SlideShare a Scribd company logo
1 of 91
Download to read offline
A T(1)-type theorem for entangled
multilinear Calder´on-Zygmund operators
Vjekoslav Kovaˇc, University of Zagreb
Joint work with Christoph Thiele, Universit¨at Bonn
Joint International Meeting of the American Mathematical Society
and the Romanian Mathematical Society
Alba Iulia, June 27, 2013
Multilinear forms — Entangled structure |
Object of study:
Multilinear singular integral forms with functions that partially
share variables
Multilinear forms — Entangled structure |
Object of study:
Multilinear singular integral forms with functions that partially
share variables
Schematically:
Λ(F1, F2, . . .) =
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
K = singular kernel
F1, F2, . . . = functions on R2
Multilinear forms — Modulation invariance ||
Generalized modulation invariance:
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
e2πiax1
F1(x1, x2) e−2πiax1
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
ϕ(x1)F1(x1, x2)
1
ϕ(x1)
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Multilinear forms — Modulation invariance ||
Generalized modulation invariance:
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
e2πiax1
F1(x1, x2) e−2πiax1
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
ϕ(x1)F1(x1, x2)
1
ϕ(x1)
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Strategy: avoid decompositions that break the above symmetry
Techniques: telescoping identities, positivity,
induction on structural complexity
Multilinear forms — Estimates |||
Goal: Lp estimates
|Λ(F1, F2, . . . , Fm)| F1 Lp1 F2 Lp2 . . . Fm Lpm
in a nonempty open subrange of
1
p1
+
1
p2
+ . . . +
1
pm
= 1
Multilinear forms — Estimates |||
Goal: Lp estimates
|Λ(F1, F2, . . . , Fm)| F1 Lp1 F2 Lp2 . . . Fm Lpm
in a nonempty open subrange of
1
p1
+
1
p2
+ . . . +
1
pm
= 1
Desired results: characterizations of Lp boundedness
T(1)-type theorems
Motivation — 2D BHT ||||
Particular case of the 2D bilinear Hilbert transform, Demeter and
Thiele (2008), Lp estimates by Bernicot (2010) and K. (2010):
T(F, G)(x, y) =
R2
F(x + s, y) G(x, y + t) K(s, t) dsdt
Motivation — 2D BHT ||||
Particular case of the 2D bilinear Hilbert transform, Demeter and
Thiele (2008), Lp estimates by Bernicot (2010) and K. (2010):
T(F, G)(x, y) =
R2
F(x + s, y) G(x, y + t) K(s, t) dsdt
Substitute u = x + s, v = y + t:
Λ(F, G, H) = T(F, G), H
=
R4
F(u, y)G(x, v)H(x, y)K(u − x, v − y) dudvdxdy
Motivation — 2D BHT ||||
Particular case of the 2D bilinear Hilbert transform, Demeter and
Thiele (2008), Lp estimates by Bernicot (2010) and K. (2010):
T(F, G)(x, y) =
R2
F(x + s, y) G(x, y + t) K(s, t) dsdt
Substitute u = x + s, v = y + t:
Λ(F, G, H) = T(F, G), H
=
R4
F(u, y)G(x, v)H(x, y)K(u − x, v − y) dudvdxdy
Non-translation-invariant generalization:
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Motivation — 2D BHT ||||
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Graph associated with its structure:
x ◦
H
G
◦
F
y
v ◦ ◦ u
Motivation — Bilinear ergodic averages | ||||
1
N
N−1
k=0
f (Sk
ω)g(Tk
ω), ω ∈ Ω
S, T : Ω → Ω are commuting measure preserving transformations
Motivation — Bilinear ergodic averages | ||||
1
N
N−1
k=0
f (Sk
ω)g(Tk
ω), ω ∈ Ω
S, T : Ω → Ω are commuting measure preserving transformations
Singular integral version, Lp boundedness still an open problem:
T(F, G)(x, y) := p.v.
R
F(x + t, y)G(x, y + t)
dt
t
Motivation — Bilinear ergodic averages | ||||
1
N
N−1
k=0
f (Sk
ω)g(Tk
ω), ω ∈ Ω
S, T : Ω → Ω are commuting measure preserving transformations
Singular integral version, Lp boundedness still an open problem:
T(F, G)(x, y) := p.v.
R
F(x + t, y)G(x, y + t)
dt
t
Substitute z = −x − y − t:
Λ(F, G, H) = T(F, G), H
=
R3
F1(x, y) F2(y, z) F3(z, x)
1
x + y + z
dxdydz
Motivation — Bilinear ergodic averages || ||||
Λ(F1, F2, F3) =
R3
F1(x, y) F2(y, z) F3(z, x)
1
x + y + z
dxdydz
Associated graph:
x
◦
F3F1
y ◦
F2
◦ z
Motivation — Bilinear ergodic averages || ||||
Λ(F1, F2, F3) =
R3
F1(x, y) F2(y, z) F3(z, x)
1
x + y + z
dxdydz
Associated graph:
x
◦
F3F1
y ◦
F2
◦ z
Note: this graph is not bipartite
Motivation — Longer cycles ||| ||||
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Associated graph:
x ◦
F3
F4
◦
F2
y
v ◦
F1
◦ u
Motivation — Longer cycles ||| ||||
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Associated graph:
x ◦
F3
F4
◦
F2
y
v ◦
F1
◦ u
x ◦
F3
F2
◦
F4
y
u ◦
F1
◦ v
Note: this graph is bipartite
Scope of our techniques |||| ||||
We specialize to:
Scope of our techniques |||| ||||
We specialize to:
bipartite graphs
Scope of our techniques |||| ||||
We specialize to:
bipartite graphs
multilinear Calder´on-Zygmund kernels K
Scope of our techniques |||| ||||
We specialize to:
bipartite graphs
multilinear Calder´on-Zygmund kernels K
“perfect” dyadic models
Perfect dyadic conditions |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Perfect dyadic conditions |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C,
Auscher, Hofmann, Muscalu, Tao, Thiele (2002):
Perfect dyadic conditions |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C,
Auscher, Hofmann, Muscalu, Tao, Thiele (2002):
|K(x1, . . . , xm, y1, . . . , yn)|
i1<i2
|xi1 − xi2 | + j1<j2
|yj1 − yj2 |
2−m−n
Perfect dyadic conditions |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C,
Auscher, Hofmann, Muscalu, Tao, Thiele (2002):
|K(x1, . . . , xm, y1, . . . , yn)|
i1<i2
|xi1 − xi2 | + j1<j2
|yj1 − yj2 |
2−m−n
K is constant on (m+n)-dimensional dyadic cubes disjoint
from D
Perfect dyadic conditions |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C,
Auscher, Hofmann, Muscalu, Tao, Thiele (2002):
|K(x1, . . . , xm, y1, . . . , yn)|
i1<i2
|xi1 − xi2 | + j1<j2
|yj1 − yj2 |
2−m−n
K is constant on (m+n)-dimensional dyadic cubes disjoint
from D
K is bounded and compactly supported
Bipartite structure | |||| ||||
E ⊆ {1, . . . , m}×{1, . . . , n}
G = simple bipartite undirected graph G on {x1, . . . , xm}
and {y1, . . . , yn}
xi —yj ⇔ (i, j) ∈ E
Bipartite structure | |||| ||||
E ⊆ {1, . . . , m}×{1, . . . , n}
G = simple bipartite undirected graph G on {x1, . . . , xm}
and {y1, . . . , yn}
xi —yj ⇔ (i, j) ∈ E
|E|-linear singular form:
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
Assume: there are no isolated vertices in G
avoids degeneracy
Adjoints || |||| ||||
There are |E| mutually adjoint (|E|−1)-linear operators Tu,v ,
(u, v) ∈ E:
Λ (Fi,j )(i,j)∈E =
R2
Tu,v (Fi,j )(i,j)=(u,v) Fu,v
Adjoints || |||| ||||
