SlideShare a Scribd company logo
1 of 19
Plane of the Open Loop 
Transfer Function 
B(0) 
B(iw) 
-B(iw) 
()Bi 
Professor Walter W. Olson 
-1 
Real 
Imaginary 
Stable 
Department of Mechanical, Industrial and Manufacturing Engineering 
University of Toledo 
-1 is called the 
critical point 
Unstable 
Loop Transfer Function
Outline of Today’s Lecture 
 Review 
 Partial Fraction Expansion 
 real distinct roots 
 repeated roots 
 complex conjugate roots 
 Open Loop System 
 Nyquist Plot 
 Simple Nyquist Theorem 
 Nyquist Gain Scaling 
 Conditional Stability 
 Full Nyquist Theorem
Partial Fraction Expansion 
 When using Partial Fraction Expansion, our 
objective is to turn the Transfer Function 
2 
m k 
i i i i ni ni 
  
  
K s z s s 
(  ) (  2  
) 
  
1 1 
2 
r n q 
 w w 
 w w 
s s p s s 
(  ) (  2  
) 
i  1 i i  
1 
i ni ni 
G s 
( ) 
 
into a sum of fractions where the denominators 
are the factors of the denominator of the Transfer 
Function: 
K A ( s ) A ( s ) A ( s ) B ( s ) B ( s 
) 
n q 
1 2 1 
G s 
( ) ... ... 
        
2 2 
s s  p s  p s  p s   w s  w s   w s  
w 
2 2 
n n n q nq nq 
1 2 1 1 1 
r 
Then we use the linear property of Laplace 
Transforms and the relatively easy form to make 
the Inverse Transform.
Case 1: Real and Distinct Roots 
n 
i  
i 
 
Put the transfer function in the form of 
( ) ... 
n 
where the are called the residue at the pole 
and determined by 
  
... 
1 
( ) 
0 1 2 
1 2 
( ) 
G s 
( ) 
0 0 3 3 
n 
i i 
s 
G s 
s s p 
a a a a 
G s 
s s p s p s p 
a p 
a sG s a s p 
 
 
 
     
   
   
  
 
 
        
3 
1 
2 
1 1 
2 2 
( ) 
( ) ... 
n 
s p 
s p 
s p n n s p 
a s p G s 
a s p G s a s p G s 
  
  
   
Case 1: Real and Distinct Roots 
Example 
    
    
s s 
  
2 4 
1 5 
0 1 2 
( ) 
( ) 
1 5 
 2   4   1   5   5   1 
 
0 1 2 
      
2 2 2 2 
6 8 6 5 5 
0 1 2 
0 1 2 
1 2 1 
0 1 2 
1 2 2 
1 
0 0 
0.6 0.75 
6 5 6 
5 3.6 0.15 
5 8 1.6 
1.6 0.75 
( ) 
1 
G s 
s s s 
a a a 
G s 
s s s 
s s a s s a s s a s s 
s s a s s a s s a s s 
a a a 
a a a 
a a a 
a a a 
a a 
G s 
s s 
 
  
   
  
         
         
    
        
       
           
   
 
5 
0.15 
5 
s 
 
( ) 1.6 0.75 0.15 t t 
g t   e   
e 
Case 2: Complex Conjugate 
Roots 
2 2 
 
1 
2 
 
 
1 1 1 
... 
( ) 
... ( 2 ) 
We can either solve this using the method of matching coefficients 
which is usually more difficult or by a method similar to that 
previously used as follows: 
2 
q 
i i i i 
G s 
s s 
s s 
 w w 
 w w 
  
   
s s 
  
   w  w     w  w  
 
1 1 
1 1 1 1 1 1 1 1 
A ( s ) 
a a 
then the term 
  
s  s  s    s 
   
2  w w  w w  1  w w  
1 
proceeding as before 
i i i 
    
    
2 2 
2 
1 1 1 1 
2 
1 1 1 1 
1 2 
2 2 2 2 
1 1 1 1 1 1 1 1 
2 
1 
1 1 1 1 1 1 
2 
1 
s 
2 1 1 1 1 s 
1 
a s G s 
a s G s 
 w w  
 w w  
 w w  
 w w  
   
