SlideShare a Scribd company logo
Nonparametric Predictive Regression
Presenter: Xintian Yu
University of North Carolina at Charlotte, USA
Nov. 02, 2016
1 / 36
Introduction
Nonlinear effects and time-varying effects exist widely in
financial markets.
Capital asset pricing model (CAPM)
Blume, M. (1975) suggested that beta coefficients change
over time
Fabozzi, F.J. Francis, J.C. (1978) revealed that many
stocks’ beta coefficients move randomly through time
rather than remain stable
Relationship between the electricity demand and other
variables such as the income, the real price of electricity and
temperature.
Chang, Y., Martinez-Chombo, E., (2003) found that this
relationship may change over time.
Yt = β(t) Xt + t , (1.1)
2 / 36
Introduction
Most variables in financial industry are nonstationary.
Granger, C.W.J. (1981) and Engle, R.F., Granger, C.W.J.
(1987) introduced cointegration models in 1990s.
Cointegrating parameters are constant.
Yt = γ(zt ) Xt + t (1.2)
Cai et al. (2009) considered (1.2)
The local linear estimation
A single value of bandwidth could not make the estimation
optimal in the sense of minimizing the asymptotic mean
square error
A two-step estimation procedure
Xiao,Z. (2009) considered (1.2)
Focused on inference procedures for both parameter
instability and the hypothesis of cointegration
3 / 36
Introduction
Application with models (1.1)-(1.2)
y: stock price of Morgan Stanley
x: S&P 500
z: log "difference" of 5 year daily Treasury bond yield rate
and 6 month daily Treasury bill yield rate
residual of linear regression model
y∗
: log of 5 year daily Treasury bond yield rate
x∗
: log of 6 month daily Treasury bill yield rate
4 / 36
2004 2008 2012
−70−50−30
time
β0
2004 2008 2012
0.0400.0500.060
time
β1
−0.4 −0.2 0.0 0.2
−30−1001020
z
γ0
−0.4 −0.2 0.0 0.2
0.0050.0150.025 z
γ1
Figure: Top two functions are estimated from model (1.1), bottom two
functions are estimated from model (1.2)
5 / 36
2004 2006 2008 2010 2012 2014 2016
−15−50510
time
Estimatedresidualfrommodel1.1
2004 2006 2008 2010 2012 2014 2016
−2001030
time
Estimatedresidualfrommodel1.2
Figure: Top picture shows the residual from model (1.1), bottom
picture shows the residual from model (1.2)
6 / 36
Introduction
Which model is better? Which effect is true? Do these two
effects exist in the relationship between the predictors and
response?
yi = β0(ti) + γ0(zi) + {β1(ti) + γ1(zi)}xi + εi. (1.3)
We fit model (1.3) with real data and compare the goodness of
fit with models (1.1) and (1.2) in last Chapter .
7 / 36
Our model
For i = 1, . . . , n,
yi = β0(ti) + γ0(zi) + {β1(ti) + γ1(zi)} xi + εi, (2.1)
where
β0(ti): 1 × 1 function, γ0(zi): 1 × 1 function
β1(ti): p × 1 functions, γ1(zi): p × 1 functions
xi: p × 1, vector, either I(0) or I(1)
ti: i/n, scalar
zi: scalar, I(0)
εi: E[εi|xi, zi] = 0, E[ε2
i |xi, zi] = δ2, a strictly α-mixing
stationary process
Assume that E[γ0(zi)] = E[γ1(zi)] = 0.
8 / 36
Step 1: Orthogonal series estimation
Let {pκ(·), κ = 1, 2, . . .} be a standard orthogonal basis for
smooth functions on [−1, 1] and satisfy that
1
−1 pκ(x)dx = 0,
and
1
−1
pk (x)pj(x) dx =
1 if k = j;
0 otherwise.
Pκ(t, z) = [1, p1(t), . . . , pκ(t), p1(z), . . . , pκ(z)]
Θκb = (θ0,b, θ11,b, . . . , θ1κ,b, θ21,b, . . . , θ2κ,b) for b = 0, 1, . . . , p
Pκ (t, z)Θκ0 is a series approximation to β0(t) + γ0(z),
Pκ (t, z)Θκd is a series approximation to the dth component of
β1(t) + γ1(z) for d = 1, . . . , p.
9 / 36
Step 1: Orthogonal series estimation
Our orthogonal series estimator of β0(t) + γ0(z) and the dth
component β1d (t) + γ1d (z) of β1(t) + γ1(z) are respectively
defined as
˜β0(t) + ˜γ0(z) = Pκ (t, z)ˆΘκ0 and ˜β1d (t) + ˜γ1d (z) = Pκ (t, z)ˆΘκd
where
(ˆΘκ0, ˆΘκd ) = arg min
Θκj
n
i=1
yi−Pκ (ti, zi)Θκ0−
p
d=1
Θκd Pκ(ti, zi)xi,d
2
(3.1)
where xi,d is the dth component of xi.
10 / 36
Step 1: Orthogonal series estimation
B = Θκ0, Θκ1, Θκ2, . . . , Θκp]
ˆB = ˆΘκ0, ˆΘκ1, ˆΘκ2, . . . , ˆΘκp
Ai =
Pκ(ti, zi) , Pκ(ti, zi) xi,1, Pκ(ti, zi) xi,2, . . . , Pκ(ti, zi) xi,p]
Pκ(t) = 1, p1(t), . . . , pκ(t) , Pκ(z) = p1(z), . . . , pκ(z) ,
Θκbt = (θ0,b, θ11,b, . . . , θ1κ,b) ,
Θκbz = (θ21,b, . . . , θ2κ,b) for b = 0, 1, · · · p
ˆΘκbt = (ˆθ0,b, ˆθ11,b, . . . , ˆθ1κ,b) ,
ˆΘκbz = (ˆθ21,b, . . . , ˆθ2κ,b) for b = 0, 1, · · · p
Equation 3.1 can be written as
ˆB = arg min
Θκj
n
i=1
yi − Ai B
2
, (3.2)
Solution: ˆB = n
AiA
−1 n
yiAi . 11 / 36
Step 1: Orthogonal series estimation
It can be easily check that Pκ(t, z) = [Pκ(t) , Pκ(z) ]
Θκb = [Θκbt , Θκbz]
ˆΘκb = [ˆΘκbt , ˆΘκbz]
˜β0(ti) = Pκ (ti)ˆΘκ0t
˜β1d (ti) = Pκ (ti)ˆΘκdt , ˜β1(ti) xi = p
d=1 Pκ (ti)ˆΘκdt xi,d
˜γ0(zi) = Pκ (zi)ˆΘκ0z
˜γ1d (zi) = Pκ (zi)ˆΘκdz, ˜γ1(zi) xi = p
d=1 Pκ (zi)ˆΘκdzxi,d
Centralize ˜γ0(z) and ˜γ1(z): ˜γ∗
b(z) = ˜γb(z) − E˜γb(z) ,
˜β∗
b(t) = ˜βb(t) + E˜γb(z).
˜γ∗
b(z) and ˜β∗
b(t) are first-step estimators.
The orthogonal series estimators are used to ensure that the
biases of first-step estimators converge to zero rapidly.
12 / 36
Step 2: Local smoother
Taylor’s expansion for any ti in the neighborhood of t,
βk (ti) ≈ βk (t) + βk (t)(ti − t) ≡ ak + bk (ti − t) k = 0, 1
and for any zi in the neighborhood of z,
γk (zi) ≈ γk (z) + γk (z)(zi − z) ≡ ck + dk (zi − z) k = 0, 1
In the second step, we minimize
n
i=1
[yi − ˜β∗
0(ti)−˜γ∗
0(zi)− ˜β∗
1(ti) xi −{c1+d1(zi −z)} xi]2
Kh1
(zi −z)
(3.3)
and get the minimizer ˆc1 which estimates γ1(z) denoted by
ˆγ1(z), where Kh1
(·) = 1
h1
K( ·
h1
).
13 / 36
Step 2: Local smoother
Similarly, we minimize
n
i=1
[yi − ˜β∗
0(ti)−˜γ∗
0(zi)−˜γ∗
1(zi) xi −{a1+b1(ti −t)} xi]2
Kh2
(ti −t),
(3.4)
n
i=1
[yi −˜γ∗
0(zi)− ˜β∗
1(ti) xi −˜γ∗
1(zi) xi −{a0+b0(ti −t)}]2
Kh0
(ti −t),
(3.5)
and
n
i=1
[yi − ˜β∗
0(ti)− ˜β∗
1(ti) xi −˜γ∗
1(zi) xi −{c0+d0(zi −z)}]2
Kh4
(zi −z),
(3.6)
get minimizer ˆa0, ˆa1 and ˆc0 which estimates β0(t), β1(t) and
γ0(z) denoted by ˆβ0(t), ˆβ1(t) and ˆγ0(z).
14 / 36
Step 2: Local smoother
Wih1
