SlideShare a Scribd company logo
 Data-Applied.com: Decision
Introduction Decision trees let you construct decision models They can be used for forecasting, classification or decision At each branch the data is spit based on a particular field of data Decision trees are constructed using Divide and Conquer techniques
Divide-and-Conquer: Constructing Decision Trees Steps to construct a decision tree recursively: Select an attribute to placed at root node and make one branch for each possible value  Repeat the process recursively at each branch, using only those instances that reach the branch  If at any time all instances at a node have the classification, stop developing that part of the tree Problem: How to decide which attribute to split on
Divide-and-Conquer: Constructing Decision Trees Steps to find the attribute to split on: We consider all the possible attributes as option and branch them according to different possible values Now for each possible attribute value we calculate Information and then find the Information gain for each attribute option Select that attribute for division which gives a Maximum Information Gain Do this until each branch terminates at an attribute which gives Information = 0
Divide-and-Conquer: Constructing Decision Trees Calculation of Information and Gain: For data: (P1, P2, P3……Pn) such that P1 + P2 + P3 +……. +Pn = 1  Information(P1, P2 …..Pn)  =  -P1logP1 -P2logP2 – P3logP3 ……… -PnlogPn Gain  = Information before division – Information after division
Divide-and-Conquer: Constructing Decision Trees Example: Here we have consider each attribute individually Each is divided into branches  according to different possible  values  Below each branch the number of class is marked
Divide-and-Conquer: Constructing Decision Trees Calculations: Using the formulae for Information, initially we have Number of instances with class = Yes is 9  Number of instances with class = No is 5 So we have P1 = 9/14 and P2 = 5/14 Info[9/14, 5/14] = -9/14log(9/14) -5/14log(5/14) = 0.940 bits Now for example lets consider Outlook attribute, we observe the following:
Divide-and-Conquer: Constructing Decision Trees Example Contd. Gain by using Outlook for division        = info([9,5]) – info([2,3],[4,0],[3,2]) 				                          = 0.940 – 0.693 = 0.247 bits Gain (outlook) = 0.247 bits 	Gain (temperature) = 0.029 bits 	Gain (humidity) = 0.152 bits 	Gain (windy) = 0.048 bits So since Outlook gives maximum gain, we will use it for division And we repeat the steps for Outlook = Sunny and Rainy and stop for 	Overcast since we have Information = 0 for it
Divide-and-Conquer: Constructing Decision Trees Highly branching attributes: The problem If we follow the previously subscribed method, it will always favor an attribute with the largest number of  branches In extreme cases it will favor an attribute which has different value for each instance: Identification code
Divide-and-Conquer: Constructing Decision Trees Highly branching attributes: The problem Information for such an attribute is 0 info([0,1]) + info([0,1]) + info([0,1]) + …………. + info([0,1]) = 0 It will hence have the maximum gain and will be chosen for branching But such an attribute is not good for predicting class of an unknown instance nor does it tells anything about the structure of division So we use gain ratio to compensate for this
Divide-and-Conquer: Constructing Decision Trees Highly branching attributes: Gain ratio Gain ratio =  gain/split info To calculate split info, for each instance value we just consider the number of instances covered by each attribute value, irrespective of the class Then we calculate the split info, so for identification code with 14 different values we have: info([1,1,1,…..,1]) = -1/14 x log1/14 x 14 = 3.807 For Outlook we will have the split info: info([5,4,5]) =  -1/5 x log 1/5 -1/4 x log1/4 -1/5 x log 1/5  = 1.577
Decision using Data Applied’s web interface
Step1: Selection of data
Step2: SelectingDecision
Step3: Result
Visit more self help tutorials ,[object Object]

More Related Content

What's hot

CC282 Unsupervised Learning (Clustering) Lecture 7 slides for ...
CC282 Unsupervised Learning (Clustering) Lecture 7 slides for ...CC282 Unsupervised Learning (Clustering) Lecture 7 slides for ...
CC282 Unsupervised Learning (Clustering) Lecture 7 slides for ...butest
 
Decision tree and random forest
Decision tree and random forestDecision tree and random forest
Decision tree and random forest
Lippo Group Digital
 