   
    
   
Case 3: Repeated Roots 
n n 
n n 
i i i 
G s 
n i s p 
i 
  
n i 
  
1 1 
1 
1 
2 
2 2 
3 
3 
... 
( ) 
n 
...( ) ... 
i 
Form the equation with the repeated terms expanded as 
( ) ... ... ... 
( ) ( ) 
n 
( ) ( ) 
n 
( ) 
( ) 
s p 
n 
n i 
s p 
n 
s p 
a a a 
G s 
s p s p s p 
a s p G s 
d 
a s p G s 
ds 
d 
a s p G s 
ds 
d 
a 
ds 
 
 
 
 
 
 
 
 
 
 
     
   
  
    
    
n 
   
   
  
3 
1 
    
1 1 
( ) 
... 
i 
( ) 
s p 
n 
n 
n i 
s p 
s p G s 
d 
a s p G s 
ds 
 
 
 

Heaviside Expansion 
  
  
  
  
1 
1 
Heaviside Expansion Formula: L 
where are the distinct roots of ( ) 
15( 2) 
2 
Example: ( ) 
( 2 25) 
Roots of the denominator are 0, 1 4.899, and 
i 
n 
i b t 
i 
i 
i 
A s A b 
e 
B s d B b 
ds 
b n B s 
s 
G s 
s s s 
i 
 
 
  
    
       
    
  
 
 
  
  
 
  
   
2 2 2 
 
  
15. 73.485i 15. 73.485i 
48.0 
    
3 
    
 
1 
2 
1 
0 1 4.899 1 4.899 
1 4.899 
1 4.899 
( 2 25) 2 2 3 4 25 
15( 2) 
L 
3 4 25 
30 
( ) 
25 
( 
0 9.798i 48.00 9.798i 
) 1.2 0.6 1.408i 
i 
i 
s t 
i s s 
t i t i t 
i 
i 
d 
B s s s s s s s 
ds 
s 
G s e 
s s 
g t e e e 
g t e 
    
  
  
        
   
  
  
 
 
    
   
  
   
  
   1 4.899 0.6 1.408i t i t e     
Loop Nomenclature 
Reference 
Input 
R(s) 
+- 
Output 
y(s) 
Error 
signal 
E(s) 
Open Loop 
Signal 
B(s) 
Plant 
G(s) 
Disturbance/Noise 
Sensor 
H(s) 
Prefilter 
F(s) 
Controller 
C(s) 
+- 
The plant is that which is to be controlled with transfer function G(s) 
The prefilter and the controller define the control laws of the system. 
The open loop signal is the signal that results from the actions of the 
prefilter, the controller, the plant and the sensor and has the transfer function 
F(s)C(s)G(s)H(s) 
The closed loop signal is the output of the system and has the transfer function 
F ( s ) C ( s ) G ( s 
) 
 C s G s H s 
1 ( ) ( ) ( )
Closed Loop System 
++ 
Output 
y(s) 
Error 
signal 
E(s) 
Open Loop 
Signal 
B(s) 
Plant 
P(s) 
Controller 
C(s) 
Input 
r(s) 
The closed loop transfer function is 
    
    
  
  
-1 
  
  
n s n s 
y s C s P s d s d s n s n s 
    
  
  
  
  
    
        
( ) 
  
            
( ) 
( ) 1 
1 
The characteristic polynomial is 
( ) 1 
For stability, the roots of ( ) m 
c p 
c p c p 
yr 
c p c p c p 
c p 
c p c p 
G s 
r s C s P s n s n s d s d s n s n s 
d s d s 
s C s P s d s d s n s n s 
s 
 