(z) = (1, zi −z
h1
) ⊗ xi
A∗ = n
i=1 Wih1
(z) Wih1
(z)Kh1
(zi − z)
B∗ = n
i=1[yi − ˜β∗
0(ti) − ˜γ∗
0(zi) − ˜β∗
1(ti) xi]Wih1
(z) Kh1
(zi − z)
Take the first derivative of equation 3.3
ˆc1
h1
ˆd1
= [A∗]−1B∗
Similarly ˆa0, ˆc0 and ˆa1 could be easily determined.
15 / 36
Asymptotics when xi is stationary
Theorem 1
Under conditions (A1) ∼ (A9),
√
nh1[ ˆγ1(z) − γ1(z) −
h2
1
2 µ2(K)γ
(2)
1 (z){1 + op(1)}]
d
→
N{0, fz(z)−1δ2S−1ν0(K)}
Theorem 2
Under conditions (A1) ∼ (A9),
√
nh2[ˆβ1(t) − β1(t) −
h2
2
2 µ2(K)β
(2)
1 (t){1 + op(1)}]
d
→
N{0, δ2S−1
0 ν0(K)}
16 / 36
Asymptotics when xi is stationary
Theorem 3
Under conditions (A1) ∼ (A9),
√
nh4[ ˆγ0(z) − γ0(z) −
h2
4
2 µ2(K)γ
(2)
0 (z){1 + op(1)}]
d
→
N{0, fz(z)−1δ2ν0(K)}
Theorem 4
Under conditions (A1) ∼ (A9),
√
nh0[ˆβ0(t)−β0(t)−
h2
0
2 µ2(K)β
(2)
0 (t){1+op(1)}]
d
→ N{0, δ2ν0(K)}
17 / 36
Asymptotics when xi is nonstationary
xi = xi−1 + δi = x0 + i
s=1 δs(i ≥ 1), where δs is an I(0)
process with mean zero and variance Ωδ.
x[nr]
√
n
=
xi
√
n
=
x0
√
n
+
1
√
n
i
s=1
δs =
x0
√
n
+
1
√
n
[nr]
s=1
δs (4.1)
where r = i/n and [x] denotes the integer part of x, see Cai et
al. (2009).
Under some regularity conditions, Donsker’s theorem leads to
x[nr]
√
n
=⇒ Wδ(r) as n −→ ∞ (4.2)
where Wδ(·) is a p-dimensional Brownian motion on [0, 1] with
covariance matrix Σδ.
18 / 36
Asymptotics when xi is nonstationary
For any Borel measurable and totally Lebesgue integrable
function Γ(·), one has
1
n
n
i=1
Γ(x[nr])
√
n
d
−→
1
0
Γ(Wδ(s))ds as n −→ ∞ (4.3)
where
d
−→ denotes the convergence in distribution, so that, for
= 1, 2,
1
n
n
i=1
(
x[nr]
√
n
)⊗ d
−→
1
0
Wδ(s)⊗
ds ≡ Wδ, as n −→ ∞ (4.4)
see Theorem 1.2 in Berkes, I., Horváth, L. (2006) and Cai et al.
(2009)
19 / 36
Asymptotics when xi is nonstationary
Theorem 5
Under conditions (B1),(B2)(i),(B3) ∼(B8)
n
√
h1[ ˆγ1(z) − γ1(z) −
h2
1
2 µ2(K)γ
(2)
1 (z){1 + op(1)}]
d
→ MN Σδ(z)
where MN(Σδ(z)) is a mixed normal distribution with mean zero
and conditional covariance matrix given by
Σδ(z) = δ2ν0(K)W−1
δ,2 /fz(z)
Here, a mixed normal distribution is defined as follows.
Conditional on the random variable that appears at the
asymptotic variance, the estimator has an asymptotic normal
distribution
20 / 36
Asymptotics when xi is nonstationary
Theorem 6
Under conditions (B1),(B2)(ii),(B3) ∼(B8)
n
√
h2[ˆβ1(t) − β1(t) −
h2
2
2 µ2(K)β
(2)
1 (t){1 + op(1)}]
d
→ MN Σδ(t)
where MN(Σδ(t)) is a mixed normal distribution with mean zero
and conditional covariance matrix given by
Σδ(t) = δ2ν0(K)W−1
δ,2
Theorem 7
Under conditions (B1),(B2)(iii),(B3) ∼(B8),
√
nh0[ˆβ0(t)−β0(t)−
h2
0
2 µ2(K)β
(2)
0 (t){1+op(1)}]
d
→ N{0, δ2ν0(K)}
Theorem 8
Under conditions (B1),(B2)(iv),(B3) ∼(B8),
√
nh4[ˆγ0(z) − γ0(z) −
h2
4
2 µ2(K)γ
(2)
0 (z){1 + op(1)}]
d
→
N{0, f−1
z (z)δ2ν0(K)}
21 / 36
Simulation
B-spline
κ = 8
Standard normal kernel
We consider the following model
yi = β0(ti)+γ0(zi)+(β1(ti)+γ1(zi))xi,1+(β2(ti)+γ2(zi))xi,2+εi
= e3ti
+ 20ti + (0.5z3
i − 1.5z2
i − 0.5zi + 8)
+(−40t2
i −20ti+1.5z2
i −7.5zi−8)xi,1+(e4ti
+2ti+3z2
i −6zi−16)xi,2+εi
(5.1)
where γ0(zi) = 0.5z3
i − 1.5z2
i − 0.5zi + 8,
γ1(zi) = 1.5z2
i − 7.5zi − 8 and γ2(zi) = 3z2
i − 6zi − 16. p = 2.
ε ∼ N(0, 0.25), zi = 0.3zi−1 + Ui and Ui ∼ Uniform (−4, 4)
Eγ0(zi) = Eγ1(zi) = Eγ2(zi) = 0.
22 / 36
Simulation with stationary xi
x1,1 = x1,2 = 0
xi,1 = 0.9xi−1,1 + δ1i
δ1i ∼ t(3)
xi,2 = 0.6xi−1,2 + δ2i
δ2i ∼ t(7)
y is generated from above model (5.1)
x1, x2 and y all are stationary.
10 grid points for β functions and 40 grid points for γ functions
500 simulations at each grid point
Simulation results are shown in Figure 3 for n = 100.
Simulation results are shown in Figure 4 for n = 400.
23 / 36
0.0 0.2 0.4 0.6 0.8 1.0
01030
t
β0
−4 −2 0 2 4
−50−30−1010
z
γ0
0.0 0.2 0.4 0.6 0.8 1.0
−60−200
t
β1
−4 −2 0 2 4
−2002040
z
γ1
0.0 0.2 0.4 0.6 0.8 1.0
0204060
t
β2
−4 −2 0 2 4
−200204060
z
γ2
Figure: Estimated function β and γ, their mediums and 95%
pointwise confidence intervals for Model 5.1 when x is stationary and
n = 100 24 / 36
0.0 0.2 0.4 0.6 0.8 1.0
01030
t
β0
−4 −2 0 2 4
−50−30−1010
z
γ0
0.0 0.2 0.4 0.6 0.8 1.0
−60−200
t
β1
−4 −2 0 2 4
−2002040
z
γ1
0.0 0.2 0.4 0.6 0.8 1.0
0204060
t
β2
−4 −2 0 2 4
−200204060
z
γ2
Figure: Estimated function β and γ, their mediums and 95%
pointwise confidence intervals for Model 5.1 when x is stationary and
n = 400 25 / 36
Simulation with nonstationary xi
x1,1 = x1,2 = 0
xi,1 = xi−1,1 + δ1i
δ1i ∼ t(3)
xi,2 = xi−1,2 + δ2i
δ2i ∼ t(7)
y is generated from above model (5.1)
x1, x2 and y all are nonstationary, xi and yi are cointegration.
10 grid points for β functions and 40 grid points for γ functions
500 simulations at each grid point
Simulation results are shown in Figure 5 for n = 100.
Simulation results are shown in Figure 6 for n = 400.
26 / 36
0.0 0.2 0.4 0.6 0.8 1.0
01030
t
β0
−4 −2 0 2 4
−50−30−1010
z
γ0
0.0 0.2 0.4 0.6 0.8 1.0
−60−200
t
β1
−4 −2 0 2 4
−2002040
z
γ1
0.0 0.2 0.4 0.6 0.8 1.0
0204060
t
β2
−4 −2 0 2 4
−200204060
z
γ2
Figure: Estimated function β and γ, their mediums and 95%
pointwise confidence intervals for Model 5.1 when x is nonstationary
and n = 100 27 / 36
0.0 0.2 0.4 0.6 0.8 1.0
01030
t
β0
−4 −2 0 2 4
−50−30−1010
z
γ0
0.0 0.2 0.4 0.6 0.8 1.0
−60−200
t
β1
−4 −2 0 2 4
−2002040
z
γ1
0.0 0.2 0.4 0.6 0.8 1.0
0204060
t
β2
−4 −2 0 2 4
−200204060
z
γ2
Figure: Estimated function β and γ, their mediums and 95%
pointwise confidence intervals for Model 5.1 when x is nonstationary
and n = 400 28 / 36
Real example
5 year daily Treasury bond yield rate
6 month daily Treasury bill yield rate
Stock price of Morgan Stanley and price of S&P500
All data are from the Jan. 2nd, 2003 to Dec. 31st, 2015. The
sample size is 3249.
Stock price of Morgan Stanley and price of S&P500 are
nonstationary
Log "difference" of 5 year daily Treasury bond yield rate and 6
month daily Treasury bill yield rate is stationary
yi = β0(ti−1) + γ0(zi−1) + (β1(ti−1) + γ1(zi−1))xi−1 + i. (6.1)
