SlideShare a Scribd company logo
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org ||Volume 5 Issue 4|| April 2016 || PP.01-08
www.ijesi.org 1 | Page
Certain D - Operator for Srivastava B
H - Hypergeometric
Functions of Three Variables
Mosaed M. Makky
Mathematics Department, Faculty Of Science (Qena) South Valley University (Qena , Egypt)
Abstract : The aim of this paper is to derive certain relations involving Srivastava’s hypergeometric functions
B
H in three variables. Many operator identities involving these pairs of symbolic operators are first
constructed for this purpose. By means of these operator identities, which express the aforementioned B
H -
hypergeometric functions in terms of such simpler functions as the products of the Gauss and Appell
hypergeometric functions. Other closely-related results are also considered briefly. Also, we have derived
certain new integral representations for the B
H - hypergeometric functions of three variables defined earlier
by Lauricella [ 8 ] and Srivastava [14 ] .
Keywords: Decomposition formulas; Srivastava’s hypergeometric functions; Multiple hypergeometric
functions; Gauss hypergeometric function; Appell’s hypergeometric functions; Generalized hypergeometric
function.
2010 Mathematics Subject Classification: Primary 33C20, 33C65; Secondary 33C05, 33C60, 33C70.
I. Introduction
A great interest in the theory of multiple hypergeometric functions (that is, hypergeometric functions of several
variables) is motivated essentially by the fact that the solutions of many applied problems involving (for
example) partial differential equations are obtainable with the help of such hypergeometric functions (see, for
details, [17]; see also the recent works [11,12] and the references cited therein). For instance, the energy
absorbed by some nonferromagnetic conductor sphere included in an internal magnetic field can be calculated
with the help of such functions [12].
Hypergeometric functions of several variables are used in physical and quantum chemical applications as well
(cf. [14,16]). Especially, many problems in gas dynamics lead to solutions of degenerate second-order partial
differential equations which are then solvable in terms of multiple hypergeometric functions. Among examples,
we can cite the problem of adiabatic flat-parallel gas flow without whirlwind, the flow problem of supersonic
current from vessel with flat walls, and a number of other problems connected with gas flow [5].
We note that Riemann’s functions and the fundamental solutions of the degenerate second order partial
differential equations are expressible by means of hypergeometric functions of several variables [6]. In
investigation of the boundary-value problems for these partial differential equations.
The familiar operator method of Burchnall and Chaundy (cf. [2,3]; see also [4]) has been used by them rather
extensively for finding recurrence formulas for hypergeometric functions of two variables in terms of the
classical Gauss hypergeometric function of one variable.
Lauricella [8] actually defined the ten triple hypergeometric functions , , .....E F R
F F F in addition, of course,
to his four functions , ,A B C
F F F and D
F of three ( or n) variables, Srivastava [ 14 ] added three new
functions ,A B
F F and C
F to the Lauricella set of function hypergeometric functions of three variables, here we
shall obtain the integral representations of B
H - hypergeometric functions in quite a different form.
Suppose that a hypergeometric function in the form (c.f. [4,13])
(1.1)   n
n n
nn
z
n
zF 



1
12
)(!
)()(
1;;,



for  neither zero nor a negative integer.
Now we consider B
H - hypergeometric function defined in ([17] as follows :
(1.2) B
H =  1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z     
Certain D - Operator For Srivastava B
H - Hypergeometric Functions Of Three Variables
www.ijesi.org 2 | Page
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

  


which were introduced and investigated, over four decades ago, by Srivastava (see, for details, [14,15]; see also
[17, p. 43] and [18, pp. 68–69]). Here, and in what follows
 
 
 
 


 


denotes the Pochhammer symbol (or the shifted factorial) for all admissible (real or complex) values of λ and μ.
Also, we study the B
H - hypergeometric function, where it is regular in the unit hypersphere (c.f. [2,3]), for the
B
H - function, we can define as contiguous to it each of the following functions, which are samples by
uppering or lowering one of the parameters by unity.
(1.3) B
H ( +) = 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 3
1 2 3
, , 0 1 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n
z z z
n n n
  
   

  

 

(1.4) B
H ( -) = 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31
1 2 3
, , 0 1 1 3 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
1 ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n n n
  
   

  
   

(1.5) B
H ( +,  +)
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 3 2 1 2
1 2 3
, , 0 1 2 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z
n n n
   
    

  

   
 ,
(1.6) 


3
1j
j
dD ,
j
jj
z
zd



and the way we effect it with the recursions relations as it is found in the second part of the research..
We obtain, as a result of acting by D on this function a differential equation, some special cases for a group of
differential equations are the functions that are effected by the differential operator. There is a numerical
example for one of these cases.
II. A Set Of Operator Of B
H - Hypergeometric Function
By applying the operator D in (1.6) to (1.2), we find the following set of operator identities involving the Gauss
function 2 1
F , the Appell functions, and Srivastava’s hypergeometric functions B
H defined by (1.2) is
(2.1) D  1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z     
= D 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

  


= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( )( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n
z z z
n n n
  
  

  

 

= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 1 2 1 3 1
1 2 3
, , 0 1 2 3 1 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

     
 

+ 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 1 3 1 1
1 2 3
, , 0 1 2 3 1 2 1 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

     
 

+ 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 1 2 3 1 1
1 2 3
, , 0 1 2 3 1 2 3 1
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

     
 

1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 3 2 1 2
1 1 2 3
, , 0 1 1 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
   
   

  

   



Certain D - Operator For Srivastava B
H - Hypergeometric Functions Of Three Variables
www.ijesi.org 3 | Page
1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 32 1 2 3 2 3
2 1 2 3
, , 0 2 2 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
   
   

  

   



1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 3 3 2 3
3 1 2 3
, , 0 3 3 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
   
   

  

   



1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 1 3 2 1 21 2
1 1 2 3
, , 01 1 2 1 1 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
     
      

  

   



1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 32 3 2 2 1 2 3 2 3
2 1 2 3
, , 02 2 3 2 2 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
      