There are |E| mutually adjoint (|E|−1)-linear operators Tu,v ,
(u, v) ∈ E:
Λ (Fi,j )(i,j)∈E =
R2
Tu,v (Fi,j )(i,j)=(u,v) Fu,v
Explicitly:
Tu,v (Fi,j )(i,j)∈E{(u,v)} (xu, yv )
=
Rm+n−2
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E{(u,v)}
Fi,j (xi , yj )
i=u
dxi
j=v
dyj
T(1)-type theorems ||| |||| ||||
Weak boundedness property + Conditions of type “T(1) ∈ BMO”
T(1)-type theorems ||| |||| ||||
Weak boundedness property + Conditions of type “T(1) ∈ BMO”
Several highlights:
T(1)-type theorems ||| |||| ||||
Weak boundedness property + Conditions of type “T(1) ∈ BMO”
Several highlights:
T(1) theorem for C-Z operators — the original T(1) theorem
David and Journ´e (1984)
T(1)-type theorems ||| |||| ||||
Weak boundedness property + Conditions of type “T(1) ∈ BMO”
Several highlights:
T(1) theorem for C-Z operators — the original T(1) theorem
David and Journ´e (1984)
T(b) theorem . . . . . . . . . . . . . . . David, Journ´e, Semmes (1985)
T(1)-type theorems ||| |||| ||||
Weak boundedness property + Conditions of type “T(1) ∈ BMO”
Several highlights:
T(1) theorem for C-Z operators — the original T(1) theorem
David and Journ´e (1984)
T(b) theorem . . . . . . . . . . . . . . . David, Journ´e, Semmes (1985)
local T(b) theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . Christ (1990)
T(1)-type theorems ||| |||| ||||
Weak boundedness property + Conditions of type “T(1) ∈ BMO”
Several highlights:
T(1) theorem for C-Z operators — the original T(1) theorem
David and Journ´e (1984)
T(b) theorem . . . . . . . . . . . . . . . David, Journ´e, Semmes (1985)
local T(b) theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . Christ (1990)
for multilinear C-Z operators . . . . Grafakos and Torres (2002)
T(1)-type theorems ||| |||| ||||
Weak boundedness property + Conditions of type “T(1) ∈ BMO”
Several highlights:
T(1) theorem for C-Z operators — the original T(1) theorem
David and Journ´e (1984)
T(b) theorem . . . . . . . . . . . . . . . David, Journ´e, Semmes (1985)
local T(b) theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . Christ (1990)
for multilinear C-Z operators . . . . Grafakos and Torres (2002)
for bilinear operators with linear-phase modulation invariance
B´enyi, Demeter, Nahmod, Thiele, Torres, Villarroya (2007)
The main theorem |||| |||| ||||
Entangled T(1) theorem, K. and Thiele (2013)
(a) For m, n ≥ 2 and a graph G there exist positive integers di,j
such that (i,j)∈E
1
di,j
> 1 and the following holds. If
|Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square,
Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
The main theorem |||| |||| ||||
Entangled T(1) theorem, K. and Thiele (2013)
(a) For m, n ≥ 2 and a graph G there exist positive integers di,j
such that (i,j)∈E
1
di,j
> 1 and the following holds. If
|Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square,
Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
(b) Conversely, the estimate for some choice of exponents implies
the conditions.
The main theorem — reformulation |||| |||| ||||
Entangled T(1) theorem — reformulation, K. and Thiele (2013)
For m, n ≥ 2 and a graph G there exist positive integers di,j such
that (i,j)∈E
1
di,j
> 1 and the following holds. If
Tu,v (1Q, . . . , 1Q) L1(Q)
|Q|, Q dyadic square, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
Proof outline | |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Proof outline | |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
Proof outline | |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
Proof outline | |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
cancellative paraproducts with ∞ coefficients
Proof outline | |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
Proof outline | |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
Proof outline | |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
non-cancellative paraproducts with BMO coefficients
reduction to cancellative paraproducts
Proof outline | |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
non-cancellative paraproducts with BMO coefficients
reduction to cancellative paraproducts
counterexample for m = 1 or n = 1
Decomposition into paraproducts || |||| |||| ||||
hI = 1Ileft
− 1Iright
L∞-normalized Haar wavelet
Decomposition into paraproducts || |||| |||| ||||
hI = 1Ileft
− 1Iright
L∞-normalized Haar wavelet
Kernel decomposition:
K(x1, . . . , xm, y1, . . . , yn)
=
I1×...×Im×J1×...×Jn
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) not all equal 1
νa(1),...,a(m),b(1),...,b(n)
I1×...×Im×J1×...×Jn
a
(1)
I1
(x1) . . . a
(m)
Im
(xm)b
(1)
J1
(y1) . . . b
(n)
Jn
(yn)
Decomposition into paraproducts || |||| |||| ||||
hI = 1Ileft
− 1Iright
L∞-normalized Haar wavelet
Kernel decomposition:
K(x1, . . . , xm, y1, . . . , yn)
=
I1×...×Im×J1×...×Jn
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) not all equal 1
νa(1),...,a(m),b(1),...,b(n)
I1×...×Im×J1×...×Jn
a
(1)
I1
(x1) . . . a
(m)
Im
(xm)b
(1)
J1
(y1) . . . b
(n)
Jn
(yn)
[perfect dyadic condition]
=
I×J
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) not all equal 1
λa(1),...,a(m),b(1),...,b(n)
I×J |I|2−m−n
a
(1)
I (x1) . . . a
(m)
I (xm)b
(1)
J (y1) . . . b
(n)
J (yn)
Decomposition into paraproducts ||| |||| |||| ||||
Decomposition of Λ:
Λ =
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) are not all equal 1
Θa(1),...,a(m),b(1),...,b(n)
E
Decomposition into paraproducts ||| |||| |||| ||||
Decomposition of Λ:
Λ =
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) are not all equal 1
Θa(1),...,a(m),b(1),...,b(n)
E
It remains to bound each individual “entangled” paraproduct
Θa(1),...,a(m),b(1),...,b(n)
E
Decomposition into paraproducts ||| |||| |||| ||||
Decomposition of Λ:
Λ =
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) are not all equal 1
Θa(1),...,a(m),b(1),...,b(n)
E
It remains to bound each individual “entangled” paraproduct
Θa(1),...,a(m),b(1),...,b(n)
E
Two types:
Decomposition into paraproducts ||| |||| |||| ||||
Decomposition of Λ:
Λ =
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) are not all equal 1
Θa(1),...,a(m),b(1),...,b(n)
E
It remains to bound each individual “entangled” paraproduct
Θa(1),...,a(m),b(1),...,b(n)
E
Two types:
cancellative require only ∞ coefficients λI×J
Decomposition into paraproducts ||| |||| |||| ||||
Decomposition of Λ:
Λ =
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) are not all equal 1
Θa(1),...,a(m),b(1),...,b(n)
E
It remains to bound each individual “entangled” paraproduct
