- The document discusses privacy-preserving clustering on distorted data using singular value decomposition (SVD) and sparsified singular value decomposition (SSVD).
- It applies SVD and SSVD to distort a real-world dataset of 100 terrorists with 42 attributes, generating distorted datasets.
- K-means clustering is then performed on the original and distorted datasets for different numbers of clusters (k). The results show that SSVD more effectively groups the data objects into clusters compared to the original and SVD-distorted datasets, while preserving data privacy as measured by various metrics.