      

  

   



1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 3 3 1 1 3 3 2 3
3 1 2 3
, , 03 1 3 3 3 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
      
      

  

   



i.e.
(2.2) 1 2 1
1 2 3 1 2 3 1 2 3
1
( 1, 1, ; 1, , ; , , )B B
z
D H H z z z
 
     

   
2 3 2
1 2 3 1 2 3 1 2 3
2
( , 1, 1; , 1, ; , , )B
z
H z z z
 
     

   
1 3 3
1 2 3 1 2 3 1 2 3
3
( 1, , 1; , , 1; , , )B
z
H z z z
 
     

    .
From which and using the contiguous functions relations (1.3), (1.4), (1.5), (1.6) we have
(2.3)
2 3 11 2 1
1 2 1 2 3 2
1 2
1 3 1
1 3 3
3
( , ; ) ( , ; )
( , ; )
B B B
B
zz
D H H H
z
H
  
     
 
 
  

       
   
i.e. the partial differential equation
2 3 1 1 3 11 2 1
1 2 1 2 3 2 1 3 3
1 2 3
( , ; ) ( , ; ) ( , ; ) 0B B B B
z zz
D H H H H
    
        
  
 
             
 
has a solution in the form : -
 1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z      = 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

  

 .
Also, we can write the following recursion relations B
H - hypergeometric function as follows:
(2.4)  1 1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
d H z z z     
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( )( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n
z z z
n n n
  
  

  


= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 1 2 1 3 1
1 2 3
, , 0 1 2 3 1 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

     
 

1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 3 2 1 2
1 1 2 3
, , 0 1 1 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
   
   

  

   



1 2 1
1 2 3 1 2 3 1 2 3
1
( 1, 1, ; 1, , ; , , )B
z
H z z z
 
     

   
Certain D - Operator For Srivastava B
H - Hypergeometric Functions Of Three Variables
www.ijesi.org 4 | Page
(2.5)  2 1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
d H z z z     
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
2 1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( )( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n
z z z
n n n
  
  

  


= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 1 3 1 1
1 2 3
, , 0 1 2 3 1 2 1 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

     
 

1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 32 1 2 3 2 3
2 1 2 3
, , 0 2 2 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
   
   

  

   



2 3 2
1 2 3 1 2 3 1 2 3
2
( , 1, 1; , 1, ; , , )B
z
H z z z
 
     

   
(2.6)  3 1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
d H z z z     
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
3 1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( )( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n
z z z
n n n
  
  

  


= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 1 2 3 1 1
1 2 3
, , 0 1 2 3 1 2 3 1
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

     
 

1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 31 1 3 3 2 3
3 1 2 3
, , 0 3 3 1 2 3 1 2 3
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )
( ) ! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
n n n n
z z z z
n n n n
   
   

  

   



1 3 3
1 2 3 1 2 3 1 2 3
3
( 1, , 1; , , 1; , , )B
z
H z z z
 
     

    .
III. Some Recurrence Relations For B
H - Hypergeometric Function
3.1 Putting 1 2
  and 1 2
  in (2.4), (2.5), and (2.6) we have
(3.1)  1 1 1 3 1 1 3 1 2 3
, , ; , , ; , ,B
d H z z z     
2
1 1
1 1 3 1 1 3 1 2 3
1
( 1, 1, ; 1, , ; , , )B
z
H z z z

     

   
(3.2)  2 1 1 3 1 1 3 1 2 3
, , ; , , ; , ,B
d H z z z     
1 3 2
1 1 3 1 1 3 1 2 3
1
( , 1, 1; , 1, ; , , )B
z
H z z z
 
     

   
(3.3)  3 1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
d H z z z     
1 3 3
1 1 3 1 1 3 1 2 3
3
( 1, , 1; , , 1; , , )B
z
H z z z
 
     

    .
3.2 Putting 1 3
  and 1 3
  in (2.4), (2.5), and (2.6) we have
(3.4)  1 1 2 1 1 2 1 1 2 3
, , ; , , ; , ,B
d H z z z     
1 2 1
1 2 1 1 2 1 1 2 3
1
( 1, 1, ; 1, , ; , , )B
z
H z z z
 
     

   
(3.5)  2 1 2 1 1 2 1 1 2 3
, , ; , , ; , ,B
d H z z z     
2 1 2
1 2 1 1 2 1 1 2 3
2
( , 1, 1; , 1, ; , , )B
z
H z z z
 
     

   
Certain D - Operator For Srivastava B
H - Hypergeometric Functions Of Three Variables
www.ijesi.org 5 | Page
(3.6)  3 1 2 1 1 2 1 1 2 3
, , ; , , ; , ,B
d H z z z     
2
1 3
1 2 1 1 2 1 1 2 3
1
( 1, , 1; , , 1; , , )B
z
H z z z

     

    .
3.3 Some special cases for the B
H - hypergeometric function which given us some differential equations
its functions as follows:
1- The function
 3 3 1 2 3
; ; , ,B
H z z z  = 2 3 31 2
1 2 3 3
3
1 2 3
, , 0 1 2 3 3
( )
( ) ( ) ( )
! ! !( )
n n nn n
n n n n
z z z
n n n





 .
Thus
D  3 3 1 2 3
; ; , ,B
H z z z 
= D 2 3 31 2
1 2 3 3
3
1 2 3
, , 0 1 2 3 3
( )
( ) ( ) ( )
! ! !( )
n n nn n
n n n n
z z z
n n n






= 2 3 31 2
1 2 3 3
1 2 3 3
1 2 3
, , 0 1 2 3 3
( )( )
( ) ( ) ( )
! ! !( )
n n nn n
n n n n
n n n
z z z
n n n





 

= 2 3 31 2
1 2 3 3
3 1
1 2 3
, , 0 1 2 3 3
( )
( ) ( ) ( )
! ! !( )
n n nn n
n n n n
z z z
n n n



 


+ 2 3 31 2
1 2 3 3
3 1 1
1 2 3
, , 0 1 2 3 3
( )
( ) ( ) ( )
! ! !( )
n n nn n
n n n n
z z z
n n n