z: log "difference" of 5 year daily Treasury bond yield rate and 6
month daily Treasury bill yield rate
y: stock price of Morgan Stanley x: price of S&P500.
29 / 36
ADF Test Statistic P VALUE
Stock price of Morgan Stanley -0.5896 0.4284
Price of S&P500 1.3095 0.9522
log "difference" of Treasury yield rate -3.3093 < 0.01
Table: ADF test for stock price of Morgan Stanley, price of S&P500
and log "difference" of 5 year daily Treasury bond yield rate and 6
month daily Treasury bill yield rate
30 / 36
2004 2008 2012
−100−60−200
time
β0
2004 2008 2012
0.020.060.10
time
β1
−0.4 −0.2 0.0 0.2
−20−10010
yield rate
γ0
−0.4 −0.2 0.0 0.2
−0.0100.0000.010 yield rate
γ1
Figure: Estimated functions from model 6.1
31 / 36
Real example
Variance of the residual model 1.1 model 1.2 model 6.1
13.380 68.504 5.859
Table: variance of the residual in each model
32 / 36
2004 2006 2008 2010 2012 2014 2016
0204060
time
price
2004 2006 2008 2010 2012 2014
0.020.060.10
time
functionofcoefficient
Figure: Estimated stock price and function of coefficient from model
6.1
33 / 36
Real example: one step forecast
Split sample into two parts: training sample, the first 3000 data
and testing sample, the remaining 249 data.
Define one step forecast ˆyj for y at time j as following:
ˆyj = ˆβ0(tj−1) + ˆγ1(zj−1) + ( ˆβ1(tj−1) + ˆγ1(zj−1))xj−1 (6.2)
where j from 3001 to 3249 and ˆβ0, ˆγ0
ˆβ1 and ˆγ1 are estimated
by the proposed two-step estimation method using only the
data from 1 to j − 1
34 / 36
2004 2006 2008 2010 2012 2014 2016
0102030405060
x
yscale
Figure: ˆy and One step forecast (6.2)
35 / 36
Thank you
36 / 36
CAI, Z., LI, Q. AND PARK, JOON Y. (2009).
Functional-coefficient models for nonstationary time series
data. Journal of Econometrics 148, 101–113.
HOROWITZ, J. L., MAMMEN, E. (2004). Nonparametric
estimation of an additive model with a link function. Ann.
Statist. 32, 2412–2443.
JIANG J.,LI J. (2004). Two-stage local M-estimation of additive
models. Science in China 51, 1315–1338.
ZHOU S,SHEN X,WOLFE D A (1998). Local asymptotics for
regression splines and con?dence regions. Ann. Statist. 26,
1760–1782.
SHAO,Q.,LU,C. (1987). Strong approximation for partial sums
of weakly dependent random variables. Scientia Sinica 15,
576–587.
EINMAHL, U. (1987). A useful estimate in the multidimensional
invariance principle. Probability Theory and Related Fields
76, 81–101.
CAI,Z. (2002). Regression quantile for time series.
Econometric Theory 18, 169–192.
36 / 36
CARRASCO, M., CHEN, X. (2002). Mixing and moment
properties of various GARCH and stochastic volatility
models. Econometric Theory 18, 17–39.
CHEN, S.X., TANG, C.Y. (2005). Nonparametric inference of
value at risk for dependent financial returns. Journal of
Financial Econometrics 3, 227–255.
XIAO,Z. (2009). Robust inference in nonstationary time series
models. Journal of Econometrics 169, 211–223.
PHILLIPS, P.C.B. (1989). Partially identified econometric
models. Econometric Theory 5, 181–240.
PHILLIPS, P.C.B., PARK, J. (1998). Nonstationary density and
kernel autoregression. Unpublished manuscript .
BLUME, M. (1975). Betas and their Regression Tendencies.
Journal of Finance 30, 785–796.
FABOZZI, F.J. FRANCIS, J.C. (1978). Beta as a Random
Coefficient. Journal of Financial and Quantitative Analysis
13, 101–116.
36 / 36
BLUME, M. (1981). Beta Stationarity and Estimation Period:
Some Analytical Results. . Journal of Financial and
Quantitative Analysis 5, 747–757.
MCDONALD, B. (1985). Making Sense Out of Unstable Alphas
and Betas. Journal of Portfolio Management 11, 19–22.
LEE, C.F., NEWBOLD, P., FINNERTY, J.E. CHU, C.C. (1986).
On Accounting-Based, Market-Based and Composite-Based
Beta Predictions: Methods and Implications. The Financial
Review 21, 51–68.
LEVY, R.A. (1971). On the Short Term Stationarity of Beta
Coefficient. Financial Analyst Journal 27, 55–62.
ROSENBERG, B. (1985). Prediction of Common Stock Betas.
Journal of Portfolio Management 11, 5–14.
KAPLANIS, E.C. (1988). Stability and Forecasting of the
Co-movement Measures of International Stock Market
Returns. Journal of International Money and Finance 7,
63–75.
KOCH, P.D. KOCH, T.W. (1991). Evolution in Dynamic Linkages
36 / 36
Across National Stock Indexes. Journal of International
Money and Finance 10, 231–251.
UMSTEAD, D. AND BERGSTROM, G. (1979). Dynamic
Estimation of Portfolio Betas. Journal of Financial and
Quantitative Analysis 14, 595–614.
COCHRANE,J. H. (2001). Asset Pricing.Princeton University
Press,Princeton and Oxford.
TSAY,R. S. (2002). Analysis of Financial Time Series. A
Wiley-Interscience Publication. JOHN WILEY & SONS, INC.
CHANG, Y., MARTINEZ-CHOMBO, E., (2003). Electricity
demand analysis using cointegration and error-correction
models with time varying parameters: The Mexican case.
Working Paper. Department of Economics, Texas A&M
University..
CAI, Z., FAN, J., YAO, Q. (2000). Functional-coefficient
regression models for nonlinear time series. Journal of the
American Statistical Association 95, 941–956.
BERKES, I., HORVÁTH, L. (2006). Convergence of integral
36 / 36
functionals of stochastic processes. Econometric Theory
22, 304–322.
BILLINGSLEY, P. (1999). Convergence of Probability Measures,
2nd ed. Wiley, New York..
ENGLE, R.F., GRANGER, C.W.J. (1987). Cointegration and
error correction: Representation, estimation, and testing.
Econometrica 55, 251–276.
GRANGER, C.W.J. (1981). Some properties of time series data
and their use in econometric model specification. Journal of
Econometrics 121–130.
PARK, J., HAHN, S. (1999). Cointegrating regressions with time
varying coefficients. Econometric Theory 15, 664–703.
DE BOOR C. (1978). A Practical Guilde to Splines. New York:
Springer-Verlag, 1978.
JIANG J. (2014). Multivariate functional-coefficient regression
models for nonlinear vector time series data. Biometrika 101,
689–702.
36 / 36