Θa(1),...,a(m),b(1),...,b(n)
E
Two types:
cancellative require only ∞ coefficients λI×J
non-cancellative require BMO coefficients λI×J
Decomposition into paraproducts |||| |||| |||| ||||
S := i ∈ {1, . . . , m} : a(i)
= h
T := j ∈ {1, . . . , n} : b(j)
= h
Decomposition into paraproducts |||| |||| |||| ||||
S := i ∈ {1, . . . , m} : a(i)
= h
T := j ∈ {1, . . . , n} : b(j)
= h
y
y
x
x
x
y
x
TS
E
.
..
..
.
n
2
1
m
3
2
1
Decomposition into paraproducts |||| |||| |||| ||||
S := i ∈ {1, . . . , m} : a(i)
= h
T := j ∈ {1, . . . , n} : b(j)
= h
Cancellative subtypes:
(C1) max{|S|, |T|} ≥ 2
(C2) S = {i}, T = {j}, and (i, j) ∈ E
Decomposition into paraproducts |||| |||| |||| ||||
S := i ∈ {1, . . . , m} : a(i)
= h
T := j ∈ {1, . . . , n} : b(j)
= h
Cancellative subtypes:
(C1) max{|S|, |T|} ≥ 2
(C2) S = {i}, T = {j}, and (i, j) ∈ E
Non-cancellative subtypes:
(NC1) |S| + |T| = 1
(NC2) S = {i}, T = {j}, and (i, j) ∈ E
Reduction to local estimates | |||| |||| |||| ||||
C = dyadic squares in R2
Reduction to local estimates | |||| |||| |||| ||||
C = dyadic squares in R2
T = a finite convex tree of dyadic squares
QT = root or tree-top of T
L(T ) = leaves of T , squares that are not contained in T but their
parents are
Reduction to local estimates || |||| |||| |||| ||||
Usual stopping time argument reduces to local forms:
ΘT :=
Q∈T
|λQ| |Q| |AQ|
Reduction to local estimates || |||| |||| |||| ||||
Usual stopping time argument reduces to local forms:
ΘT :=
Q∈T
|λQ| |Q| |AQ|
AI×J (Fi,j )(i,j)∈E
:=
(i,j)∈E
Fi,j (xi , yj )
xi ∈I for each i∈S
yj ∈J for each j∈T
xi ∈I for each i∈Sc
yj ∈J for each j∈Tc
[f (x)]x∈I := 1
|I| R f (x)1I (x)dx
f (x) x∈I := 1
|I| R f (x)hI (x)dx
Paraproduct estimates ||| |||| |||| |||| ||||
Bounds for cancellative paraproducts
(a) λ ∞ := sup
Q∈C
|λQ| 1
(b) ΘT (Fi,j )(i,j)∈E λ ∞ |QT |
(i,j)∈E
max
Q∈T ∪L(T )
F
di,j
i,j
1/di,j
Q
Paraproduct estimates ||| |||| |||| |||| ||||
Bounds for cancellative paraproducts
(a) λ ∞ := sup
Q∈C
|λQ| 1
(b) ΘT (Fi,j )(i,j)∈E λ ∞ |QT |
(i,j)∈E
max
Q∈T ∪L(T )
F
di,j
i,j
1/di,j
Q
Bounds for non-cancellative paraproducts
(a) λ bmo := sup
Q0∈C
1
|Q0|
Q∈C : Q⊆Q0
|Q||λQ|2
1/2
1
(b) ΘT (Fi,j )(i,j)∈E λ bmo |QT |
(i,j)∈E
max
Q∈T ∪L(T )
F
di,j
i,j
1/di,j
Q
Bellman functions in multilinear setting |||| |||| |||| |||| ||||
Bellman functions in harmonic analysis
Invented by Burkholder (1980s)
Developed by Nazarov, Treil, Volberg, etc. (1990s)
We primarily keep the “induction on scales” idea
Bellman functions in multilinear setting |||| |||| |||| |||| ||||
Bellman functions in harmonic analysis
Invented by Burkholder (1980s)
Developed by Nazarov, Treil, Volberg, etc. (1990s)
We primarily keep the “induction on scales” idea
A broad class of interesting dyadic objects can be reduced to
bounding expressions of the form
ΛT (F1, . . . , F ) =
Q∈T
|Q| AQ(F1, . . . , F )
T = a finite convex tree of dyadic squares
AQ(F1, . . . , F ) = some “scale-invariant” quantity depending on
F1, . . . , F and Q ∈ T
Calculus of finite differences |||| |||| |||| |||| ||||
B = BQ(F1, . . . , F )
First order difference of B: B = BQ(F1, . . . , F )
BI×J := 1
4BIleft×Jleft
+ 1
4BIleft×Jright
+ 1
4BIright×Jleft
+ 1
4BIright×Jright
− BI×J
Calculus of finite differences |||| |||| |||| |||| ||||
B = BQ(F1, . . . , F )
First order difference of B: B = BQ(F1, . . . , F )
BI×J := 1
4BIleft×Jleft
+ 1
4BIleft×Jright
+ 1
4BIright×Jleft
+ 1
4BIright×Jright
− BI×J
Examples:
B B
[F(x, y)]3
x y
3 [F(x, y)]x F(x, y) 2
x y
[F(x, y)]2
x,y [ F(x, y) x ]2
y + [F(x, y)]x
2
y + F(x, y) 2
x,y
[F(x, y)G(x , y)]2
y x,x
F(x, y)G(x , y) 2
y x,x
+ [F(x, y)G(x , y)]2
y x,x
+ F(x, y)G(x , y) 2
y x,x
Calculus of finite differences | |||| |||| |||| |||| ||||
Suppose: |A| ≤ B, i.e.
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
Calculus of finite differences | |||| |||| |||| |||| ||||
Suppose: |A| ≤ B, i.e.
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
|Q| |AQ(F1, . . . , F )| ≤
Q is a child of Q
|Q| BQ
(F1, . . . , F )
− |Q| BQ(F1, . . . , F )
Calculus of finite differences | |||| |||| |||| |||| ||||
Suppose: |A| ≤ B, i.e.
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
|Q| |AQ(F1, . . . , F )| ≤
Q is a child of Q
|Q| BQ
(F1, . . . , F )
− |Q| BQ(F1, . . . , F )
|ΛT (F1, . . . , F )| ≤
Q∈L(T )
|Q| BQ(F1, . . . , F )
− |QT | BQT
(F1, . . . , F )
Calculus of finite differences | |||| |||| |||| |||| ||||
Suppose: |A| ≤ B, i.e.
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
|Q| |AQ(F1, . . . , F )| ≤
Q is a child of Q
|Q| BQ
(F1, . . . , F )
− |Q| BQ(F1, . . . , F )
|ΛT (F1, . . . , F )| ≤
Q∈L(T )
|Q| BQ(F1, . . . , F )
− |QT | BQT
(F1, . . . , F )
B = a Bellman function for ΛT
Paraproducts of subtype (C1) || |||| |||| |||| |||| ||||
Split G into connected components G1, G2, . . . , Gk
the terms of ΘT also split:
AQ = A
(1)
Q A
(2)
Q . . . A
(k)
Q
di,j = larger size of the two bipartition classes of the connected
component containing an edge xi —yj
Paraproducts of subtype (C1) || |||| |||| |||| |||| ||||
Split G into connected components G1, G2, . . . , Gk
the terms of ΘT also split:
AQ = A
(1)
Q A
(2)
Q . . . A
(k)
Q
di,j = larger size of the two bipartition classes of the connected
component containing an edge xi —yj
Strategy:
Paraproducts of subtype (C1) || |||| |||| |||| |||| ||||
Split G into connected components G1, G2, . . . , Gk
the terms of ΘT also split:
AQ = A
(1)
Q A
(2)
Q . . . A
(k)
Q
di,j = larger size of the two bipartition classes of the connected
component containing an edge xi —yj
Strategy:
Step-by-step construction of the Bellman function
Paraproducts of subtype (C1) || |||| |||| |||| |||| ||||
Split G into connected components G1, G2, . . . , Gk
the terms of ΘT also split:
AQ = A
(1)
Q A
(2)
Q . . . A
(k)
Q
di,j = larger size of the two bipartition classes of the connected
component containing an edge xi —yj
Strategy:
Step-by-step construction of the Bellman function
Allow repetitions among the functions Fi,j
Paraproducts of subtype (C1) || |||| |||| |||| |||| ||||
Split G into connected components G1, G2, . . . , Gk
the terms of ΘT also split:
AQ = A
(1)
Q A
(2)
Q . . . A
(k)
Q
di,j = larger size of the two bipartition classes of the connected
component containing an edge xi —yj
Strategy:
Step-by-step construction of the Bellman function
Allow repetitions among the functions Fi,j
Induction on the structure determined by (G, S, T) and the
repeating functions
Paraproducts of subtype (C1) ||| |||| |||| |||| |||| ||||
(1, 1; 1, 1, 1, 1)
δ, δ−1
//
δ, δ−1