  


+ 2 3 31 2
1 2 3 3
3 1 1
1 2 3
, , 0 1 2 3 3 1
( )
( ) ( ) ( )
! ! !( )
n n nn n
n n n n
z z z
n n n



  
 

2 3 31 2
1 2 3 3
3
1 1 2 3
, , 0 1 2 3 3
( )
( ) ( ) ( ) ( )
! ! !( )
n n nn n
n n n n
z z z z
n n n





 
2 3 31 2
1 2 3 3
3
2 3 2 3 1 2 3
, , 0 1 2 3 3
( )
( ) ( ) ( ) ( ) ( )
! ! !( )
n n nn n
n n n n
z n n z z z
n n n






  
2 3 31 2
1 2 3 3
33 2 3
3 1 2 3
, , 0 3 3 1 2 3 3
( )( )
( ) ( ) ( ) ( )
( ) ! ! !( )
n n nn n
n n n n
n n
z z z z
n n n n

 



 


 .
The function
(3.7)  3 3 1 2 3
; ; , ,B
H z z z  = 2 3 31 2
1 2 3 3
3
1 2 3
, , 0 1 2 3 3
( )
( ) ( ) ( )
! ! !( )
n n nn n
n n n n
z z z
n n n





 .
has a solution of the equation
(3.8)   3 3
1 3 2 3 3 1 2 3 3 3 1 2 3
3
( 1; ; , , ) ( 1; 1; , , ) 0B B B
z
D z H z H z z z H z z z

    

 
       
 
2- The function:
 1 2 3
, , ; , ,B
H z z z   = 31 2
1 2 3
1 2 3
, , 0
( ) ( ) ( )
nn n
n n n
z z z


 .
Thus
Certain D - Operator For Srivastava B
H - Hypergeometric Functions Of Three Variables
www.ijesi.org 6 | Page
D  1 2 3
, , ; , ,B
H z z z   = 31 2
1 2 3
1 2 3 1 2 3
, , 0
( )( ) ( ) ( )
nn n
n n n
n n n z z z


 
= 31 2
1 2 3
1
1 2 3
, , 0
( ) ( ) ( )
nn n
n n n
z z z



 + 31 2
1 2 3
1
1 2 3
, , 0
) ( ) ( )
nn n
n n n
z z z



 + 31 2
1 2 3
1
1 2 3
, , 0
( ) ( ) ( )
nn n
n n n
z z z




D  1 2 3
, , ; , ,B
H z z z   31 2
1 2 3
1 2 3 1 2 3
, , 0
( ) ( ) ( ) ( )
nn n
n n n
z z z z z z


    .
The function
 1 2 3
, , ; , ,B
H z z z   = 31 2
1 2 3
1 2 3
, , 0
( ) ( ) ( )
nn n
n n n
z z z


 .
has a solution of the equation
   1 2 3 1 2 3
( ) , , ; , , 0B
D z z z H z z z      
Now will given a numerical example for one of these differential equations that we get, by giving a numerical
value for constant numbers in any previous equation as the one used in (3.8) and we get an equation
representing the surface sphere equation, its solution is solution for the equation (3.8) after substituting the same
numerical value. This clarifies the idea of the study.
Example :
Here we shall take the equation in (3.8) as follows:
  3 3
1 3 2 3 3 1 2 3 3 3 1 2 3
3
(2 .3) ( 1; ; , , ) ( 1; 1; , , ) 0B B B
z
D z H z H z z z H z z z

    

 
       
 
which has a general solution in equation (3.8) we can consider that
(3.10)
3 3
1 2 3
1
1n n n
  

  
Substituting from (3.10) in the equation (3.8) we get :-
 1 2 3
1;1; , ,B
H z z z = 2 3
1 2 3 3
1 2 3
, , 0
(1)
( )( )( )
1!1!1!(1)
n n
n n n n
z z z



 and
since
1321
 nnn , )!1)...(3)(2(1)1( 3232

nnnn
and 3 3
(1) 1( 2 )(3)...( 1) !n
n  .
 1 1 2 3 2 1 2 3 3 1 2 3
(1;1; , , ) (1;1; , , ) (1;1; , , ) 0B B B
D z H z z z z H z z z z H z z z     
 1 2 3 1 2 3
(1;1; , , ) 0B
D z z z H z z z     
Applying that and the partial differential equation (3.9) we see that: -
0]0)([ 321
 A
HzzzD
0))](([ 321321
 zzzzzzD
 1 2 3 1 2 3 1 2 3 1 2 3 1 2
( ) ( )( ) ( ) 3 ( 0D z z z z z z z z z z z z z z z       
i.e. 03)( 321
 zzz
which is a surface equation in hypersphere has a solution in the form:
 1 2 3
1;1; , ,B
H z z z = 1 2 3
z z z
Certain D - Operator For Srivastava B
H - Hypergeometric Functions Of Three Variables
www.ijesi.org 7 | Page
IV. Integral Representations For Certain B
H -Hypergeometric Function Of Three Variables
Due To Lauricella And Srivastava
Now we consider B
H - hypergeometric function as follows
 1 2 3 1 2 3 1 2 3
, , ; , , ; , ,B
H z z z     
= 1 3 1 2 2 3 31 2
1 2 3 1 2 3
1 2 3
1 2 3
, , 0 1 2 3 1 2 3
( ) ( ) ( )
( ) ( ) ( )
! ! !( ) ( ) ( )
n n n n n n nn n
n n n n n n
z z z
n n n
  
  

  


and
(4.1)  1 2 3
1, 1, 1; 1, 1, 1; , ,B
H z z z                
=
           
     
3
1 1 1 1 1 1 2
1 1 1
     
     
      
    
           
        
     2 2 2
2 2 2
. cos cos cos
i i i
e
  
              
  
  
       
  
  
   
1
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i x

   
 
      
   
1
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i y

   
 
      
   