WEKA: Practical Machine Learning Tools And Techniques
WEKA: Practical Machine Learning Tools And TechniquesWEKA: Practical Machine Learning Tools And Techniques
WEKA: Practical Machine Learning Tools And Techniques
DataminingTools Inc
 
K - Nearest neighbor ( KNN )
K - Nearest neighbor  ( KNN )K - Nearest neighbor  ( KNN )
K - Nearest neighbor ( KNN )
Mohammad Junaid Khan
 
Fuzzy c means_realestate_application
Fuzzy c means_realestate_applicationFuzzy c means_realestate_application
Fuzzy c means_realestate_applicationCemal Ardil
 
Fuzzy c means manual work
Fuzzy c means manual workFuzzy c means manual work
Fuzzy c means manual work
Dr.E.N.Sathishkumar
 
ID3 Algorithm & ROC Analysis
ID3 Algorithm & ROC AnalysisID3 Algorithm & ROC Analysis
ID3 Algorithm & ROC Analysis
Talha Kabakus
 
Rough K Means - Numerical Example
Rough K Means - Numerical ExampleRough K Means - Numerical Example
Rough K Means - Numerical Example
Dr.E.N.Sathishkumar
 
k Nearest Neighbor
k Nearest Neighbork Nearest Neighbor
k Nearest Neighborbutest
 

What's hot (11)

Decision tree
Decision treeDecision tree
Decision tree
 
CC282 Unsupervised Learning (Clustering) Lecture 7 slides for ...
CC282 Unsupervised Learning (Clustering) Lecture 7 slides for ...CC282 Unsupervised Learning (Clustering) Lecture 7 slides for ...
CC282 Unsupervised Learning (Clustering) Lecture 7 slides for ...
 
Decision tree and random forest
Decision tree and random forestDecision tree and random forest
Decision tree and random forest
 
WEKA: Practical Machine Learning Tools And Techniques
WEKA: Practical Machine Learning Tools And TechniquesWEKA: Practical Machine Learning Tools And Techniques
WEKA: Practical Machine Learning Tools And Techniques
 
K - Nearest neighbor ( KNN )
K - Nearest neighbor  ( KNN )K - Nearest neighbor  ( KNN )
K - Nearest neighbor ( KNN )
 
Fuzzy c means_realestate_application
Fuzzy c means_realestate_applicationFuzzy c means_realestate_application
Fuzzy c means_realestate_application
 
Fuzzy c means manual work
Fuzzy c means manual workFuzzy c means manual work
Fuzzy c means manual work
 
ID3 Algorithm & ROC Analysis
ID3 Algorithm & ROC AnalysisID3 Algorithm & ROC Analysis
ID3 Algorithm & ROC Analysis
 
Rough K Means - Numerical Example
Rough K Means - Numerical ExampleRough K Means - Numerical Example
Rough K Means - Numerical Example
 
Image Compression
Image CompressionImage Compression
Image Compression
 
k Nearest Neighbor
k Nearest Neighbork Nearest Neighbor
k Nearest Neighbor
 

Viewers also liked

Data Applied: Similarity
Data Applied: SimilarityData Applied: Similarity
Data Applied: Similarity
DataminingTools Inc
 
LISP: Declarations In Lisp
LISP: Declarations In LispLISP: Declarations In Lisp
LISP: Declarations In Lisp
DataminingTools Inc
 
MS Sql Server: Reporting introduction
MS Sql Server: Reporting introductionMS Sql Server: Reporting introduction
MS Sql Server: Reporting introduction
DataminingTools Inc
 
WEKA: Credibility Evaluating Whats Been Learned
WEKA: Credibility Evaluating Whats Been LearnedWEKA: Credibility Evaluating Whats Been Learned
WEKA: Credibility Evaluating Whats Been Learned
DataminingTools Inc
 
Matlab: Discrete Linear Systems
Matlab: Discrete Linear SystemsMatlab: Discrete Linear Systems
Matlab: Discrete Linear Systems
DataminingTools Inc
 
Matlab Text Files
Matlab Text FilesMatlab Text Files
Matlab Text Files
DataminingTools Inc
 
XL-MINER:Partition
XL-MINER:PartitionXL-MINER:Partition
XL-MINER:Partition
DataminingTools Inc
 