(2, 0; 1, 1, 1, 1)
δ, δ−1

(1, 1; 2, 1, 1, 0)
δ, δ−1
//
δ, δ−1

δ−1
''
δ

(2, 0; 2, 1, 1, 0)
δ, δ−1

δ−1
ww
δ
||
(1, 1; 2, 2, 0, 0)
δ, δ−1
//
δ, δ−1

(2, 0; 2, 2, 0, 0)
δ, δ−1

(1, 1; 3, 1, 0, 0)
δ, δ−1
//
δ−1

δ
YY
(2, 0; 3, 1, 0, 0)
δ−1

δ
EE
(1, 1; 4, 0, 0, 0)
δ, δ−1
// (2, 0; 4, 0, 0, 0)
Non-cancellative paraproducts |||| |||| |||| |||| |||| ||||
ΘT =
Q∈T
|λQ||Q||AQ| ≤
Q∈T
|Q||λQ|2
1/2
Q∈T
|Q| AQ
2 1/2
Non-cancellative paraproducts |||| |||| |||| |||| |||| ||||
ΘT =
Q∈T
|λQ||Q||AQ| ≤
Q∈T
|Q||λQ|2
1/2
Q∈T
|Q| AQ
2 1/2
On the one hand,
Q∈T
|Q||λQ|2
≤
Q∈C : Q⊆QT
|Q||λQ|2
≤ λ 2
bmo|QT | = λ 2
bmo
Non-cancellative paraproducts |||| |||| |||| |||| |||| ||||
ΘT =
Q∈T
|λQ||Q||AQ| ≤
Q∈T
|Q||λQ|2
1/2
Q∈T
|Q| AQ
2 1/2
On the one hand,
Q∈T
|Q||λQ|2
≤
Q∈C : Q⊆QT
|Q||λQ|2
≤ λ 2
bmo|QT | = λ 2
bmo
On the other hand,
ΘT :=
Q∈T
|Q| AQ
2
falls into Class (C1)
simply doubles all connected components of G
Counterexample |||| |||| |||| |||| |||| ||||
When m = 1:
Λ(F1,1, . . . , F1,n)
=
R Rn
K(x1, y1, . . . , yn)
n
j=1
F1,j (x1, yj ) dy1 . . . dyn dx1
Counterexample |||| |||| |||| |||| |||| ||||
When m = 1:
Λ(F1,1, . . . , F1,n)
=
R Rn
K(x1, y1, . . . , yn)
n
j=1
F1,j (x1, yj ) dy1 . . . dyn dx1
The theorems fail for:
K(x1, y1, . . . , yn) :=
I×J∈C
λI×J |I|1−n
hI (x1)1J(y1) . . . 1J(yn)
λI×J :=
1 I = [0, 2−k), J ⊆ [0, 1), k ∈ {0, 1, . . . , r − 1}
0 otherwise
Currently open problems | |||| |||| |||| |||| |||| ||||
Further directions:
Currently open problems | |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of continuous C-Z kernels K
Currently open problems | |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of continuous C-Z kernels K
Forms corresponding to non-bipartite graphs (odd cycles)
Currently open problems | |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of continuous C-Z kernels K
Forms corresponding to non-bipartite graphs (odd cycles)
More singular kernels K
Thank you! || |||| |||| |||| |||| |||| ||||

More Related Content

What's hot

A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsVjekoslavKovac1
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling SetsVjekoslavKovac1
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilationsVjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Jurgen Riedel
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexityFrank Nielsen
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyFrank Nielsen
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryFrank Nielsen
 

What's hot (20)

A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 

Similar to A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators

Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?Christian Robert
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceJeremyHeng10
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...yigalbt
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursGabriel Peyré
 
A new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsA new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsFrancesco Tudisco
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
04_spectral_applications.pdf
04_spectral_applications.pdf04_spectral_applications.pdf
04_spectral_applications.pdfBruno Levy
 