1
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i z d d d

      
 
      
where
     R e 1 , R e 1 R e 1and              .
Proof :
 1 2 3
1, 1, 1; 1, 1, 1; , ,B
H z z z                
= 1 2 3
, , 0
( 1, )( 1, )( 1, )
! ! !( 1, )( 1, )( 1, )
m n p
m n p
m n p n m p
z z z
m n p m n p
     
  


        
  

=
           
     
1 1 1 1 1 1
1 1 1
     
     
           
        
1 2 3
, , 0
( 1, )( 1, )( 1, )
.
! ! !
m n p
m n p
m n p
z z z
m n p
  

  

   
   
 
   
1 1 1 ( 1)
.
1 1 1 1
m p p p m n
m p n m
     
   
              
           
   
   ( 1) 1 1( 1)
.
1 1 1
m n pn p
n p
   
 
          
     
Now, it is known that (Whittaker and Watsin [ ])
 
   
 2
2
1 2
cos
1 1
in
e d
 
    


 
  

 

  

   

where  R e 1   
so that the right hand side of ( 4.1) becomes
           
     
3
1 1 1 1 1 1 2
1 1 1
     
     
      
    
           
        
Certain D - Operator For Srivastava B
H - Hypergeometric Functions Of Three Variables
www.ijesi.org 8 | Page
     2 2 2
2 2 2
. cos cos cos
i i i
e
  
              
  
  
       
  
  
   
1
1
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i z

   
 
      
   
1
2
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i z

   
 
      
   
1
3
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i z d d d

      
 
      
Using the identities
 2
2 co s 2 co s sin co s
1 co s 2 sin 2
i
e i
i

   
 
 
  
and
2 co s 1 co s 2 sin 2
i
e i

  

  
Then we have
 1, 1, 1; 1, 1, 1; , ,B
H x y z                 =
           
     
3
1 1 1 1 1 1 2
1 1 1
     
     
      
    
           
        
     2 2 2
2 2 2
. cos cos cos
i i i
e
  
              
  
  
       
  
  
   
1
1
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i z

   
 
      
   
1
2
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i z

   
 
      
   
1
3
. 1 1 co s 2 sin 2 1 co s 2 sin 2i i z d d d

      
 
      
References
[1]. J.L. Burchnall, T.W. Chaundy, Expansions Of Appell’s Double Hypergeometric Functions, Quart. J. Math. Oxford Ser. 11 (1940)
249–270.
[2]. J.L. Burchnall, T.W. Chaundy, Expansions Of Appell’s Double Hypergeometric Functions. II, Quart. J. Math. Oxford Ser. 12
(1941) 112–128.
[3]. T.W. Chaundy, Expansions Of Hypergeometric Functions, Quart. J. Math. Oxford Ser. 13 (1942) 159–171.
[4]. Chaundy, T.W. “On Appell’s Fourth Hypergeometric Functions”. The Quart. J. Mathematical Oxford (2) 17 (1966) Pp.81-85.
[5]. F.I. Frankl, Selected Works In Gas Dynamics, Nauka, Moscow, 1973 (In Russian).
[6]. A. Hasanov, On A Mixed Problem For The Equation Sign Y|Y|Muxx + Xnuyy = 0, Izv. Akad. Nauk Uzssr Ser. Fiz.- Mat. Nauk 2
(1982) 28–32 And 76 (In Russian).
[7]. JOSHI, C.M. And Bissu S.K. "Some Inequalities Of Hypergeometric Function Of Three Variables". Jnanabha, Vol. 21 (1991)
Pp.151-164.
[8]. G. Lauricella, Sulle Funzioni Ipergeometriche A Più Variabili, Rend. Circ. Mat. Palermo 7 (1893) 111–158.
[9]. G. Lohöfer, Theory Of An Electromagnetically Deviated Metal Sphere. I: Absorbed Power, SIAM J. Appl. Math. 49 (1989) 567–
581.
[10]. A.W. Niukkanen, Generalised Hypergeometric Series NF(X1, . . . , Xn) Arising In Physical And Quantum Chemical Applications,
J. Phys. A: Math. Gen. 16 (1983) 1813–1825.
[11]. S.B. Opps, N. Saad, H.M. Srivastava, Some Reduction And Transformation Formulas For The Appell Hypergeometric Function F2,
J. Math. Anal. Appl. 302 (2005) 180–195.
[12]. P.A. Padmanabham, H.M. Srivastava, Summation Formulas Associated With The Lauricella Function F(R) A , Appl. Math. Lett. 13
(1) (2000) 65–70.
[13]. Raniville, Earld “Special Functions”. New York (1960).
[14]. H.M. Srivastava, Hypergeometric Functions Of Three Variables, Gan.Ita 15 (1964) 97–108.
[15]. H.M. Srivastava, Some Integrals Representing Triple Hypergeometric Functions, Rend. Circ. Mat. Palermo (Ser. 2) 16 (1967) 99–
115.
[16]. H.M. Srivastava, A Class Of Generalised Multiple Hypergeometric Series Arising In Physical And Quantum Chemical
Applications, J. Phys. A: Math. Gen. 18 (1985) L227–L234.
[17]. H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester),
Wiley, New York, Chichester, Brisbane And Toronto, 1985.
[18]. H.M. Srivastava, H.L.Manocha, A Treatise On Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester),Wiley,
New York, Chichester, Brisbane And Toronto, 1984.

