅ๐‘ฅ โˆ’ ๐ฟ๐‘ก๐‘ก โˆ’1 ๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1 where the operator ๐ฟ๐‘ก๐‘ก โˆ’1 (. ) is given by . ๐‘‘๐‘ก๐‘‘๐‘ก ๐‘ก 0 ๐‘ก 0 .The exact solution of this problem can be expressed as ๐‘ข(๐‘ฅ, ๐‘ก) = 4 ๐‘ก๐‘Ž๐‘›โˆ’1 [๐‘ก ๐‘ ๐‘’๐‘๐‘•(๐‘ฅ)]. Table(3) shows the exact solution ๐‘ข(๐‘ก) and the corresponding absolute error of approximate solution โˆ…5 by using each of, the regular Adomian polynomials ๐ด ๐‘› and the proposed polynomials ๐ด ๐‘› โˆ— , ๐ด ๐‘› โˆ—โˆ— , ๐‘ ๐‘–๐‘›(๐‘ข) is expressed in three terms of Taylor series to facilitate the computation of integrals. 4.4Example [20] Consider the fractional differential equation with ๐‘ขnonlinearity ๐ทโˆ— โˆ ๐‘ข = 9 4 ๐‘ข + ๐‘ข, 1 โ‰คโˆโ‰ค 2, ๐‘ก โ‰ฅ 0 (14) ๐‘ข 0 = 1, ๐‘ขโ€ฒ 0 = 2 where ๐ทโˆ— โˆ (. ) represent the Caputo fractional derivative of order โˆ. Applying ADM method in to the Eq.(14) with given initial conditions, we obtain ๐‘ข0 = 1 + 2๐‘ก
  • 6. New classes of Adomian polynomialsโ€ฆ www.ijesi.org 42 | Page ๐‘ข ๐‘› = ๐ฝโˆ ๐‘ข ๐‘›โˆ’1 + 9 4 ๐ฝโˆ ๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1 where ๐ฝโˆ . is the Riemann-Liouville fractional integral. For more details and some basic properties of Caputo fractional derivative and Riemann-Liouville fractional integral we refer the reader to the reference[21]. The exact solution of Eq.(14) whenโˆ= 2 given by๐‘ข ๐‘ก = 9 4 [ 3 2 ๐‘’.5๐‘ก + 1 6 ๐‘’โˆ’.5๐‘ก โˆ’ 1]2 . Table(4) shows the exact solution ๐‘ข(๐‘ก) when โˆ= 2 and the corresponding absolute error of approximate solution โˆ…4 by using each of, the regular Adomian polynomials ๐ด ๐‘› and the proposed polynomials๐ด ๐‘› โˆ— , ๐ด ๐‘› โˆ—โˆ— . Table (3) the exact solution and corresponding absolute error when x= 2.0 and x= 2.5 for example (3) t/x 2.0 2.5 exact uexact โˆ’ โˆ…An uexact โˆ’ โˆ…Aโˆ—โˆ— exact uexact โˆ’ โˆ…An uexact โˆ’ โˆ…Aโˆ—โˆ— 0.2 0.2124418 2.65E-12 2.64E-12 0.1304107 9.51E-14 9.51E-14 0.4 0.4236918 2.09E-09 2.08E-09 0.2605448 8.52E-11 8.48E-11 0.6 0.6325980 1.27E-07 1.25E-07 0.3901291 5.52E-09 5.45E-09 0.8 0.8380841 2.54E-06 2.47E-06 0.5188974 1.12E-07 1.10E-07 1.0 1.0391806 2.68E-05 2.58E-05 0.6465935 1.18E-06 1.14E-06 1.2 1.2350467 1.86E-04 1.77E-04 0.7729742 8.11E-06 7.69E-06 1.4 1.4249843 9.70E-04 9.14E-04 0.8978117 4.07E-05 3.80E-05 1.5 1.5175522 2.03E-03 1.91E -03 0.9595853 8.35E-05 7.76E-05 Table (4) the exact solution whenโˆ= 2 and corresponding absolute error for example (4) t exact ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ด ๐‘› ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ—โˆ— ๐‘ข ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ โˆ… ๐ดโˆ— 0.1 1.2169781 4.29Eโˆ’11 7.02Eโˆ’12 6.76Eโˆ’12 0.2 1.4709903 8.32Eโˆ’09 1.61Eโˆ’09 1.40Eโˆ’09 0.3 1.7670492 1.67Eโˆ’07 3.71Eโˆ’08 2.76Eโˆ’08 0.4 2.1107408 1.34Eโˆ’06 3.38Eโˆ’07 1.99Eโˆ’07 0.5 2.5082874 6.60Eโˆ’06 1.86Eโˆ’06 