More Related Content

What's hot

A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
VjekoslavKovac1
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
VjekoslavKovac1
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
VjekoslavKovac1
 
Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
Center for Transportation Research - UT Austin
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
Adhana Hary Wibowo
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
VjekoslavKovac1
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
VjekoslavKovac1
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
VjekoslavKovac1
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
VjekoslavKovac1
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averages
VjekoslavKovac1
 
Fdtd
FdtdFdtd
5. cem granger causality ecm
5. cem granger causality  ecm 5. cem granger causality  ecm
5. cem granger causality ecm
Quang Hoang
 
11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...
Alexander Decker
 
Tables
TablesTables
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Komal Goyal
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
RAJIV GANDHI INSTITUTE OF TECHNOLOGY
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
VjekoslavKovac1
 
11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate
Alexander Decker
 
Vibration characteristics of non homogeneous visco-elastic square plate
Vibration characteristics of non homogeneous visco-elastic square plateVibration characteristics of non homogeneous visco-elastic square plate
Vibration characteristics of non homogeneous visco-elastic square plate
Alexander Decker
 

What's hot (19)

A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averages
 
Fdtd
FdtdFdtd
Fdtd
 
5. cem granger causality ecm
5. cem granger causality  ecm 5. cem granger causality  ecm
5. cem granger causality ecm
 
11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...
 
Tables
TablesTables
Tables
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate
 
Vibration characteristics of non homogeneous visco-elastic square plate
Vibration characteristics of non homogeneous visco-elastic square plateVibration characteristics of non homogeneous visco-elastic square plate
Vibration characteristics of non homogeneous visco-elastic square plate
 

Viewers also liked

Ban & velg
Ban & velgBan & velg
Ban & velg
Tenli Junaidi
 
Hybrid System Overview
Hybrid System OverviewHybrid System Overview
Hybrid System Overview
Ahmad Faozi
 
Melepas memasang dan_menyetel_roda
Melepas memasang dan_menyetel_rodaMelepas memasang dan_menyetel_roda
Melepas memasang dan_menyetel_roda
Ahmad Faozi
 
Modul teknologi sepeda motor (oto225 01)- sistem pengapian oleh beni setya nu...
Modul teknologi sepeda motor (oto225 01)- sistem pengapian oleh beni setya nu...Modul teknologi sepeda motor (oto225 01)- sistem pengapian oleh beni setya nu...
Modul teknologi sepeda motor (oto225 01)- sistem pengapian oleh beni setya nu...
Ahmad Faozi
 
Toyota soluna
Toyota solunaToyota soluna
Toyota soluna
Ahmad Faozi
 
Materi deputi ips_bsn_erniningsih_peran_standardisasi_dan_penilaian_kesesuaia...
Materi deputi ips_bsn_erniningsih_peran_standardisasi_dan_penilaian_kesesuaia...Materi deputi ips_bsn_erniningsih_peran_standardisasi_dan_penilaian_kesesuaia...
Materi deputi ips_bsn_erniningsih_peran_standardisasi_dan_penilaian_kesesuaia...
Instansi
 
MODUL CVT
MODUL CVTMODUL CVT
MODUL CVT
Ahmad Faozi
 
Panduan pengajaran pend muzik thn 4
Panduan pengajaran pend muzik thn 4Panduan pengajaran pend muzik thn 4
Panduan pengajaran pend muzik thn 4
Siti Hj Kasim
 
Pemeliharaan servise sistem kemudi bab 1 dan 2
Pemeliharaan servise sistem kemudi bab 1 dan 2Pemeliharaan servise sistem kemudi bab 1 dan 2
Pemeliharaan servise sistem kemudi bab 1 dan 2
Purwadi ae
 
Evaluasi pilihan ganda kwu
Evaluasi pilihan ganda kwuEvaluasi pilihan ganda kwu
Evaluasi pilihan ganda kwu
Neli Narulita
 
RPP SMK Pemeliharaan Sasis dan Pemindah Tenaga Kendaraan Ringan Kelas XII
RPP SMK Pemeliharaan Sasis dan Pemindah Tenaga Kendaraan Ringan Kelas XIIRPP SMK Pemeliharaan Sasis dan Pemindah Tenaga Kendaraan Ringan Kelas XII
RPP SMK Pemeliharaan Sasis dan Pemindah Tenaga Kendaraan Ringan Kelas XII
Diva Pendidikan
 

Viewers also liked (11)

Ban & velg
Ban & velgBan & velg
Ban & velg
 
Hybrid System Overview
Hybrid System OverviewHybrid System Overview
Hybrid System Overview
 
Melepas memasang dan_menyetel_roda
Melepas memasang dan_menyetel_rodaMelepas memasang dan_menyetel_roda
Melepas memasang dan_menyetel_roda
 
Modul teknologi sepeda motor (oto225 01)- sistem pengapian oleh beni setya nu...
Modul teknologi sepeda motor (oto225 01)- sistem pengapian oleh beni setya nu...Modul teknologi sepeda motor (oto225 01)- sistem pengapian oleh beni setya nu...
Modul teknologi sepeda motor (oto225 01)- sistem pengapian oleh beni setya nu...
 