Traffic Skills, Parent & Kids Intro
Traffic Skills, Parent & Kids IntroTraffic Skills, Parent & Kids Intro
Traffic Skills, Parent & Kids Intro
Eugene SRTS
 
Public Transportation
Public TransportationPublic Transportation
Public Transportationdpapageorge
 
Control Statements in Matlab
Control Statements in  MatlabControl Statements in  Matlab
Control Statements in Matlab
DataminingTools Inc
 
Quick Look At Classification
Quick Look At ClassificationQuick Look At Classification
Quick Look At Classification
DataminingTools Inc
 
MS Sql Server: Doing Calculations With Functions
MS Sql Server: Doing Calculations With FunctionsMS Sql Server: Doing Calculations With Functions
MS Sql Server: Doing Calculations With Functions
DataminingTools Inc
 
SQL Server: BI
SQL Server: BISQL Server: BI
SQL Server: BI
DataminingTools Inc
 
Asha & Beckis Nc Presentation
Asha & Beckis Nc PresentationAsha & Beckis Nc Presentation
Asha & Beckis Nc PresentationAsha Stremcha
 
Data Applied: Developer Quicklook
Data Applied: Developer QuicklookData Applied: Developer Quicklook
Data Applied: Developer Quicklook
DataminingTools Inc
 
PresentacióN De Quimica
PresentacióN De QuimicaPresentacióN De Quimica
PresentacióN De Quimica
guestf6a53c
 
Drc 2010 D.J.Pawlik
Drc 2010 D.J.PawlikDrc 2010 D.J.Pawlik
Drc 2010 D.J.Pawlik
slrommel
 
MS SQL SERVER: Programming sql server data mining
MS SQL SERVER: Programming sql server data miningMS SQL SERVER: Programming sql server data mining
MS SQL SERVER: Programming sql server data mining
DataminingTools Inc
 

Viewers also liked (20)

Data Applied: Similarity
Data Applied: SimilarityData Applied: Similarity
Data Applied: Similarity
 
LISP: Declarations In Lisp
LISP: Declarations In LispLISP: Declarations In Lisp
LISP: Declarations In Lisp
 
MS Sql Server: Reporting introduction
MS Sql Server: Reporting introductionMS Sql Server: Reporting introduction
MS Sql Server: Reporting introduction
 
WEKA: Credibility Evaluating Whats Been Learned
WEKA: Credibility Evaluating Whats Been LearnedWEKA: Credibility Evaluating Whats Been Learned
WEKA: Credibility Evaluating Whats Been Learned
 
Matlab: Discrete Linear Systems
Matlab: Discrete Linear SystemsMatlab: Discrete Linear Systems
Matlab: Discrete Linear Systems
 
Matlab Text Files
Matlab Text FilesMatlab Text Files
Matlab Text Files
 
XL-MINER:Partition
XL-MINER:PartitionXL-MINER:Partition
XL-MINER:Partition
 
Traffic Skills, Parent & Kids Intro
Traffic Skills, Parent & Kids IntroTraffic Skills, Parent & Kids Intro
Traffic Skills, Parent & Kids Intro
 
Txomin Hartz Txikia
Txomin Hartz TxikiaTxomin Hartz Txikia
Txomin Hartz Txikia
 
Public Transportation
Public TransportationPublic Transportation
Public Transportation
 
Control Statements in Matlab
Control Statements in  MatlabControl Statements in  Matlab
Control Statements in Matlab
 
Quick Look At Classification
Quick Look At ClassificationQuick Look At Classification
Quick Look At Classification
 
MS Sql Server: Doing Calculations With Functions
MS Sql Server: Doing Calculations With FunctionsMS Sql Server: Doing Calculations With Functions
MS Sql Server: Doing Calculations With Functions
 
SQL Server: BI
SQL Server: BISQL Server: BI
SQL Server: BI
 
Asha & Beckis Nc Presentation
Asha & Beckis Nc PresentationAsha & Beckis Nc Presentation
Asha & Beckis Nc Presentation
 
Data Applied: Developer Quicklook
Data Applied: Developer QuicklookData Applied: Developer Quicklook
Data Applied: Developer Quicklook
 
Test
TestTest
Test
 
PresentacióN De Quimica
PresentacióN De QuimicaPresentacióN De Quimica
PresentacióN De Quimica
 