Asset Prices in Segmented and Integrated Markets
Asset Prices in Segmented and Integrated MarketsAsset Prices in Segmented and Integrated Markets
Asset Prices in Segmented and Integrated Marketsguasoni
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Slides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingSlides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingFrank Nielsen
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxAryanMishra860130
 
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) Charles Deledalle
 
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...Toshiyuki Shimono
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESTahia ZERIZER
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introductionhelalmohammad2
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Alex Pruden
 

Similar to A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators (20)

Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inference
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
 
A new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsA new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensors
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
04_spectral_applications.pdf
04_spectral_applications.pdf04_spectral_applications.pdf
04_spectral_applications.pdf
 
Asset Prices in Segmented and Integrated Markets
Asset Prices in Segmented and Integrated MarketsAsset Prices in Segmented and Integrated Markets
Asset Prices in Segmented and Integrated Markets
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Slides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingSlides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processing
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
 
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introduction
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9
 

Recently uploaded

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxnoordubaliya2003
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 

Recently uploaded (20)

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 

A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators

  • 1. A T(1)-type theorem for entangled multilinear Calder´on-Zygmund operators Vjekoslav Kovaˇc, University of Zagreb Joint work with Christoph Thiele, Universit¨at Bonn Joint International Meeting of the American Mathematical Society and the Romanian Mathematical Society Alba Iulia, June 27, 2013
  • 2. Multilinear forms — Entangled structure | Object of study: Multilinear singular integral forms with functions that partially share variables
  • 3. Multilinear forms — Entangled structure | Object of study: Multilinear singular integral forms with functions that partially share variables Schematically: Λ(F1, F2, . . .) = Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn K = singular kernel F1, F2, . . . = functions on R2
  • 4. Multilinear forms — Modulation invariance || Generalized modulation invariance: Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn e2πiax1 F1(x1, x2) e−2πiax1 F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn ϕ(x1)F1(x1, x2) 1 ϕ(x1) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn
  • 5. Multilinear forms — Modulation invariance || Generalized modulation invariance: Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn e2πiax1 F1(x1, x2) e−2πiax1 F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn ϕ(x1)F1(x1, x2) 1 ϕ(x1) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn Strategy: avoid decompositions that break the above symmetry Techniques: telescoping identities, positivity, induction on structural complexity
  • 6. Multilinear forms — Estimates ||| Goal: Lp estimates |Λ(F1, F2, . . . , Fm)| F1 Lp1 F2 Lp2 . . . Fm Lpm in a nonempty open subrange of 1 p1 + 1 p2 + . . . + 1 pm = 1
  • 7. Multilinear forms — Estimates ||| Goal: Lp estimates |Λ(F1, F2, . . . , Fm)| F1 Lp1 F2 Lp2 . . . Fm Lpm in a nonempty open subrange of 1 p1 + 1 p2 + . . . + 1 pm = 1 Desired results: characterizations of Lp boundedness T(1)-type theorems
  • 8. Motivation — 2D BHT |||| Particular case of the 2D bilinear Hilbert transform, Demeter and Thiele (2008), Lp estimates by Bernicot (2010) and K. (2010): T(F, G)(x, y) = R2 F(x + s, y) G(x, y + t) K(s, t) dsdt
  • 9. Motivation — 2D BHT |||| Particular case of the 2D bilinear Hilbert transform, Demeter and Thiele (2008), Lp estimates by Bernicot (2010) and K. (2010): T(F, G)(x, y) = R2 F(x + s, y) G(x, y + t) K(s, t) dsdt Substitute u = x + s, v = y + t: Λ(F, G, H) = T(F, G), H = R4 F(u, y)G(x, v)H(x, y)K(u − x, v − y) dudvdxdy
  • 10. Motivation — 2D BHT |||| Particular case of the 2D bilinear Hilbert transform, Demeter and Thiele (2008), Lp estimates by Bernicot (2010) and K. (2010): T(F, G)(x, y) = R2 F(x + s, y) G(x, y + t) K(s, t) dsdt Substitute u = x + s, v = y + t: Λ(F, G, H) = T(F, G), H = R4 F(u, y)G(x, v)H(x, y)K(u − x, v − y) dudvdxdy Non-translation-invariant generalization: Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
  • 11. Motivation — 2D BHT |||| Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy Graph associated with its structure: x ◦ H G ◦ F y v ◦ ◦ u
  • 12. Motivation — Bilinear ergodic averages | |||| 1 N N−1 k=0 f (Sk ω)g(Tk ω), ω ∈ Ω S, T : Ω → Ω are commuting measure preserving transformations
  • 13. Motivation — Bilinear ergodic averages | |||| 1 N N−1 k=0 f (Sk ω)g(Tk ω), ω ∈ Ω S, T : Ω → Ω are commuting measure preserving transformations Singular integral version, Lp boundedness still an open problem: T(F, G)(x, y) := p.v. R F(x + t, y)G(x, y + t) dt t
  • 14. Motivation — Bilinear ergodic averages | |||| 1 N N−1 k=0 f (Sk ω)g(Tk ω), ω ∈ Ω S, T : Ω → Ω are commuting measure preserving transformations Singular integral version, Lp boundedness still an open problem: T(F, G)(x, y) := p.v. R F(x + t, y)G(x, y + t) dt t Substitute z = −x − y − t: Λ(F, G, H) = T(F, G), H = R3 F1(x, y) F2(y, z) F3(z, x) 1 x + y + z dxdydz
  • 15. Motivation — Bilinear ergodic averages || |||| Λ(F1, F2, F3) = R3 F1(x, y) F2(y, z) F3(z, x) 1 x + y + z dxdydz Associated graph: x ◦ F3F1 y ◦ F2 ◦ z