Toyota soluna
Toyota solunaToyota soluna
Toyota soluna
 
Materi deputi ips_bsn_erniningsih_peran_standardisasi_dan_penilaian_kesesuaia...
Materi deputi ips_bsn_erniningsih_peran_standardisasi_dan_penilaian_kesesuaia...Materi deputi ips_bsn_erniningsih_peran_standardisasi_dan_penilaian_kesesuaia...
Materi deputi ips_bsn_erniningsih_peran_standardisasi_dan_penilaian_kesesuaia...
 
MODUL CVT
MODUL CVTMODUL CVT
MODUL CVT
 
Panduan pengajaran pend muzik thn 4
Panduan pengajaran pend muzik thn 4Panduan pengajaran pend muzik thn 4
Panduan pengajaran pend muzik thn 4
 
Pemeliharaan servise sistem kemudi bab 1 dan 2
Pemeliharaan servise sistem kemudi bab 1 dan 2Pemeliharaan servise sistem kemudi bab 1 dan 2
Pemeliharaan servise sistem kemudi bab 1 dan 2
 
Evaluasi pilihan ganda kwu
Evaluasi pilihan ganda kwuEvaluasi pilihan ganda kwu
Evaluasi pilihan ganda kwu
 
RPP SMK Pemeliharaan Sasis dan Pemindah Tenaga Kendaraan Ringan Kelas XII
RPP SMK Pemeliharaan Sasis dan Pemindah Tenaga Kendaraan Ringan Kelas XIIRPP SMK Pemeliharaan Sasis dan Pemindah Tenaga Kendaraan Ringan Kelas XII
RPP SMK Pemeliharaan Sasis dan Pemindah Tenaga Kendaraan Ringan Kelas XII
 

Similar to CMU_13

Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Henrique Covatti
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
AryanMishra860130
 
Functions, Graphs, & Curves
Functions, Graphs, & CurvesFunctions, Graphs, & Curves
Functions, Graphs, & Curves
Sebastian Vattamattam
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
Pamela Paz
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
IJERA Editor
 
Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
Center for Transportation Research - UT Austin
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
Matthew Leingang
 
Solution Manual Image Processing for Engineers by Yagle and Ulaby
Solution Manual Image Processing for Engineers by Yagle and UlabySolution Manual Image Processing for Engineers by Yagle and Ulaby
Solution Manual Image Processing for Engineers by Yagle and Ulaby
spaceradar35
 
Sub1567
Sub1567Sub1567
Affine Yield Curves: Flexibility versus Incompleteness
Affine Yield Curves: Flexibility versus IncompletenessAffine Yield Curves: Flexibility versus Incompleteness
Affine Yield Curves: Flexibility versus Incompleteness
Dhia Eddine Barbouche
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
Christian Robert
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
Prakash Dabhi
 
22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster
Samuel Gbari
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf
ROCIOMAMANIALATA1
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
yigalbt
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
Kamel Attar
 
NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)
Christian Robert
 
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,aTheta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
ijcsa
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
CrackDSE
 

Similar to CMU_13 (20)

Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 
Functions, Graphs, & Curves
Functions, Graphs, & CurvesFunctions, Graphs, & Curves
Functions, Graphs, & Curves
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 
Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Solution Manual Image Processing for Engineers by Yagle and Ulaby
Solution Manual Image Processing for Engineers by Yagle and UlabySolution Manual Image Processing for Engineers by Yagle and Ulaby
Solution Manual Image Processing for Engineers by Yagle and Ulaby
 
Sub1567
Sub1567Sub1567
Sub1567
 
Affine Yield Curves: Flexibility versus Incompleteness
Affine Yield Curves: Flexibility versus IncompletenessAffine Yield Curves: Flexibility versus Incompleteness
Affine Yield Curves: Flexibility versus Incompleteness
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)
 
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,aTheta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
Theta θ(g,x) and pi π(g,x) polynomials of hexagonal trapezoid system tb,a
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 