More Related Content

What's hot

number-theory
number-theorynumber-theory
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log laws
Nigel Simmons
 
مراجعة مركزة نهائية 2021
مراجعة مركزة  نهائية 2021مراجعة مركزة  نهائية 2021
مراجعة مركزة نهائية 2021
Rihan Rihan
 
Some Special Functions of Complex Variable
Some Special Functions of Complex VariableSome Special Functions of Complex Variable
Some Special Functions of Complex Variable
rahulmonikasharma
 
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
AIST
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
iosrjce
 
On Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating TypeOn Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating Type
IOSR Journals
 
ppt_tech
ppt_techppt_tech
ppt_tech
Shenghan Guo
 
ロマンティックな9つの数 #ロマ数ボーイズ
ロマンティックな9つの数 #ロマ数ボーイズロマンティックな9つの数 #ロマ数ボーイズ
ロマンティックな9つの数 #ロマ数ボーイズ
Junpei Tsuji
 
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ssusere0a682
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
ijcsa
 
matrices
matricesmatrices
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4
sophiabelthome
 
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
Junpei Tsuji
 
Change of subject
Change of subjectChange of subject
Change of subject
Josephine Thong
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式
Junpei Tsuji
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
Alexander Decker
 
Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson  Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson
Bruno Ignacio
 
Maths ms
Maths msMaths ms
Maths ms
B Bhuvanesh
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
IOSR Journals
 

What's hot (20)

number-theory
number-theorynumber-theory
number-theory
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log laws
 
مراجعة مركزة نهائية 2021
مراجعة مركزة  نهائية 2021مراجعة مركزة  نهائية 2021
مراجعة مركزة نهائية 2021
 
Some Special Functions of Complex Variable
Some Special Functions of Complex VariableSome Special Functions of Complex Variable
Some Special Functions of Complex Variable
 
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
Valeri Labunets - Fast multiparametric wavelet transforms and packets for ima...
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
 
On Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating TypeOn Hadamard Product of P-Valent Functions with Alternating Type
On Hadamard Product of P-Valent Functions with Alternating Type
 
ppt_tech
ppt_techppt_tech
ppt_tech
 
ロマンティックな9つの数 #ロマ数ボーイズ
ロマンティックな9つの数 #ロマ数ボーイズロマンティックな9つの数 #ロマ数ボーイズ
ロマンティックな9つの数 #ロマ数ボーイズ
 
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
 
matrices
matricesmatrices
matrices
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4
 
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
 
Change of subject
Change of subjectChange of subject
Change of subject
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson  Chapter 11 16 solucionario larson
Chapter 11 16 solucionario larson
 
Maths ms
Maths msMaths ms
Maths ms
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 

Similar to Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three Variables

D41024030
D41024030D41024030
D41024030
ijceronline
 
D028036046
D028036046D028036046
D028036046
inventionjournals
 
A04 07 0105
A04 07 0105A04 07 0105
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
IOSRJM
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
sophiabelthome
 
End sem solution
End sem solutionEnd sem solution
End sem solution
Gopi Saiteja
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 
A02402001011
A02402001011A02402001011
A02402001011
inventionjournals
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
inventionjournals
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET Journal
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
paperpublications3
 
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ssusere0a682
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte Växjö
Richard Gill
 
Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...
Alexander Decker
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
International Journal of Innovation Engineering and Science Research
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
Scientific Review SR
 
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILINRESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
Wireilla
 
E024033041
E024033041E024033041
E024033041
inventionjournals
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
Maxim Eingorn
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
Alexander Decker
 

Similar to Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three Variables (20)

D41024030
D41024030D41024030
D41024030
 
D028036046
D028036046D028036046
D028036046
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
 
End sem solution
End sem solutionEnd sem solution
End sem solution
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
A02402001011
A02402001011A02402001011
A02402001011
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte Växjö
 
Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
 
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILINRESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
 
E024033041
E024033041E024033041
E024033041
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 

Recently uploaded

Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
Aditya Rajan Patra
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
HODECEDSIET
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
enizeyimana36
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
mamunhossenbd75
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 

Recently uploaded (20)

Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 

Certain D - Operator for Srivastava H B - Hypergeometric Functions of Three Variables