7.67Eโˆ’07 0.6 2.9666165 2.38Eโˆ’05 7.51Eโˆ’06 1.65Eโˆ’06 0.7 3.4934376 6.99Eโˆ’05 2.44Eโˆ’05 4.79Eโˆ’07 0.8 4.0973272 1.76Eโˆ’04 6.82Eโˆ’05 1.27Eโˆ’05 0.9 4.7878229 3.97Eโˆ’04 1.69Eโˆ’04 6.71Eโˆ’05 1.0 5.5755276 8.19Eโˆ’04 3.83Eโˆ’04 2.32Eโˆ’04 4.5Example Consider the second order initial value problem with ๐‘ข5 nonlinearity ๐‘ขโ€ฒโ€ฒ ๐‘ก โˆ’ 3๐‘ข5 = 0, 0 โ‰ค ๐‘ก โ‰ค 1 (15) ๐‘ข 0 = 1 2 , ๐‘ขโ€ฒ 0 = โˆ’1 8 . Applying the ADM method in to the Eq.(15), with given initial conditions, we obtain ๐‘ข0 = 1 2 โˆ’ 1 8 ๐‘ก ๐‘ข ๐‘› = 3๐ฟโˆ’1 ๐ด ๐‘›โˆ’1 , ๐‘› โ‰ฅ 1 where the operator๐ฟโˆ’1 (. ) is given by . ๐‘‘๐‘ก๐‘‘๐‘ก ๐‘ก 0 ๐‘ก 0 . The exact solution of this problem is given by ๐‘ข(๐‘ก) = (2๐‘ก + 4) โˆ’1 2 . Table(5) shows the exact solution ๐‘ข(๐‘ก) and the corresponding absolute error of approximate solution โˆ…4 by using each of, the regular Adomian polynomials ๐ด ๐‘› , ๐ด ๐‘› [11], ๐ด(๐ผ๐ผ) [9] and the proposed polynomials ๐ด ๐‘› โˆ— , ๐ด ๐‘› โˆ—โˆ— .
  • 7. New classes of Adomian polynomialsโ€ฆ www.ijesi.org 43 | Page Table (5) the exact solution and corresponding absolute error for example (5) t exact uexact โˆ’ โˆ…An uexact โˆ’ โˆ…An uexact โˆ’ โˆ…An (II) uexact โˆ’ โˆ…Aโˆ—โˆ— uexact โˆ’ โˆ…Aโˆ— 0.1 0.4879500 3.33Eโˆ’16 3.33Eโˆ’16 0.000000 0.000000 0.000000 0.3 0.4662524 1.68Eโˆ’11 1.50Eโˆ’11 2.22Eโˆ’12 1.05Eโˆ’13 6.41Eโˆ’14 0.5 0.4472135 1.95Eโˆ’09 1.75Eโˆ’09 2.71Eโˆ’10 2.06Eโˆ’11 7.73Eโˆ’12 0.7 0.4303314 3.98Eโˆ’08 3.60Eโˆ’08 5.91Eโˆ’09 6.79Eโˆ’10 1.73Eโˆ’10 0.9 0.4152273 3.48Eโˆ’07 3.17Eโˆ’07 5.57Eโˆ’08 8.96Eโˆ’09 1.74Eโˆ’09 1.1 0.4016096 1.85Eโˆ’06 1.69Eโˆ’06 3.20Eโˆ’07 6.75Eโˆ’08 1.10Eโˆ’08 1.3 0.3892494 7.05Eโˆ’06 6.51Eโˆ’06 1.33Eโˆ’06 3.49Eโˆ’07 5.15Eโˆ’08 1.5 0.3779644 2.12Eโˆ’05 1.97Eโˆ’05 4.38Eโˆ’06 1.38Eโˆ’06 1.93Eโˆ’07 V. CONCLUSION In this paper, two different formulas are used to rearrange the terms of a Taylor series expansion about the initial solution ๐‘ข0 to produce a new classes of Adomian polynomials. Although the proposed polynomials cost more computational work, the simple definitions make the generation by computer programs easier. The given examples showed that using these polynomials are more accurate than the regular Adomian polynomials ๐ด ๐‘› and it's modifications๐ด ๐‘› , ๐ด(๐ผ๐ผ) for solving nonlinear problems. APPENDIX 1- Mathematica code for the polynomials ๐ด ๐‘› โˆ—โˆ— . 2- Mathematica code for the polynomials ๐ด ๐‘› โˆ— . REFERENCES [1] G. Adomian, Nonlinear Stochastic Operator Equations. 