Drc 2010 D.J.Pawlik
Drc 2010 D.J.PawlikDrc 2010 D.J.Pawlik
Drc 2010 D.J.Pawlik
 
MS SQL SERVER: Programming sql server data mining
MS SQL SERVER: Programming sql server data miningMS SQL SERVER: Programming sql server data mining
MS SQL SERVER: Programming sql server data mining
 

Similar to Data Applied:Decision Trees

WEKA:Algorithms The Basic Methods
WEKA:Algorithms The Basic MethodsWEKA:Algorithms The Basic Methods
WEKA:Algorithms The Basic Methods
weka Content
 
DM Unit-III ppt.ppt
DM Unit-III ppt.pptDM Unit-III ppt.ppt
DM Unit-III ppt.ppt
Laxmi139487
 
Machine learning session 10
Machine learning session 10Machine learning session 10
Machine learning session 10
NirsandhG
 
unit 5 decision tree2.pptx
unit 5 decision tree2.pptxunit 5 decision tree2.pptx
unit 5 decision tree2.pptx
ssuser5c580e1
 
Know How to Create and Visualize a Decision Tree with Python.pdf
Know How to Create and Visualize a Decision Tree with Python.pdfKnow How to Create and Visualize a Decision Tree with Python.pdf
Know How to Create and Visualize a Decision Tree with Python.pdf
Data Science Council of America
 
2.2 decision tree
2.2 decision tree2.2 decision tree
2.2 decision tree
Krish_ver2
 
An algorithm for building
An algorithm for buildingAn algorithm for building
An algorithm for building
ajmal_fuuast
 
Data mining
Data miningData mining
Data mining
NafisehOfoghi
 
Classification (ML).ppt
Classification (ML).pptClassification (ML).ppt
Classification (ML).ppt
rajasamal1999
 
WEKA:Practical Machine Learning Tools And Techniques
WEKA:Practical Machine Learning Tools And TechniquesWEKA:Practical Machine Learning Tools And Techniques
WEKA:Practical Machine Learning Tools And Techniques
weka Content
 
Cs501 classification prediction
Cs501 classification predictionCs501 classification prediction
Cs501 classification prediction
Kamal Singh Lodhi
 
Oracle Fusion Trees
Oracle Fusion TreesOracle Fusion Trees
Oracle Fusion Trees
Feras Ahmad
 
Data-Mining
Data-MiningData-Mining
Data-Mining
Wakimul Alam
 
Decision tree
Decision treeDecision tree
Decision tree
Soujanya V
 
Tutorial ground classification with Laserdata LiS
Tutorial ground classification with Laserdata LiSTutorial ground classification with Laserdata LiS
Tutorial ground classification with Laserdata LiS
Frederic Petrini-Monteferri
 
weka-190429184259.pdf
weka-190429184259.pdfweka-190429184259.pdf
weka-190429184259.pdf
TeamRebel1
 
Weka presentation
Weka presentationWeka presentation
Weka presentation
Abrar ali
 
Decision tree
Decision treeDecision tree
Decision tree
Karan Deopura
 

Similar to Data Applied:Decision Trees (20)

WEKA:Algorithms The Basic Methods
WEKA:Algorithms The Basic MethodsWEKA:Algorithms The Basic Methods
WEKA:Algorithms The Basic Methods
 
DM Unit-III ppt.ppt
DM Unit-III ppt.pptDM Unit-III ppt.ppt
DM Unit-III ppt.ppt
 
Machine learning session 10
Machine learning session 10Machine learning session 10
Machine learning session 10
 
unit 5 decision tree2.pptx
unit 5 decision tree2.pptxunit 5 decision tree2.pptx
unit 5 decision tree2.pptx
 
Know How to Create and Visualize a Decision Tree with Python.pdf
Know How to Create and Visualize a Decision Tree with Python.pdfKnow How to Create and Visualize a Decision Tree with Python.pdf
Know How to Create and Visualize a Decision Tree with Python.pdf
 
2.2 decision tree
2.2 decision tree2.2 decision tree
2.2 decision tree
 
Dbm630 lecture06
Dbm630 lecture06Dbm630 lecture06
Dbm630 lecture06
 
An algorithm for building
An algorithm for buildingAn algorithm for building
An algorithm for building
 