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 5 Issue 4|| April 2016 || PP.01-08 www.ijesi.org 1 | Page Certain D - Operator for Srivastava B H - Hypergeometric Functions of Three Variables Mosaed M. Makky Mathematics Department, Faculty Of Science (Qena) South Valley University (Qena , Egypt) Abstract : The aim of this paper is to derive certain relations involving Srivastava’s hypergeometric functions B H in three variables. Many operator identities involving these pairs of symbolic operators are first constructed for this purpose. By means of these operator identities, which express the aforementioned B H - hypergeometric functions in terms of such simpler functions as the products of the Gauss and Appell hypergeometric functions. Other closely-related results are also considered briefly. Also, we have derived certain new integral representations for the B H - hypergeometric functions of three variables defined earlier by Lauricella [ 8 ] and Srivastava [14 ] . Keywords: Decomposition formulas; Srivastava’s hypergeometric functions; Multiple hypergeometric functions; Gauss hypergeometric function; Appell’s hypergeometric functions; Generalized hypergeometric function. 2010 Mathematics Subject Classification: Primary 33C20, 33C65; Secondary 33C05, 33C60, 33C70. I. Introduction A great interest in the theory of multiple hypergeometric functions (that is, hypergeometric functions of several variables) is motivated essentially by the fact that the solutions of many applied problems involving (for example) partial differential equations are obtainable with the help of such hypergeometric functions (see, for details, [17]; see also the recent works [11,12] and the references cited therein). For instance, the energy absorbed by some nonferromagnetic conductor sphere included in an internal magnetic field can be calculated with the help of such functions [12]. Hypergeometric functions of several variables are used in physical and quantum chemical applications as well (cf. [14,16]). Especially, many problems in gas dynamics lead to solutions of degenerate second-order partial differential equations which are then solvable in terms of multiple hypergeometric functions. Among examples, we can cite the problem of adiabatic flat-parallel gas flow without whirlwind, the flow problem of supersonic current from vessel with flat walls, and a number of other problems connected with gas flow [5]. We note that Riemann’s functions and the fundamental solutions of the degenerate second order partial differential equations are expressible by means of hypergeometric functions of several variables [6]. In investigation of the boundary-value problems for these partial differential equations. The familiar operator method of Burchnall and Chaundy (cf. [2,3]; see also [4]) has been used by them rather extensively for finding recurrence formulas for hypergeometric functions of two variables in terms of the classical Gauss hypergeometric function of one variable. Lauricella [8] actually defined the ten triple hypergeometric functions , , .....E F R F F F in addition, of course, to his four functions , ,A B C F F F and D F of three ( or n) variables, Srivastava [ 14 ] added three new functions ,A B F F and C F to the Lauricella set of function hypergeometric functions of three variables, here we shall obtain the integral representations of B H - hypergeometric functions in quite a different form. Suppose that a hypergeometric function in the form (c.f. [4,13]) (1.1)   n n n nn z n zF     1 12 )(! )()( 1;;,    for  neither zero nor a negative integer. Now we consider B H - hypergeometric function defined in ([17] as follows : (1.2) B H =  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z     
  • 2. Certain D - Operator For Srivastava B H - Hypergeometric Functions Of Three Variables www.ijesi.org 2 | Page = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n             which were introduced and investigated, over four decades ago, by Srivastava (see, for details, [14,15]; see also [17, p. 43] and [18, pp. 68–69]). Here, and in what follows               denotes the Pochhammer symbol (or the shifted factorial) for all admissible (real or complex) values of λ and μ. Also, we study the B H - hypergeometric function, where it is regular in the unit hypersphere (c.f. [2,3]), for the B H - function, we can define as contiguous to it each of the following functions, which are samples by uppering or lowering one of the parameters by unity. (1.3) B H ( +) = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 3 1 2 3 , , 0 1 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n z z z n n n                (1.4) B H ( -) = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 2 3 , , 0 1 1 3 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) 1 ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n n n                 (1.5) B H ( +,  +) = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 3 2 1 2 1 2 3 , , 0 1 2 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z n n n                    , (1.6)    3 1j j dD , j jj z zd    and the way we effect it with the recursions relations as it is found in the second part of the research.. We obtain, as a result of acting by D on this function a differential equation, some special cases for a group of differential equations are the functions that are effected by the differential operator. There is a numerical example for one of these cases. II. A Set Of Operator Of B H - Hypergeometric Function By applying the operator D in (1.6) to (1.2), we find the following set of operator identities involving the Gauss function 2 1 F , the Appell functions, and Srivastava’s hypergeometric functions B H defined by (1.2) is (2.1) D  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z      = D 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n             = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n z z z n n n               = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 1 2 1 3 1 1 2 3 , , 0 1 2 3 1 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n                 + 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 1 3 1 1 1 2 3 , , 0 1 2 3 1 2 1 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n                 + 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 1 2 3 1 1 1 2 3 , , 0 1 2 3 1 2 3 1 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n                 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 3 2 1 2 1 1 2 3 , , 0 1 1 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                    