  • 16. Motivation — Bilinear ergodic averages || |||| Λ(F1, F2, F3) = R3 F1(x, y) F2(y, z) F3(z, x) 1 x + y + z dxdydz Associated graph: x ◦ F3F1 y ◦ F2 ◦ z Note: this graph is not bipartite
  • 17. Motivation — Longer cycles ||| |||| Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy Associated graph: x ◦ F3 F4 ◦ F2 y v ◦ F1 ◦ u
  • 18. Motivation — Longer cycles ||| |||| Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy Associated graph: x ◦ F3 F4 ◦ F2 y v ◦ F1 ◦ u x ◦ F3 F2 ◦ F4 y u ◦ F1 ◦ v Note: this graph is bipartite
  • 19. Scope of our techniques |||| |||| We specialize to:
  • 20. Scope of our techniques |||| |||| We specialize to: bipartite graphs
  • 21. Scope of our techniques |||| |||| We specialize to: bipartite graphs multilinear Calder´on-Zygmund kernels K
  • 22. Scope of our techniques |||| |||| We specialize to: bipartite graphs multilinear Calder´on-Zygmund kernels K “perfect” dyadic models
  • 23. Perfect dyadic conditions |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n
  • 24. Perfect dyadic conditions |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C, Auscher, Hofmann, Muscalu, Tao, Thiele (2002):
  • 25. Perfect dyadic conditions |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C, Auscher, Hofmann, Muscalu, Tao, Thiele (2002): |K(x1, . . . , xm, y1, . . . , yn)| i1<i2 |xi1 − xi2 | + j1<j2 |yj1 − yj2 | 2−m−n
  • 26. Perfect dyadic conditions |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C, Auscher, Hofmann, Muscalu, Tao, Thiele (2002): |K(x1, . . . , xm, y1, . . . , yn)| i1<i2 |xi1 − xi2 | + j1<j2 |yj1 − yj2 | 2−m−n K is constant on (m+n)-dimensional dyadic cubes disjoint from D
  • 27. Perfect dyadic conditions |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C, Auscher, Hofmann, Muscalu, Tao, Thiele (2002): |K(x1, . . . , xm, y1, . . . , yn)| i1<i2 |xi1 − xi2 | + j1<j2 |yj1 − yj2 | 2−m−n K is constant on (m+n)-dimensional dyadic cubes disjoint from D K is bounded and compactly supported
  • 28. Bipartite structure | |||| |||| E ⊆ {1, . . . , m}×{1, . . . , n} G = simple bipartite undirected graph G on {x1, . . . , xm} and {y1, . . . , yn} xi —yj ⇔ (i, j) ∈ E
  • 29. Bipartite structure | |||| |||| E ⊆ {1, . . . , m}×{1, . . . , n} G = simple bipartite undirected graph G on {x1, . . . , xm} and {y1, . . . , yn} xi —yj ⇔ (i, j) ∈ E |E|-linear singular form: Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn Assume: there are no isolated vertices in G avoids degeneracy
  • 30. Adjoints || |||| |||| There are |E| mutually adjoint (|E|−1)-linear operators Tu,v , (u, v) ∈ E: Λ (Fi,j )(i,j)∈E = R2 Tu,v (Fi,j )(i,j)=(u,v) Fu,v
  • 31. Adjoints || |||| |||| There are |E| mutually adjoint (|E|−1)-linear operators Tu,v , (u, v) ∈ E: Λ (Fi,j )(i,j)∈E = R2 Tu,v (Fi,j )(i,j)=(u,v) Fu,v Explicitly: Tu,v (Fi,j )(i,j)∈E{(u,v)} (xu, yv ) = Rm+n−2 K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E{(u,v)} Fi,j (xi , yj ) i=u dxi j=v dyj
  • 32. T(1)-type theorems ||| |||| |||| Weak boundedness property + Conditions of type “T(1) ∈ BMO”
  • 33. T(1)-type theorems ||| |||| |||| Weak boundedness property + Conditions of type “T(1) ∈ BMO” Several highlights:
  • 34. T(1)-type theorems ||| |||| |||| Weak boundedness property + Conditions of type “T(1) ∈ BMO” Several highlights: T(1) theorem for C-Z operators — the original T(1) theorem David and Journ´e (1984)
  • 35. T(1)-type theorems ||| |||| |||| Weak boundedness property + Conditions of type “T(1) ∈ BMO” Several highlights: T(1) theorem for C-Z operators — the original T(1) theorem David and Journ´e (1984) T(b) theorem . . . . . . . . . . . . . . . David, Journ´e, Semmes (1985)
  • 36. T(1)-type theorems ||| |||| |||| Weak boundedness property + Conditions of type “T(1) ∈ BMO” Several highlights: T(1) theorem for C-Z operators — the original T(1) theorem David and Journ´e (1984) T(b) theorem . . . . . . . . . . . . . . . David, Journ´e, Semmes (1985) local T(b) theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . Christ (1990)
  • 37. T(1)-type theorems ||| |||| |||| Weak boundedness property + Conditions of type “T(1) ∈ BMO” Several highlights: T(1) theorem for C-Z operators — the original T(1) theorem David and Journ´e (1984) T(b) theorem . . . . . . . . . . . . . . . David, Journ´e, Semmes (1985) local T(b) theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . Christ (1990) for multilinear C-Z operators . . . . Grafakos and Torres (2002)
  • 38. T(1)-type theorems ||| |||| |||| Weak boundedness property + Conditions of type “T(1) ∈ BMO” Several highlights: T(1) theorem for C-Z operators — the original T(1) theorem David and Journ´e (1984) T(b) theorem . . . . . . . . . . . . . . . David, Journ´e, Semmes (1985) local T(b) theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . Christ (1990) for multilinear C-Z operators . . . . Grafakos and Torres (2002) for bilinear operators with linear-phase modulation invariance B´enyi, Demeter, Nahmod, Thiele, Torres, Villarroya (2007)
  • 39. The main theorem |||| |||| |||| Entangled T(1) theorem, K. and Thiele (2013) (a) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If |Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square, Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞.
  • 40. The main theorem |||| |||| |||| Entangled T(1) theorem, K. and Thiele (2013) (a) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If |Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square, Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞. (b) Conversely, the estimate for some choice of exponents implies the conditions.
  • 41. The main theorem — reformulation |||| |||| |||| Entangled T(1) theorem — reformulation, K. and Thiele (2013) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If Tu,v (1Q, . . . , 1Q) L1(Q) |Q|, Q dyadic square, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞.
  • 42. Proof outline | |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions
  • 43. Proof outline | |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof:
  • 44. Proof outline | |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts
  • 45. Proof outline | |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts cancellative paraproducts with ∞ coefficients
  • 46. Proof outline | |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique
  • 47. Proof outline | |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G
  • 48. Proof outline | |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G non-cancellative paraproducts with BMO coefficients reduction to cancellative paraproducts
  • 49. Proof outline | |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G non-cancellative paraproducts with BMO coefficients reduction to cancellative paraproducts counterexample for m = 1 or n = 1
  • 50. Decomposition into paraproducts || |||| |||| |||| hI = 1Ileft − 1Iright L∞-normalized Haar wavelet
  • 51. Decomposition into paraproducts || |||| |||| |||| hI = 1Ileft − 1Iright L∞-normalized Haar wavelet Kernel decomposition: K(x1, . . . , xm, y1, . . . , yn) = I1×...×Im×J1×...×Jn a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) not all equal 1 νa(1),...,a(m),b(1),...,b(n) I1×...×Im×J1×...×Jn a (1) I1 (x1) . . . a (m) Im (xm)b (1) J1 (y1) . . . b (n) Jn (yn)
  • 52. Decomposition into paraproducts || |||| |||| |||| hI = 1Ileft − 1Iright L∞-normalized Haar wavelet Kernel decomposition: K(x1, . . . , xm, y1, . . . , yn) = I1×...×Im×J1×...×Jn a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) not all equal 1 νa(1),...,a(m),b(1),...,b(n) I1×...×Im×J1×...×Jn a (1) I1 (x1) . . . a (m) Im (xm)b (1) J1 (y1) . . . b (n) Jn (yn) [perfect dyadic condition] = I×J a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) not all equal 1 λa(1),...,a(m),b(1),...,b(n) I×J |I|2−m−n a (1) I (x1) . . . a (m) I (xm)b (1) J (y1) . . . b (n) J (yn)
  • 53. Decomposition into paraproducts ||| |||| |||| |||| Decomposition of Λ: Λ = a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) are not all equal 1 Θa(1),...,a(m),b(1),...,b(n) E
  • 54. Decomposition into paraproducts ||| |||| |||| |||| Decomposition of Λ: Λ = a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) are not all equal 1 Θa(1),...,a(m),b(1),...,b(n) E It remains to bound each individual “entangled” paraproduct Θa(1),...,a(m),b(1),...,b(n) E
  • 55. Decomposition into paraproducts ||| |||| |||| |||| Decomposition of Λ: Λ = a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) are not all equal 1 Θa(1),...,a(m),b(1),...,b(n) E It remains to bound each individual “entangled” paraproduct Θa(1),...,a(m),b(1),...,b(n) E Two types:
  • 56. Decomposition into paraproducts ||| |||| |||| |||| Decomposition of Λ: Λ = a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) are not all equal 1 Θa(1),...,a(m),b(1),...,b(n) E It remains to bound each individual “entangled” paraproduct Θa(1),...,a(m),b(1),...,b(n) E Two types: cancellative require only ∞ coefficients λI×J
  • 57. Decomposition into paraproducts ||| |||| |||| |||| Decomposition of Λ: Λ = a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) are not all equal 1 Θa(1),...,a(m),b(1),...,b(n) E It remains to bound each individual “entangled” paraproduct Θa(1),...,a(m),b(1),...,b(n) E Two types: cancellative require only ∞ coefficients λI×J non-cancellative require BMO coefficients λI×J
  • 58. Decomposition into paraproducts |||| |||| |||| |||| S := i ∈ {1, . . . , m} : a(i) = h T := j ∈ {1, . . . , n} : b(j) = h
  • 59. Decomposition into paraproducts |||| |||| |||| |||| S := i ∈ {1, . . . , m} : a(i) = h T := j ∈ {1, . . . , n} : b(j) = h y y x x x y x TS E . .. .. . n 2 1 m 3 2 1
  • 60. Decomposition into paraproducts |||| |||| |||| |||| S := i ∈ {1, . . . , m} : a(i) = h T := j ∈ {1, . . . , n} : b(j) = h Cancellative subtypes: (C1) max{|S|, |T|} ≥ 2 (C2) S = {i}, T = {j}, and (i, j) ∈ E
  • 61. Decomposition into paraproducts |||| |||| |||| |||| S := i ∈ {1, . . . , m} : a(i) = h T := j ∈ {1, . . . , n} : b(j) = h Cancellative subtypes: (C1) max{|S|, |T|} ≥ 2 (C2) S = {i}, T = {j}, and (i, j) ∈ E Non-cancellative subtypes: (NC1) |S| + |T| = 1 (NC2) S = {i}, T = {j}, and (i, j) ∈ E
  • 62. Reduction to local estimates | |||| |||| |||| |||| C = dyadic squares in R2
  • 63. Reduction to local estimates | |||| |||| |||| |||| C = dyadic squares in R2 T = a finite convex tree of dyadic squares QT = root or tree-top of T L(T ) = leaves of T , squares that are not contained in T but their parents are
  • 64. Reduction to local estimates || |||| |||| |||| |||| Usual stopping time argument reduces to local forms: ΘT := Q∈T |λQ| |Q| |AQ|
  • 65. Reduction to local estimates || |||| |||| |||| |||| Usual stopping time argument reduces to local forms: ΘT := Q∈T |λQ| |Q| |AQ| AI×J (Fi,j )(i,j)∈E := (i,j)∈E Fi,j (xi , yj ) xi ∈I for each i∈S yj ∈J for each j∈T xi ∈I for each i∈Sc yj ∈J for each j∈Tc [f (x)]x∈I := 1 |I| R f (x)1I (x)dx f (x) x∈I := 1 |I| R f (x)hI (x)dx
  • 66. Paraproduct estimates ||| |||| |||| |||| |||| Bounds for cancellative paraproducts (a) λ ∞ := sup Q∈C |λQ| 1 (b) ΘT (Fi,j )(i,j)∈E λ ∞ |QT | (i,j)∈E max Q∈T ∪L(T ) F di,j i,j 1/di,j Q
  • 67. Paraproduct estimates ||| |||| |||| |||| |||| Bounds for cancellative paraproducts (a) λ ∞ := sup Q∈C |λQ| 1 (b) ΘT (Fi,j )(i,j)∈E λ ∞ |QT | (i,j)∈E max Q∈T ∪L(T ) F di,j i,j 1/di,j Q Bounds for non-cancellative paraproducts (a) λ bmo := sup Q0∈C 1 |Q0| Q∈C : Q⊆Q0 |Q||λQ|2 1/2 1 (b) ΘT (Fi,j )(i,j)∈E λ bmo |QT | (i,j)∈E max Q∈T ∪L(T ) F di,j i,j 1/di,j Q
  • 68. Bellman functions in multilinear setting |||| |||| |||| |||| |||| Bellman functions in harmonic analysis Invented by Burkholder (1980s) Developed by Nazarov, Treil, Volberg, etc. (1990s) We primarily keep the “induction on scales” idea
  • 69. Bellman functions in multilinear setting |||| |||| |||| |||| |||| Bellman functions in harmonic analysis Invented by Burkholder (1980s) Developed by Nazarov, Treil, Volberg, etc. (1990s) We primarily keep the “induction on scales” idea A broad class of interesting dyadic objects can be reduced to bounding expressions of the form ΛT (F1, . . . , F ) = Q∈T |Q| AQ(F1, . . . , F ) T = a finite convex tree of dyadic squares AQ(F1, . . . , F ) = some “scale-invariant” quantity depending on F1, . . . , F and Q ∈ T