CMU_13

  • 1. Nonparametric Predictive Regression Presenter: Xintian Yu University of North Carolina at Charlotte, USA Nov. 02, 2016 1 / 36
  • 2. Introduction Nonlinear effects and time-varying effects exist widely in financial markets. Capital asset pricing model (CAPM) Blume, M. (1975) suggested that beta coefficients change over time Fabozzi, F.J. Francis, J.C. (1978) revealed that many stocks’ beta coefficients move randomly through time rather than remain stable Relationship between the electricity demand and other variables such as the income, the real price of electricity and temperature. Chang, Y., Martinez-Chombo, E., (2003) found that this relationship may change over time. Yt = β(t) Xt + t , (1.1) 2 / 36
  • 3. Introduction Most variables in financial industry are nonstationary. Granger, C.W.J. (1981) and Engle, R.F., Granger, C.W.J. (1987) introduced cointegration models in 1990s. Cointegrating parameters are constant. Yt = γ(zt ) Xt + t (1.2) Cai et al. (2009) considered (1.2) The local linear estimation A single value of bandwidth could not make the estimation optimal in the sense of minimizing the asymptotic mean square error A two-step estimation procedure Xiao,Z. (2009) considered (1.2) Focused on inference procedures for both parameter instability and the hypothesis of cointegration 3 / 36
  • 4. Introduction Application with models (1.1)-(1.2) y: stock price of Morgan Stanley x: S&P 500 z: log "difference" of 5 year daily Treasury bond yield rate and 6 month daily Treasury bill yield rate residual of linear regression model y∗ : log of 5 year daily Treasury bond yield rate x∗ : log of 6 month daily Treasury bill yield rate 4 / 36
  • 5. 2004 2008 2012 −70−50−30 time β0 2004 2008 2012 0.0400.0500.060 time β1 −0.4 −0.2 0.0 0.2 −30−1001020 z γ0 −0.4 −0.2 0.0 0.2 0.0050.0150.025 z γ1 Figure: Top two functions are estimated from model (1.1), bottom two functions are estimated from model (1.2) 5 / 36
  • 6. 2004 2006 2008 2010 2012 2014 2016 −15−50510 time Estimatedresidualfrommodel1.1 2004 2006 2008 2010 2012 2014 2016 −2001030 time Estimatedresidualfrommodel1.2 Figure: Top picture shows the residual from model (1.1), bottom picture shows the residual from model (1.2) 6 / 36
  • 7. Introduction Which model is better? Which effect is true? Do these two effects exist in the relationship between the predictors and response? yi = β0(ti) + γ0(zi) + {β1(ti) + γ1(zi)}xi + εi. (1.3) We fit model (1.3) with real data and compare the goodness of fit with models (1.1) and (1.2) in last Chapter . 7 / 36
  • 8. Our model For i = 1, . . . , n, yi = β0(ti) + γ0(zi) + {β1(ti) + γ1(zi)} xi + εi, (2.1) where β0(ti): 1 × 1 function, γ0(zi): 1 × 1 function β1(ti): p × 1 functions, γ1(zi): p × 1 functions xi: p × 1, vector, either I(0) or I(1) ti: i/n, scalar zi: scalar, I(0) εi: E[εi|xi, zi] = 0, E[ε2 i |xi, zi] = δ2, a strictly α-mixing stationary process Assume that E[γ0(zi)] = E[γ1(zi)] = 0. 8 / 36
  • 9. Step 1: Orthogonal series estimation Let {pκ(·), κ = 1, 2, . . .} be a standard orthogonal basis for smooth functions on [−1, 1] and satisfy that 1 −1 pκ(x)dx = 0, and 1 −1 pk (x)pj(x) dx = 1 if k = j; 0 otherwise. Pκ(t, z) = [1, p1(t), . . . , pκ(t), p1(z), . . . , pκ(z)] Θκb = (θ0,b, θ11,b, . . . , θ1κ,b, θ21,b, . . . , θ2κ,b) for b = 0, 1, . . . , p Pκ (t, z)Θκ0 is a series approximation to β0(t) + γ0(z), Pκ (t, z)Θκd is a series approximation to the dth component of β1(t) + γ1(z) for d = 1, . . . , p. 9 / 36
  • 10. Step 1: Orthogonal series estimation Our orthogonal series estimator of β0(t) + γ0(z) and the dth component β1d (t) + γ1d (z) of β1(t) + γ1(z) are respectively defined as ˜β0(t) + ˜γ0(z) = Pκ (t, z)ˆΘκ0 and ˜β1d (t) + ˜γ1d (z) = Pκ (t, z)ˆΘκd where (ˆΘκ0, ˆΘκd ) = arg min Θκj n i=1 yi−Pκ (ti, zi)Θκ0− p d=1 Θκd Pκ(ti, zi)xi,d 2 (3.1) where xi,d is the dth component of xi. 10 / 36
  • 11. Step 1: Orthogonal series estimation B = Θκ0, Θκ1, Θκ2, . . . , Θκp] ˆB = ˆΘκ0, ˆΘκ1, ˆΘκ2, . . . , ˆΘκp Ai = Pκ(ti, zi) , Pκ(ti, zi) xi,1, Pκ(ti, zi) xi,2, . . . , Pκ(ti, zi) xi,p] Pκ(t) = 1, p1(t), . . . , pκ(t) , Pκ(z) = p1(z), . . . , pκ(z) , Θκbt = (θ0,b, θ11,b, . . . , θ1κ,b) , Θκbz = (θ21,b, . . . , θ2κ,b) for b = 0, 1, · · · p ˆΘκbt = (ˆθ0,b, ˆθ11,b, . . . , ˆθ1κ,b) , ˆΘκbz = (ˆθ21,b, . . . , ˆθ2κ,b) for b = 0, 1, · · · p Equation 3.1 can be written as ˆB = arg min Θκj n i=1 yi − Ai B 2 , (3.2) Solution: ˆB = n AiA −1 n yiAi . 11 / 36
  • 12. Step 1: Orthogonal series estimation It can be easily check that Pκ(t, z) = [Pκ(t) , Pκ(z) ] Θκb = [Θκbt , Θκbz] ˆΘκb = [ˆΘκbt , ˆΘκbz] ˜β0(ti) = Pκ (ti)ˆΘκ0t ˜β1d (ti) = Pκ (ti)ˆΘκdt , ˜β1(ti) xi = p d=1 Pκ (ti)ˆΘκdt xi,d ˜γ0(zi) = Pκ (zi)ˆΘκ0z ˜γ1d (zi) = Pκ (zi)ˆΘκdz, ˜γ1(zi) xi = p d=1 Pκ (zi)ˆΘκdzxi,d Centralize ˜γ0(z) and ˜γ1(z): ˜γ∗ b(z) = ˜γb(z) − E˜γb(z) , ˜β∗ b(t) = ˜βb(t) + E˜γb(z). ˜γ∗ b(z) and ˜β∗ b(t) are first-step estimators. The orthogonal series estimators are used to ensure that the biases of first-step estimators converge to zero rapidly. 12 / 36
  • 13. Step 2: Local smoother Taylor’s expansion for any ti in the neighborhood of t, βk (ti) ≈ βk (t) + βk (t)(ti − t) ≡ ak + bk (ti − t) k = 0, 1 and for any zi in the neighborhood of z, γk (zi) ≈ γk (z) + γk (z)(zi − z) ≡ ck + dk (zi − z) k = 0, 1 In the second step, we minimize n i=1 [yi − ˜β∗ 0(ti)−˜γ∗ 0(zi)− ˜β∗ 1(ti) xi −{c1+d1(zi −z)} xi]2 Kh1 (zi −z) (3.3) and get the minimizer ˆc1 which estimates γ1(z) denoted by ˆγ1(z), where Kh1 (·) = 1 h1 K( · h1 ). 13 / 36
  • 14. Step 2: Local smoother Similarly, we minimize n i=1 [yi − ˜β∗ 0(ti)−˜γ∗ 0(zi)−˜γ∗ 1(zi) xi −{a1+b1(ti −t)} xi]2 Kh2 (ti −t), (3.4) n i=1 [yi −˜γ∗ 0(zi)− ˜β∗ 1(ti) xi −˜γ∗ 1(zi) xi −{a0+b0(ti −t)}]2 Kh0 (ti −t), (3.5) and n i=1 [yi − ˜β∗ 0(ti)− ˜β∗ 1(ti) xi −˜γ∗ 1(zi) xi −{c0+d0(zi −z)}]2 Kh4 (zi −z), (3.6) get minimizer ˆa0, ˆa1 and ˆc0 which estimates β0(t), β1(t) and γ0(z) denoted by ˆβ0(t), ˆβ1(t) and ˆγ0(z). 14 / 36