  • 3. Certain D - Operator For Srivastava B H - Hypergeometric Functions Of Three Variables www.ijesi.org 3 | Page 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 32 1 2 3 2 3 2 1 2 3 , , 0 2 2 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                     1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 3 3 2 3 3 1 2 3 , , 0 3 3 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                     1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 1 3 2 1 21 2 1 1 2 3 , , 01 1 2 1 1 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                          1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 32 3 2 2 1 2 3 2 3 2 1 2 3 , , 02 2 3 2 2 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                           1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 3 3 1 1 3 3 2 3 3 1 2 3 , , 03 1 3 3 3 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                           i.e. (2.2) 1 2 1 1 2 3 1 2 3 1 2 3 1 ( 1, 1, ; 1, , ; , , )B B z D H H z z z              2 3 2 1 2 3 1 2 3 1 2 3 2 ( , 1, 1; , 1, ; , , )B z H z z z              1 3 3 1 2 3 1 2 3 1 2 3 3 ( 1, , 1; , , 1; , , )B z H z z z              . From which and using the contiguous functions relations (1.3), (1.4), (1.5), (1.6) we have (2.3) 2 3 11 2 1 1 2 1 2 3 2 1 2 1 3 1 1 3 3 3 ( , ; ) ( , ; ) ( , ; ) B B B B zz D H H H z H                              i.e. the partial differential equation 2 3 1 1 3 11 2 1 1 2 1 2 3 2 1 3 3 1 2 3 ( , ; ) ( , ; ) ( , ; ) 0B B B B z zz D H H H H                                    has a solution in the form : -  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z      = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n             . Also, we can write the following recursion relations B H - hypergeometric function as follows: (2.4)  1 1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B d H z z z      = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n z z z n n n             = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 1 2 1 3 1 1 2 3 , , 0 1 2 3 1 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n                 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 3 2 1 2 1 1 2 3 , , 0 1 1 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                     1 2 1 1 2 3 1 2 3 1 2 3 1 ( 1, 1, ; 1, , ; , , )B z H z z z             
  • 4. Certain D - Operator For Srivastava B H - Hypergeometric Functions Of Three Variables www.ijesi.org 4 | Page (2.5)  2 1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B d H z z z      = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 2 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n z z z n n n             = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 1 3 1 1 1 2 3 , , 0 1 2 3 1 2 1 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n                 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 32 1 2 3 2 3 2 1 2 3 , , 0 2 2 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                     2 3 2 1 2 3 1 2 3 1 2 3 2 ( , 1, 1; , 1, ; , , )B z H z z z              (2.6)  3 1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B d H z z z      = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n z z z n n n             = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 1 2 3 1 1 1 2 3 , , 0 1 2 3 1 2 3 1 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n                 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 31 1 3 3 2 3 3 1 2 3 , , 0 3 3 1 2 3 1 2 3 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n n n n n z z z z n n n n                     1 3 3 1 2 3 1 2 3 1 2 3 3 ( 1, , 1; , , 1; , , )B z H z z z              . III. Some Recurrence Relations For B H - Hypergeometric Function 3.1 Putting 1 2   and 1 2   in (2.4), (2.5), and (2.6) we have (3.1)  1 1 1 3 1 1 3 1 2 3 , , ; , , ; , ,B d H z z z      2 1 1 1 1 3 1 1 3 1 2 3 1 ( 1, 1, ; 1, , ; , , )B z H z z z             (3.2)  2 1 1 3 1 1 3 1 2 3 , , ; , , ; , ,B d H z z z      1 3 2 1 1 3 1 1 3 1 2 3 1 ( , 1, 1; , 1, ; , , )B z H z z z              (3.3)  3 1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B d H z z z      1 3 3 1 1 3 1 1 3 1 2 3 3 ( 1, , 1; , , 1; , , )B z H z z z              . 3.2 Putting 1 3   and 1 3   in (2.4), (2.5), and (2.6) we have (3.4)  1 1 2 1 1 2 1 1 2 3 , , ; , , ; , ,B d H z z z      1 2 1 1 2 1 1 2 1 1 2 3 1 ( 1, 1, ; 1, , ; , , )B z H z z z              (3.5)  2 1 2 1 1 2 1 1 2 3 , , ; , , ; , ,B d H z z z      2 1 2 1 2 1 1 2 1 1 2 3 2 ( , 1, 1; , 1, ; , , )B z H z z z             
  • 5. Certain D - Operator For Srivastava B H - Hypergeometric Functions Of Three Variables www.ijesi.org 5 | Page (3.6)  3 1 2 1 1 2 1 1 2 3 , , ; , , ; , ,B d H z z z      2 1 3 1 2 1 1 2 1 1 2 3 1 ( 1, , 1; , , 1; , , )B z H z z z             . 3.3 Some special cases for the B H - hypergeometric function which given us some differential equations its functions as follows: 1- The function  3 3 1 2 3 ; ; , ,B H z z z  = 2 3 31 2 1 2 3 3 3 1 2 3 , , 0 1 2 3 3 ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n z z z n n n       . Thus D  3 3 1 2 3 ; ; , ,B H z z z  = D 2 3 31 2 1 2 3 3 3 1 2 3 , , 0 1 2 3 3 ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n z z z n n n       = 2 3 31 2 1 2 3 3 1 2 3 3 1 2 3 , , 0 1 2 3 3 ( )( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n n n n z z z n n n         = 2 3 31 2 1 2 3 3 3 1 1 2 3 , , 0 1 2 3 3 ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n z z z n n n        + 2 3 31 2 1 2 3 3 3 1 1 1 2 3 , , 0 1 2 3 3 ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n z z z n n n         + 2 3 31 2 1 2 3 3 3 1 1 1 2 3 , , 0 1 2 3 3 1 ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n z z z n n n          2 3 31 2 1 2 3 3 3 1 1 2 3 , , 0 1 2 3 3 ( ) ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n z z z z n n n        2 3 31 2 1 2 3 3 3 2 3 2 3 1 2 3 , , 0 1 2 3 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n z n n z z z n n n          2 3 31 2 1 2 3 3 33 2 3 3 1 2 3 , , 0 3 3 1 2 3 3 ( )( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n n n z z z z n n n n            . The function (3.7)  3 3 1 2 3 ; ; , ,B H z z z  = 2 3 31 2 1 2 3 3 3 1 2 3 , , 0 1 2 3 3 ( ) ( ) ( ) ( ) ! ! !( ) n n nn n n n n n z z z n n n       . has a solution of the equation (3.8)   3 3 1 3 2 3 3 1 2 3 3 3 1 2 3 3 ( 1; ; , , ) ( 1; 1; , , ) 0B B B z D z H z H z z z H z z z                    2- The function:  1 2 3 , , ; , ,B H z z z   = 31 2 1 2 3 1 2 3 , , 0 ( ) ( ) ( ) nn n n n n z z z    . Thus