Data mining
Data miningData mining
Data mining
 
Classification (ML).ppt
Classification (ML).pptClassification (ML).ppt
Classification (ML).ppt
 
WEKA:Practical Machine Learning Tools And Techniques
WEKA:Practical Machine Learning Tools And TechniquesWEKA:Practical Machine Learning Tools And Techniques
WEKA:Practical Machine Learning Tools And Techniques
 
Cs501 classification prediction
Cs501 classification predictionCs501 classification prediction
Cs501 classification prediction
 
Oracle Fusion Trees
Oracle Fusion TreesOracle Fusion Trees
Oracle Fusion Trees
 
Data-Mining
Data-MiningData-Mining
Data-Mining
 
Decision tree
Decision treeDecision tree
Decision tree
 
Tutorial ground classification with Laserdata LiS
Tutorial ground classification with Laserdata LiSTutorial ground classification with Laserdata LiS
Tutorial ground classification with Laserdata LiS
 
weka-190429184259.pdf
weka-190429184259.pdfweka-190429184259.pdf
weka-190429184259.pdf
 
Weka presentation
Weka presentationWeka presentation
Weka presentation
 
Decision tree
Decision treeDecision tree
Decision tree
 
ML .pptx
ML .pptxML .pptx
ML .pptx
 

More from DataminingTools Inc

Terminology Machine Learning
Terminology Machine LearningTerminology Machine Learning
Terminology Machine Learning
DataminingTools Inc
 
Techniques Machine Learning
Techniques Machine LearningTechniques Machine Learning
Techniques Machine Learning
DataminingTools Inc
 
Machine learning Introduction
Machine learning IntroductionMachine learning Introduction
Machine learning Introduction
DataminingTools Inc
 
Areas of machine leanring
Areas of machine leanringAreas of machine leanring
Areas of machine leanring
DataminingTools Inc
 
AI: Planning and AI
AI: Planning and AIAI: Planning and AI
AI: Planning and AI
DataminingTools Inc
 
AI: Logic in AI 2
AI: Logic in AI 2AI: Logic in AI 2
AI: Logic in AI 2
DataminingTools Inc
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
DataminingTools Inc
 
AI: Learning in AI 2
AI: Learning in AI 2AI: Learning in AI 2
AI: Learning in AI 2
DataminingTools Inc
 
AI: Learning in AI
AI: Learning in AI AI: Learning in AI
AI: Learning in AI
DataminingTools Inc
 
AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligence
DataminingTools Inc
 
AI: Belief Networks
AI: Belief NetworksAI: Belief Networks
AI: Belief Networks
DataminingTools Inc
 
AI: AI & Searching
AI: AI & SearchingAI: AI & Searching
AI: AI & Searching
DataminingTools Inc
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
DataminingTools Inc
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web mining
DataminingTools Inc
 
Data Mining: Outlier analysis
Data Mining: Outlier analysisData Mining: Outlier analysis
Data Mining: Outlier analysis
DataminingTools Inc
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence data
DataminingTools Inc
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlations
DataminingTools Inc
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysis
DataminingTools Inc
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technology
DataminingTools Inc
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
DataminingTools Inc
 

More from DataminingTools Inc (20)

Terminology Machine Learning
Terminology Machine LearningTerminology Machine Learning
Terminology Machine Learning
 
Techniques Machine Learning
Techniques Machine LearningTechniques Machine Learning
Techniques Machine Learning
 
Machine learning Introduction
Machine learning IntroductionMachine learning Introduction
Machine learning Introduction
 
Areas of machine leanring
Areas of machine leanringAreas of machine leanring
Areas of machine leanring
 
AI: Planning and AI
AI: Planning and AIAI: Planning and AI
AI: Planning and AI
 
AI: Logic in AI 2
AI: Logic in AI 2AI: Logic in AI 2
AI: Logic in AI 2
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
 
AI: Learning in AI 2
AI: Learning in AI 2AI: Learning in AI 2
AI: Learning in AI 2
 