  • 70. Calculus of finite differences |||| |||| |||| |||| |||| B = BQ(F1, . . . , F ) First order difference of B: B = BQ(F1, . . . , F ) BI×J := 1 4BIleft×Jleft + 1 4BIleft×Jright + 1 4BIright×Jleft + 1 4BIright×Jright − BI×J
  • 71. Calculus of finite differences |||| |||| |||| |||| |||| B = BQ(F1, . . . , F ) First order difference of B: B = BQ(F1, . . . , F ) BI×J := 1 4BIleft×Jleft + 1 4BIleft×Jright + 1 4BIright×Jleft + 1 4BIright×Jright − BI×J Examples: B B [F(x, y)]3 x y 3 [F(x, y)]x F(x, y) 2 x y [F(x, y)]2 x,y [ F(x, y) x ]2 y + [F(x, y)]x 2 y + F(x, y) 2 x,y [F(x, y)G(x , y)]2 y x,x F(x, y)G(x , y) 2 y x,x + [F(x, y)G(x , y)]2 y x,x + F(x, y)G(x , y) 2 y x,x
  • 72. Calculus of finite differences | |||| |||| |||| |||| |||| Suppose: |A| ≤ B, i.e. |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
  • 73. Calculus of finite differences | |||| |||| |||| |||| |||| Suppose: |A| ≤ B, i.e. |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) for all Q ∈ T and nonnegative bounded measurable F1, . . . , F |Q| |AQ(F1, . . . , F )| ≤ Q is a child of Q |Q| BQ (F1, . . . , F ) − |Q| BQ(F1, . . . , F )
  • 74. Calculus of finite differences | |||| |||| |||| |||| |||| Suppose: |A| ≤ B, i.e. |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) for all Q ∈ T and nonnegative bounded measurable F1, . . . , F |Q| |AQ(F1, . . . , F )| ≤ Q is a child of Q |Q| BQ (F1, . . . , F ) − |Q| BQ(F1, . . . , F ) |ΛT (F1, . . . , F )| ≤ Q∈L(T ) |Q| BQ(F1, . . . , F ) − |QT | BQT (F1, . . . , F )
  • 75. Calculus of finite differences | |||| |||| |||| |||| |||| Suppose: |A| ≤ B, i.e. |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) for all Q ∈ T and nonnegative bounded measurable F1, . . . , F |Q| |AQ(F1, . . . , F )| ≤ Q is a child of Q |Q| BQ (F1, . . . , F ) − |Q| BQ(F1, . . . , F ) |ΛT (F1, . . . , F )| ≤ Q∈L(T ) |Q| BQ(F1, . . . , F ) − |QT | BQT (F1, . . . , F ) B = a Bellman function for ΛT
  • 76. Paraproducts of subtype (C1) || |||| |||| |||| |||| |||| Split G into connected components G1, G2, . . . , Gk the terms of ΘT also split: AQ = A (1) Q A (2) Q . . . A (k) Q di,j = larger size of the two bipartition classes of the connected component containing an edge xi —yj
  • 77. Paraproducts of subtype (C1) || |||| |||| |||| |||| |||| Split G into connected components G1, G2, . . . , Gk the terms of ΘT also split: AQ = A (1) Q A (2) Q . . . A (k) Q di,j = larger size of the two bipartition classes of the connected component containing an edge xi —yj Strategy:
  • 78. Paraproducts of subtype (C1) || |||| |||| |||| |||| |||| Split G into connected components G1, G2, . . . , Gk the terms of ΘT also split: AQ = A (1) Q A (2) Q . . . A (k) Q di,j = larger size of the two bipartition classes of the connected component containing an edge xi —yj Strategy: Step-by-step construction of the Bellman function
  • 79. Paraproducts of subtype (C1) || |||| |||| |||| |||| |||| Split G into connected components G1, G2, . . . , Gk the terms of ΘT also split: AQ = A (1) Q A (2) Q . . . A (k) Q di,j = larger size of the two bipartition classes of the connected component containing an edge xi —yj Strategy: Step-by-step construction of the Bellman function Allow repetitions among the functions Fi,j
  • 80. Paraproducts of subtype (C1) || |||| |||| |||| |||| |||| Split G into connected components G1, G2, . . . , Gk the terms of ΘT also split: AQ = A (1) Q A (2) Q . . . A (k) Q di,j = larger size of the two bipartition classes of the connected component containing an edge xi —yj Strategy: Step-by-step construction of the Bellman function Allow repetitions among the functions Fi,j Induction on the structure determined by (G, S, T) and the repeating functions
  • 81. Paraproducts of subtype (C1) ||| |||| |||| |||| |||| |||| (1, 1; 1, 1, 1, 1) δ, δ−1 // δ, δ−1 (2, 0; 1, 1, 1, 1) δ, δ−1 (1, 1; 2, 1, 1, 0) δ, δ−1 // δ, δ−1 δ−1 '' δ (2, 0; 2, 1, 1, 0) δ, δ−1 δ−1 ww δ || (1, 1; 2, 2, 0, 0) δ, δ−1 // δ, δ−1 (2, 0; 2, 2, 0, 0) δ, δ−1 (1, 1; 3, 1, 0, 0) δ, δ−1 // δ−1 δ YY (2, 0; 3, 1, 0, 0) δ−1 δ EE (1, 1; 4, 0, 0, 0) δ, δ−1 // (2, 0; 4, 0, 0, 0)
  • 82. Non-cancellative paraproducts |||| |||| |||| |||| |||| |||| ΘT = Q∈T |λQ||Q||AQ| ≤ Q∈T |Q||λQ|2 1/2 Q∈T |Q| AQ 2 1/2
  • 83. Non-cancellative paraproducts |||| |||| |||| |||| |||| |||| ΘT = Q∈T |λQ||Q||AQ| ≤ Q∈T |Q||λQ|2 1/2 Q∈T |Q| AQ 2 1/2 On the one hand, Q∈T |Q||λQ|2 ≤ Q∈C : Q⊆QT |Q||λQ|2 ≤ λ 2 bmo|QT | = λ 2 bmo
  • 84. Non-cancellative paraproducts |||| |||| |||| |||| |||| |||| ΘT = Q∈T |λQ||Q||AQ| ≤ Q∈T |Q||λQ|2 1/2 Q∈T |Q| AQ 2 1/2 On the one hand, Q∈T |Q||λQ|2 ≤ Q∈C : Q⊆QT |Q||λQ|2 ≤ λ 2 bmo|QT | = λ 2 bmo On the other hand, ΘT := Q∈T |Q| AQ 2 falls into Class (C1) simply doubles all connected components of G
  • 85. Counterexample |||| |||| |||| |||| |||| |||| When m = 1: Λ(F1,1, . . . , F1,n) = R Rn K(x1, y1, . . . , yn) n j=1 F1,j (x1, yj ) dy1 . . . dyn dx1
  • 86. Counterexample |||| |||| |||| |||| |||| |||| When m = 1: Λ(F1,1, . . . , F1,n) = R Rn K(x1, y1, . . . , yn) n j=1 F1,j (x1, yj ) dy1 . . . dyn dx1 The theorems fail for: K(x1, y1, . . . , yn) := I×J∈C λI×J |I|1−n hI (x1)1J(y1) . . . 1J(yn) λI×J := 1 I = [0, 2−k), J ⊆ [0, 1), k ∈ {0, 1, . . . , r − 1} 0 otherwise
  • 87. Currently open problems | |||| |||| |||| |||| |||| |||| Further directions:
  • 88. Currently open problems | |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of continuous C-Z kernels K
  • 89. Currently open problems | |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of continuous C-Z kernels K Forms corresponding to non-bipartite graphs (odd cycles)
  • 90. Currently open problems | |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of continuous C-Z kernels K Forms corresponding to non-bipartite graphs (odd cycles) More singular kernels K
  • 91. Thank you! || |||| |||| |||| |||| |||| ||||