1986. [2] G. Adomian, Solving frontier problems of physics: the decomposition method, Vol. 60, Springer Science & Business Media, 2013. [3] G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Mathematical and Computer Modelling 13 (7) (1990) 17-43. [4] Hytham. A. Alkresheh, A. I. Md. Ismail, "An algorithm for positive solution of boundary value problems of nonlinear fractional differential equations by Adomian decomposition method", Journal of Interpolation and Approximation in Scientific Computing, Volume 2016, No. 1 (2016), 25-37. [5] M. M. Hosseini, H. Nasabzadeh, On the convergence of Adomiandecomposition method, Applied mathematics and computation 182 (1) (2006) 536-543. [6] L. Bougoffa, R. C. Rach, S. El-Manouni, A convergence analysis of the Adomian decomposition method for an abstract Cauchy problem of a system of first-order nonlinear differentialequations, International Journal of Computer Mathematics 90 (2) (2013) 360-375. [7] E. Babolian, J. Biazar, On the order of convergence of Adomian method, Applied Mathematics and Computation 130 (2) (2002) 383- 387. [8] A. Abdelrazec, D. Pelinovsky, Convergence of the Adomian decomposition method forinitial-value problems, Numerical Methods for Partial Differential Equations 27 (4) (2011) 749-766. [9] B. H. Rudall, R. C. Rach, A new definition of the adomian polynomials, Kybernetes 37 (7) (2008) 910-955. [10] G. Adomian, A review of the decomposition method in applied mathematics, Journal of mathematical analysis and applications 135 (2) (1988) 501-544. [11] G. Adomian, R. Rach, Modified Adomian polynomials, Mathematical and computer modelling 24 (11) (1996) 39-46. [12] S. Behiry, H. Hashish, I. El-Kalla, A. Elsaid, A new algorithm for the decomposition solution of nonlinear differential equations, Computers & Mathematics with Applications 54 (4) (2007) 459-466.
  • 8. New classes of Adomian polynomialsโ€ฆ www.ijesi.org 44 | Page [13] R. Rach, A convenient computational form for the Adomian polynomials, Journal of mathematical analysis and applications 102 (2) (1984) 415-419. [14] A.-M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Applied Mathematics and computation 111 (1) (2000) 33-51. [15] F. Abdelwahid, A mathematical model of Adomian polynomials, Applied Mathematics and Computation 141 (2) (2003) 447- 453. [16] Y. Zhu, Q. Chang, S. Wu, A new algorithm for calculating adomian polynomials, Applied Mathematics and Computation 169 (1) (2005) 402-416. [17] A.-M. Wazwaz, Adomian decomposition method for a reliable treatment of the bratu-typeequations, Applied Mathematics and Computation 166 (3) (2005) 652-663. [18] J.-S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the rach-adomian-meyers modified decompositionmethod, Applied Mathematics and Computation 218 (17) (2012) 8370-8392. [19] M. Chowdhury, I. Hashim, Application of homotopy-perturbation method to klein-Gordon and sine-gordon equations, Chaos, Solitons & Fractals 39 (4) (2009) 1928-1935. [20] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional ivps, Communications in Nonlinear Science and Numerical Simulation 14 (3) (2009) 674-684. [21] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theoryand applications. 1993, Gordon and Breach, Yverdon.