  • 15. Step 2: Local smoother Wih1 (z) = (1, zi −z h1 ) ⊗ xi A∗ = n i=1 Wih1 (z) Wih1 (z)Kh1 (zi − z) B∗ = n i=1[yi − ˜β∗ 0(ti) − ˜γ∗ 0(zi) − ˜β∗ 1(ti) xi]Wih1 (z) Kh1 (zi − z) Take the first derivative of equation 3.3 ˆc1 h1 ˆd1 = [A∗]−1B∗ Similarly ˆa0, ˆc0 and ˆa1 could be easily determined. 15 / 36
  • 16. Asymptotics when xi is stationary Theorem 1 Under conditions (A1) ∼ (A9), √ nh1[ ˆγ1(z) − γ1(z) − h2 1 2 µ2(K)γ (2) 1 (z){1 + op(1)}] d → N{0, fz(z)−1δ2S−1ν0(K)} Theorem 2 Under conditions (A1) ∼ (A9), √ nh2[ˆβ1(t) − β1(t) − h2 2 2 µ2(K)β (2) 1 (t){1 + op(1)}] d → N{0, δ2S−1 0 ν0(K)} 16 / 36
  • 17. Asymptotics when xi is stationary Theorem 3 Under conditions (A1) ∼ (A9), √ nh4[ ˆγ0(z) − γ0(z) − h2 4 2 µ2(K)γ (2) 0 (z){1 + op(1)}] d → N{0, fz(z)−1δ2ν0(K)} Theorem 4 Under conditions (A1) ∼ (A9), √ nh0[ˆβ0(t)−β0(t)− h2 0 2 µ2(K)β (2) 0 (t){1+op(1)}] d → N{0, δ2ν0(K)} 17 / 36
  • 18. Asymptotics when xi is nonstationary xi = xi−1 + δi = x0 + i s=1 δs(i ≥ 1), where δs is an I(0) process with mean zero and variance Ωδ. x[nr] √ n = xi √ n = x0 √ n + 1 √ n i s=1 δs = x0 √ n + 1 √ n [nr] s=1 δs (4.1) where r = i/n and [x] denotes the integer part of x, see Cai et al. (2009). Under some regularity conditions, Donsker’s theorem leads to x[nr] √ n =⇒ Wδ(r) as n −→ ∞ (4.2) where Wδ(·) is a p-dimensional Brownian motion on [0, 1] with covariance matrix Σδ. 18 / 36
  • 19. Asymptotics when xi is nonstationary For any Borel measurable and totally Lebesgue integrable function Γ(·), one has 1 n n i=1 Γ(x[nr]) √ n d −→ 1 0 Γ(Wδ(s))ds as n −→ ∞ (4.3) where d −→ denotes the convergence in distribution, so that, for = 1, 2, 1 n n i=1 ( x[nr] √ n )⊗ d −→ 1 0 Wδ(s)⊗ ds ≡ Wδ, as n −→ ∞ (4.4) see Theorem 1.2 in Berkes, I., Horváth, L. (2006) and Cai et al. (2009) 19 / 36
  • 20. Asymptotics when xi is nonstationary Theorem 5 Under conditions (B1),(B2)(i),(B3) ∼(B8) n √ h1[ ˆγ1(z) − γ1(z) − h2 1 2 µ2(K)γ (2) 1 (z){1 + op(1)}] d → MN Σδ(z) where MN(Σδ(z)) is a mixed normal distribution with mean zero and conditional covariance matrix given by Σδ(z) = δ2ν0(K)W−1 δ,2 /fz(z) Here, a mixed normal distribution is defined as follows. Conditional on the random variable that appears at the asymptotic variance, the estimator has an asymptotic normal distribution 20 / 36
  • 21. Asymptotics when xi is nonstationary Theorem 6 Under conditions (B1),(B2)(ii),(B3) ∼(B8) n √ h2[ˆβ1(t) − β1(t) − h2 2 2 µ2(K)β (2) 1 (t){1 + op(1)}] d → MN Σδ(t) where MN(Σδ(t)) is a mixed normal distribution with mean zero and conditional covariance matrix given by Σδ(t) = δ2ν0(K)W−1 δ,2 Theorem 7 Under conditions (B1),(B2)(iii),(B3) ∼(B8), √ nh0[ˆβ0(t)−β0(t)− h2 0 2 µ2(K)β (2) 0 (t){1+op(1)}] d → N{0, δ2ν0(K)} Theorem 8 Under conditions (B1),(B2)(iv),(B3) ∼(B8), √ nh4[ˆγ0(z) − γ0(z) − h2 4 2 µ2(K)γ (2) 0 (z){1 + op(1)}] d → N{0, f−1 z (z)δ2ν0(K)} 21 / 36
  • 22. Simulation B-spline κ = 8 Standard normal kernel We consider the following model yi = β0(ti)+γ0(zi)+(β1(ti)+γ1(zi))xi,1+(β2(ti)+γ2(zi))xi,2+εi = e3ti + 20ti + (0.5z3 i − 1.5z2 i − 0.5zi + 8) +(−40t2 i −20ti+1.5z2 i −7.5zi−8)xi,1+(e4ti +2ti+3z2 i −6zi−16)xi,2+εi (5.1) where γ0(zi) = 0.5z3 i − 1.5z2 i − 0.5zi + 8, γ1(zi) = 1.5z2 i − 7.5zi − 8 and γ2(zi) = 3z2 i − 6zi − 16. p = 2. ε ∼ N(0, 0.25), zi = 0.3zi−1 + Ui and Ui ∼ Uniform (−4, 4) Eγ0(zi) = Eγ1(zi) = Eγ2(zi) = 0. 22 / 36
  • 23. Simulation with stationary xi x1,1 = x1,2 = 0 xi,1 = 0.9xi−1,1 + δ1i δ1i ∼ t(3) xi,2 = 0.6xi−1,2 + δ2i δ2i ∼ t(7) y is generated from above model (5.1) x1, x2 and y all are stationary. 10 grid points for β functions and 40 grid points for γ functions 500 simulations at each grid point Simulation results are shown in Figure 3 for n = 100. Simulation results are shown in Figure 4 for n = 400. 23 / 36
  • 24. 0.0 0.2 0.4 0.6 0.8 1.0 01030 t β0 −4 −2 0 2 4 −50−30−1010 z γ0 0.0 0.2 0.4 0.6 0.8 1.0 −60−200 t β1 −4 −2 0 2 4 −2002040 z γ1 0.0 0.2 0.4 0.6 0.8 1.0 0204060 t β2 −4 −2 0 2 4 −200204060 z γ2 Figure: Estimated function β and γ, their mediums and 95% pointwise confidence intervals for Model 5.1 when x is stationary and n = 100 24 / 36
  • 25. 0.0 0.2 0.4 0.6 0.8 1.0 01030 t β0 −4 −2 0 2 4 −50−30−1010 z γ0 0.0 0.2 0.4 0.6 0.8 1.0 −60−200 t β1 −4 −2 0 2 4 −2002040 z γ1 0.0 0.2 0.4 0.6 0.8 1.0 0204060 t β2 −4 −2 0 2 4 −200204060 z γ2 Figure: Estimated function β and γ, their mediums and 95% pointwise confidence intervals for Model 5.1 when x is stationary and n = 400 25 / 36
  • 26. Simulation with nonstationary xi x1,1 = x1,2 = 0 xi,1 = xi−1,1 + δ1i δ1i ∼ t(3) xi,2 = xi−1,2 + δ2i δ2i ∼ t(7) y is generated from above model (5.1) x1, x2 and y all are nonstationary, xi and yi are cointegration. 10 grid points for β functions and 40 grid points for γ functions 500 simulations at each grid point Simulation results are shown in Figure 5 for n = 100. Simulation results are shown in Figure 6 for n = 400. 26 / 36
  • 27. 0.0 0.2 0.4 0.6 0.8 1.0 01030 t β0 −4 −2 0 2 4 −50−30−1010 z γ0 0.0 0.2 0.4 0.6 0.8 1.0 −60−200 t β1 −4 −2 0 2 4 −2002040 z γ1 0.0 0.2 0.4 0.6 0.8 1.0 0204060 t β2 −4 −2 0 2 4 −200204060 z γ2 Figure: Estimated function β and γ, their mediums and 95% pointwise confidence intervals for Model 5.1 when x is nonstationary and n = 100 27 / 36
  • 28. 0.0 0.2 0.4 0.6 0.8 1.0 01030 t β0 −4 −2 0 2 4 −50−30−1010 z γ0 0.0 0.2 0.4 0.6 0.8 1.0 −60−200 t β1 −4 −2 0 2 4 −2002040 z γ1 0.0 0.2 0.4 0.6 0.8 1.0 0204060 t β2 −4 −2 0 2 4 −200204060 z γ2 Figure: Estimated function β and γ, their mediums and 95% pointwise confidence intervals for Model 5.1 when x is nonstationary and n = 400 28 / 36
  • 29. Real example 5 year daily Treasury bond yield rate 6 month daily Treasury bill yield rate Stock price of Morgan Stanley and price of S&P500 All data are from the Jan. 2nd, 2003 to Dec. 31st, 2015. The sample size is 3249. Stock price of Morgan Stanley and price of S&P500 are nonstationary Log "difference" of 5 year daily Treasury bond yield rate and 6 month daily Treasury bill yield rate is stationary yi = β0(ti−1) + γ0(zi−1) + (β1(ti−1) + γ1(zi−1))xi−1 + i. (6.1) z: log "difference" of 5 year daily Treasury bond yield rate and 6 month daily Treasury bill yield rate y: stock price of Morgan Stanley x: price of S&P500. 29 / 36