AI: Learning in AI
AI: Learning in AI AI: Learning in AI
AI: Learning in AI
 
AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligence
 
AI: Belief Networks
AI: Belief NetworksAI: Belief Networks
AI: Belief Networks
 
AI: AI & Searching
AI: AI & SearchingAI: AI & Searching
AI: AI & Searching
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web mining
 
Data Mining: Outlier analysis
Data Mining: Outlier analysisData Mining: Outlier analysis
Data Mining: Outlier analysis
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence data
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlations
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysis
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technology
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
 

Recently uploaded

The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 

Recently uploaded (20)

The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 

Data Applied:Decision Trees

  • 2. Introduction Decision trees let you construct decision models They can be used for forecasting, classification or decision At each branch the data is spit based on a particular field of data Decision trees are constructed using Divide and Conquer techniques
  • 3. Divide-and-Conquer: Constructing Decision Trees Steps to construct a decision tree recursively: Select an attribute to placed at root node and make one branch for each possible value Repeat the process recursively at each branch, using only those instances that reach the branch If at any time all instances at a node have the classification, stop developing that part of the tree Problem: How to decide which attribute to split on
  • 4. Divide-and-Conquer: Constructing Decision Trees Steps to find the attribute to split on: We consider all the possible attributes as option and branch them according to different possible values Now for each possible attribute value we calculate Information and then find the Information gain for each attribute option Select that attribute for division which gives a Maximum Information Gain Do this until each branch terminates at an attribute which gives Information = 0
  • 5. Divide-and-Conquer: Constructing Decision Trees Calculation of Information and Gain: For data: (P1, P2, P3……Pn) such that P1 + P2 + P3 +……. +Pn = 1 Information(P1, P2 …..Pn) = -P1logP1 -P2logP2 – P3logP3 ……… -PnlogPn Gain = Information before division – Information after division
  • 6. Divide-and-Conquer: Constructing Decision Trees Example: Here we have consider each attribute individually Each is divided into branches according to different possible values Below each branch the number of class is marked
  • 7. Divide-and-Conquer: Constructing Decision Trees Calculations: Using the formulae for Information, initially we have Number of instances with class = Yes is 9 Number of instances with class = No is 5 So we have P1 = 9/14 and P2 = 5/14 Info[9/14, 5/14] = -9/14log(9/14) -5/14log(5/14) = 0.940 bits Now for example lets consider Outlook attribute, we observe the following:
  • 8. Divide-and-Conquer: Constructing Decision Trees Example Contd. Gain by using Outlook for division = info([9,5]) – info([2,3],[4,0],[3,2]) = 0.940 – 0.693 = 0.247 bits Gain (outlook) = 0.247 bits Gain (temperature) = 0.029 bits Gain (humidity) = 0.152 bits Gain (windy) = 0.048 bits So since Outlook gives maximum gain, we will use it for division And we repeat the steps for Outlook = Sunny and Rainy and stop for Overcast since we have Information = 0 for it
  • 9. Divide-and-Conquer: Constructing Decision Trees Highly branching attributes: The problem If we follow the previously subscribed method, it will always favor an attribute with the largest number of branches In extreme cases it will favor an attribute which has different value for each instance: Identification code
  • 10. Divide-and-Conquer: Constructing Decision Trees Highly branching attributes: The problem Information for such an attribute is 0 info([0,1]) + info([0,1]) + info([0,1]) + …………. + info([0,1]) = 0 It will hence have the maximum gain and will be chosen for branching But such an attribute is not good for predicting class of an unknown instance nor does it tells anything about the structure of division So we use gain ratio to compensate for this
  • 11. Divide-and-Conquer: Constructing Decision Trees Highly branching attributes: Gain ratio Gain ratio = gain/split info To calculate split info, for each instance value we just consider the number of instances covered by each attribute value, irrespective of the class Then we calculate the split info, so for identification code with 14 different values we have: info([1,1,1,…..,1]) = -1/14 x log1/14 x 14 = 3.807 For Outlook we will have the split info: info([5,4,5]) = -1/5 x log 1/5 -1/4 x log1/4 -1/5 x log 1/5 = 1.577
  • 12. Decision using Data Applied’s web interface
  • 16.
  • 17. The tutorials section is free, self-guiding and will not involve any additional support.
  • 18. Visit us at www.dataminingtools.net