  • 6. Certain D - Operator For Srivastava B H - Hypergeometric Functions Of Three Variables www.ijesi.org 6 | Page D  1 2 3 , , ; , ,B H z z z   = 31 2 1 2 3 1 2 3 1 2 3 , , 0 ( )( ) ( ) ( ) nn n n n n n n n z z z     = 31 2 1 2 3 1 1 2 3 , , 0 ( ) ( ) ( ) nn n n n n z z z     + 31 2 1 2 3 1 1 2 3 , , 0 ) ( ) ( ) nn n n n n z z z     + 31 2 1 2 3 1 1 2 3 , , 0 ( ) ( ) ( ) nn n n n n z z z     D  1 2 3 , , ; , ,B H z z z   31 2 1 2 3 1 2 3 1 2 3 , , 0 ( ) ( ) ( ) ( ) nn n n n n z z z z z z       . The function  1 2 3 , , ; , ,B H z z z   = 31 2 1 2 3 1 2 3 , , 0 ( ) ( ) ( ) nn n n n n z z z    . has a solution of the equation    1 2 3 1 2 3 ( ) , , ; , , 0B D z z z H z z z       Now will given a numerical example for one of these differential equations that we get, by giving a numerical value for constant numbers in any previous equation as the one used in (3.8) and we get an equation representing the surface sphere equation, its solution is solution for the equation (3.8) after substituting the same numerical value. This clarifies the idea of the study. Example : Here we shall take the equation in (3.8) as follows:   3 3 1 3 2 3 3 1 2 3 3 3 1 2 3 3 (2 .3) ( 1; ; , , ) ( 1; 1; , , ) 0B B B z D z H z H z z z H z z z                    which has a general solution in equation (3.8) we can consider that (3.10) 3 3 1 2 3 1 1n n n        Substituting from (3.10) in the equation (3.8) we get :-  1 2 3 1;1; , ,B H z z z = 2 3 1 2 3 3 1 2 3 , , 0 (1) ( )( )( ) 1!1!1!(1) n n n n n n z z z     and since 1321  nnn , )!1)...(3)(2(1)1( 3232  nnnn and 3 3 (1) 1( 2 )(3)...( 1) !n n  .  1 1 2 3 2 1 2 3 3 1 2 3 (1;1; , , ) (1;1; , , ) (1;1; , , ) 0B B B D z H z z z z H z z z z H z z z       1 2 3 1 2 3 (1;1; , , ) 0B D z z z H z z z      Applying that and the partial differential equation (3.9) we see that: - 0]0)([ 321  A HzzzD 0))](([ 321321  zzzzzzD  1 2 3 1 2 3 1 2 3 1 2 3 1 2 ( ) ( )( ) ( ) 3 ( 0D z z z z z z z z z z z z z z z        i.e. 03)( 321  zzz which is a surface equation in hypersphere has a solution in the form:  1 2 3 1;1; , ,B H z z z = 1 2 3 z z z
  • 7. Certain D - Operator For Srivastava B H - Hypergeometric Functions Of Three Variables www.ijesi.org 7 | Page IV. Integral Representations For Certain B H -Hypergeometric Function Of Three Variables Due To Lauricella And Srivastava Now we consider B H - hypergeometric function as follows  1 2 3 1 2 3 1 2 3 , , ; , , ; , ,B H z z z      = 1 3 1 2 2 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 , , 0 1 2 3 1 2 3 ( ) ( ) ( ) ( ) ( ) ( ) ! ! !( ) ( ) ( ) n n n n n n nn n n n n n n n z z z n n n             and (4.1)  1 2 3 1, 1, 1; 1, 1, 1; , ,B H z z z                 =                   3 1 1 1 1 1 1 2 1 1 1                                                   2 2 2 2 2 2 . cos cos cos i i i e                                           1 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i x                   1 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i y                   1 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i z d d d                  where      R e 1 , R e 1 R e 1and              . Proof :  1 2 3 1, 1, 1; 1, 1, 1; , ,B H z z z                 = 1 2 3 , , 0 ( 1, )( 1, )( 1, ) ! ! !( 1, )( 1, )( 1, ) m n p m n p m n p n m p z z z m n p m n p                         =                   1 1 1 1 1 1 1 1 1                                  1 2 3 , , 0 ( 1, )( 1, )( 1, ) . ! ! ! m n p m n p m n p z z z m n p                       1 1 1 ( 1) . 1 1 1 1 m p p p m n m p n m                                             ( 1) 1 1( 1) . 1 1 1 m n pn p n p                        Now, it is known that (Whittaker and Watsin [ ])        2 2 1 2 cos 1 1 in e d                            where  R e 1    so that the right hand side of ( 4.1) becomes                   3 1 1 1 1 1 1 2 1 1 1                                             
  • 8. Certain D - Operator For Srivastava B H - Hypergeometric Functions Of Three Variables www.ijesi.org 8 | Page      2 2 2 2 2 2 . cos cos cos i i i e                                           1 1 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i z                   1 2 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i z                   1 3 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i z d d d                  Using the identities  2 2 co s 2 co s sin co s 1 co s 2 sin 2 i e i i             and 2 co s 1 co s 2 sin 2 i e i         Then we have  1, 1, 1; 1, 1, 1; , ,B H x y z                 =                   3 1 1 1 1 1 1 2 1 1 1                                                   2 2 2 2 2 2 . cos cos cos i i i e                                           1 1 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i z                   1 2 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i z                   1 3 . 1 1 co s 2 sin 2 1 co s 2 sin 2i i z d d d                  References [1]. J.L. Burchnall, T.W. Chaundy, Expansions Of Appell’s Double Hypergeometric Functions, Quart. J. Math. Oxford Ser. 11 (1940) 249–270. [2]. J.L. Burchnall, T.W. Chaundy, Expansions Of Appell’s Double Hypergeometric Functions. II, Quart. J. Math. Oxford Ser. 12 (1941) 112–128. [3]. T.W. Chaundy, Expansions Of Hypergeometric Functions, Quart. J. Math. Oxford Ser. 13 (1942) 159–171. [4]. Chaundy, T.W. “On Appell’s Fourth Hypergeometric Functions”. The Quart. J. Mathematical Oxford (2) 17 (1966) Pp.81-85. [5]. F.I. Frankl, Selected Works In Gas Dynamics, Nauka, Moscow, 1973 (In Russian). [6]. A. Hasanov, On A Mixed Problem For The Equation Sign Y|Y|Muxx + Xnuyy = 0, Izv. Akad. Nauk Uzssr Ser. Fiz.- Mat. Nauk 2 (1982) 28–32 And 76 (In Russian). [7]. JOSHI, C.M. And Bissu S.K. "Some Inequalities Of Hypergeometric Function Of Three Variables". Jnanabha, Vol. 21 (1991) Pp.151-164. [8]. G. Lauricella, Sulle Funzioni Ipergeometriche A Più Variabili, Rend. Circ. Mat. Palermo 7 (1893) 111–158. [9]. G. Lohöfer, Theory Of An Electromagnetically Deviated Metal Sphere. I: Absorbed Power, SIAM J. Appl. Math. 49 (1989) 567– 581. [10]. A.W. Niukkanen, Generalised Hypergeometric Series NF(X1, . . . , Xn) Arising In Physical And Quantum Chemical Applications, J. Phys. A: Math. Gen. 16 (1983) 1813–1825. [11]. S.B. Opps, N. Saad, H.M. Srivastava, Some Reduction And Transformation Formulas For The Appell Hypergeometric Function F2, J. Math. Anal. Appl. 302 (2005) 180–195. [12]. P.A. Padmanabham, H.M. Srivastava, Summation Formulas Associated With The Lauricella Function F(R) A , Appl. Math. Lett. 13 (1) (2000) 65–70. [13]. Raniville, Earld “Special Functions”. New York (1960). [14]. H.M. Srivastava, Hypergeometric Functions Of Three Variables, Gan.Ita 15 (1964) 97–108. [15]. H.M. Srivastava, Some Integrals Representing Triple Hypergeometric Functions, Rend. Circ. Mat. Palermo (Ser. 2) 16 (1967) 99– 115. [16]. H.M. Srivastava, A Class Of Generalised Multiple Hypergeometric Series Arising In Physical And Quantum Chemical Applications, J. Phys. A: Math. Gen. 18 (1985) L227–L234. [17]. H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane And Toronto, 1985. [18]. H.M. Srivastava, H.L.Manocha, A Treatise On Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester),Wiley, New York, Chichester, Brisbane And Toronto, 1984.