  • 30. ADF Test Statistic P VALUE Stock price of Morgan Stanley -0.5896 0.4284 Price of S&P500 1.3095 0.9522 log "difference" of Treasury yield rate -3.3093 < 0.01 Table: ADF test for stock price of Morgan Stanley, price of S&P500 and log "difference" of 5 year daily Treasury bond yield rate and 6 month daily Treasury bill yield rate 30 / 36
  • 31. 2004 2008 2012 −100−60−200 time β0 2004 2008 2012 0.020.060.10 time β1 −0.4 −0.2 0.0 0.2 −20−10010 yield rate γ0 −0.4 −0.2 0.0 0.2 −0.0100.0000.010 yield rate γ1 Figure: Estimated functions from model 6.1 31 / 36
  • 32. Real example Variance of the residual model 1.1 model 1.2 model 6.1 13.380 68.504 5.859 Table: variance of the residual in each model 32 / 36
  • 33. 2004 2006 2008 2010 2012 2014 2016 0204060 time price 2004 2006 2008 2010 2012 2014 0.020.060.10 time functionofcoefficient Figure: Estimated stock price and function of coefficient from model 6.1 33 / 36
  • 34. Real example: one step forecast Split sample into two parts: training sample, the first 3000 data and testing sample, the remaining 249 data. Define one step forecast ˆyj for y at time j as following: ˆyj = ˆβ0(tj−1) + ˆγ1(zj−1) + ( ˆβ1(tj−1) + ˆγ1(zj−1))xj−1 (6.2) where j from 3001 to 3249 and ˆβ0, ˆγ0 ˆβ1 and ˆγ1 are estimated by the proposed two-step estimation method using only the data from 1 to j − 1 34 / 36
  • 35. 2004 2006 2008 2010 2012 2014 2016 0102030405060 x yscale Figure: ˆy and One step forecast (6.2) 35 / 36
  • 37. CAI, Z., LI, Q. AND PARK, JOON Y. (2009). Functional-coefficient models for nonstationary time series data. Journal of Econometrics 148, 101–113. HOROWITZ, J. L., MAMMEN, E. (2004). Nonparametric estimation of an additive model with a link function. Ann. Statist. 32, 2412–2443. JIANG J.,LI J. (2004). Two-stage local M-estimation of additive models. Science in China 51, 1315–1338. ZHOU S,SHEN X,WOLFE D A (1998). Local asymptotics for regression splines and con?dence regions. Ann. Statist. 26, 1760–1782. SHAO,Q.,LU,C. (1987). Strong approximation for partial sums of weakly dependent random variables. Scientia Sinica 15, 576–587. EINMAHL, U. (1987). A useful estimate in the multidimensional invariance principle. Probability Theory and Related Fields 76, 81–101. CAI,Z. (2002). Regression quantile for time series. Econometric Theory 18, 169–192. 36 / 36
  • 38. CARRASCO, M., CHEN, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18, 17–39. CHEN, S.X., TANG, C.Y. (2005). Nonparametric inference of value at risk for dependent financial returns. Journal of Financial Econometrics 3, 227–255. XIAO,Z. (2009). Robust inference in nonstationary time series models. Journal of Econometrics 169, 211–223. PHILLIPS, P.C.B. (1989). Partially identified econometric models. Econometric Theory 5, 181–240. PHILLIPS, P.C.B., PARK, J. (1998). Nonstationary density and kernel autoregression. Unpublished manuscript . BLUME, M. (1975). Betas and their Regression Tendencies. Journal of Finance 30, 785–796. FABOZZI, F.J. FRANCIS, J.C. (1978). Beta as a Random Coefficient. Journal of Financial and Quantitative Analysis 13, 101–116. 36 / 36
  • 39. BLUME, M. (1981). Beta Stationarity and Estimation Period: Some Analytical Results. . Journal of Financial and Quantitative Analysis 5, 747–757. MCDONALD, B. (1985). Making Sense Out of Unstable Alphas and Betas. Journal of Portfolio Management 11, 19–22. LEE, C.F., NEWBOLD, P., FINNERTY, J.E. CHU, C.C. (1986). On Accounting-Based, Market-Based and Composite-Based Beta Predictions: Methods and Implications. The Financial Review 21, 51–68. LEVY, R.A. (1971). On the Short Term Stationarity of Beta Coefficient. Financial Analyst Journal 27, 55–62. ROSENBERG, B. (1985). Prediction of Common Stock Betas. Journal of Portfolio Management 11, 5–14. KAPLANIS, E.C. (1988). Stability and Forecasting of the Co-movement Measures of International Stock Market Returns. Journal of International Money and Finance 7, 63–75. KOCH, P.D. KOCH, T.W. (1991). Evolution in Dynamic Linkages 36 / 36
  • 40. Across National Stock Indexes. Journal of International Money and Finance 10, 231–251. UMSTEAD, D. AND BERGSTROM, G. (1979). Dynamic Estimation of Portfolio Betas. Journal of Financial and Quantitative Analysis 14, 595–614. COCHRANE,J. H. (2001). Asset Pricing.Princeton University Press,Princeton and Oxford. TSAY,R. S. (2002). Analysis of Financial Time Series. A Wiley-Interscience Publication. JOHN WILEY & SONS, INC. CHANG, Y., MARTINEZ-CHOMBO, E., (2003). Electricity demand analysis using cointegration and error-correction models with time varying parameters: The Mexican case. Working Paper. Department of Economics, Texas A&M University.. CAI, Z., FAN, J., YAO, Q. (2000). Functional-coefficient regression models for nonlinear time series. Journal of the American Statistical Association 95, 941–956. BERKES, I., HORVÁTH, L. (2006). Convergence of integral 36 / 36
  • 41. functionals of stochastic processes. Econometric Theory 22, 304–322. BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.. ENGLE, R.F., GRANGER, C.W.J. (1987). Cointegration and error correction: Representation, estimation, and testing. Econometrica 55, 251–276. GRANGER, C.W.J. (1981). Some properties of time series data and their use in econometric model specification. Journal of Econometrics 121–130. PARK, J., HAHN, S. (1999). Cointegrating regressions with time varying coefficients. Econometric Theory 15, 664–703. DE BOOR C. (1978). A Practical Guilde to Splines. New York: Springer-Verlag, 1978. JIANG J. (2014). Multivariate functional-coefficient regression models for nonlinear vector time series data. Biometrika 101, 689–702. 36 / 36