1) The document summarizes recent work on ergodic averages and flows for commuting transformations. It discusses convergence results for single and double linear ergodic averages in L2 and almost everywhere, as well as providing norm estimates to quantify the rate of convergence.
2) It also considers double polynomial ergodic averages and provides proofs for almost everywhere convergence in the continuous-time setting. Open problems remain for the discrete-time case.
3) An ergodic-martingale paraproduct is introduced, motivated by an open question from 1950. Convergence in Lp norm is shown, while almost everywhere convergence remains open.