This paper proposes a classification-based approach for suppressing data to prevent sensitive information from being inferred. It uses decision tree algorithms to classify data elements based on attributes and considers suppressing data elements to secure the data. The paper aims to enhance data classification and generalization. It shows how data can be secured using "generalization" while maintaining usefulness for data mining tasks. The proposed system focuses on data generalization concepts to hide detailed information for privacy while allowing standard data mining techniques to still discover patterns. It evaluates suppressing multiple confidential values and developing a technique independent of individual classification methods based on information theory.