 
 
    
ust have negative real parts 
While we can check for stability, it does not give us design guidance
Note: Your book uses L(s) rather than B(s) 
To avoid confusion with the Laplace transform, I will use B(s) 
Open Loop System 
++ 
Output 
y(s) 
Error 
signal 
E(s) 
Open Loop 
Signal 
B(s) 
Plant 
P(s) 
Controller 
C(s) 
Input 
r(s) 
Sensor 
b s n s n s 
    
  
  
  
  
( ) 
The open loop transfer function is ( ) 
   
( ) 
c p 
c p 
B s C s P s 
r s d s d s 
-1 
If in the closed loop, the input r(s) were sinusoidal and if the signal were 
to continue in the same form and magnitude after the signal were disconnected, 
it would be necessary for 
n  s  
n  s 
 
( w )  c p 
  
1 0   
  c p 
B i 
d s d s
Open Loop System 
Nyquist Plot Error 
signal 
E(s) 
++ 
Output 
y(s) 
Open Loop 
Signal 
B(s) 
Plant 
P(s) 
Controller 
C(s) 
Input 
r(s) 
Sensor 
-1 
n  s  
n  s 
 
( w )  c p   
1 
0   
  c p 
B i 
d s d s 
-1 
Real 
Imaginary 
Plane of the Open Loop 
Transfer Function 
B(0) 
B(iw) 
B(i) 
-1 is called the 
critical point 
B(-iw)
Simple Nyquist TheoremError 
signal 
E(s) 
++ 
Output 
y(s) 
Open Loop 
Signal 
B(s) 
Plant 
P(s) 
Controller 
C(s) 
Input 
r(s) 
Sensor 
-1 
-1 
Plane of the Open Loop 
Transfer Function 
Real 
Imaginary 
B(0) 
B(iw) 
-B(iw) 
()Bi 
-1 is called the 
critical point 
Stable 
Unstable 
Simple Nyquist Theorem: 
For the loop transfer function, B(iw), if B(iw) has no poles in the right 
hand side, expect for simple poles on the imaginary axis, then the 
system is stable if there are no encirclements of the critical point -1.
Example 
1 
 Plot the Nyquist plot for ( ) 
 2 
 2 2 
B s 
s s s 
 
  
1 
   2 
B i 
( ) 
i w i w w 
i 
  
2 2 
w 
 
B (0) 
  
i 
B (1 i )   0.4  
0.2 
i 
B (  1 i )   0.4  
0.2 
i 
B (2 i )   0.1  
0.05 
i 
B (  2 i )   0.1  
0.05 
i 
-1 
Im 
Re 
Stable
Example 
 Plot the Nyquist plot for 
10 
  
( ) 
2 2 
B s 
s s s 
 
  
10 20 20 10 
   
   
  
  
2 4 
( ) 
2 2 4 
(0) 
(1 ) 4 2 
( 1 ) 4 2 
(2 ) 1 0.5 
( 2 ) 1 0.5 
(4 ) 0.077 0.135 
( 4 ) 0.077 135 
i 
B i 
i i i 
B i 
B i i 
B i i 
B i i 
B i i 
B i i 
B i i 
w 
w 
w w w w 
   
  
   
    
   
    
   
   
-1 
Im 
Re 
Unstable
Nyquist Gain Scaling 
 The form of the Nyquist plot is scaled by the 
system gain 
K 
  
B s 
( ) 
s s s 
  
2 2 
 
 Show with Sisotool
Conditional Stabilty 
 While most system increase stability by 
decreasing gain, some can be stabilized by 
increasing gain 
 Show with Sisotool 
2 
K s s 
(0.25 0.12 1) 
  
 2 
 
( ) 
1.69 1.09 1 
B s 
s s s 
 
 
Full Nyquist Theorem 
 Assume that the transfer function B(iw) with P 
poles has been plotted as a Nyquist plot. Let N be 
the number of clockwise encirclements of -1 by 
B(iw) minus the counterclockwise encirclements 
of -1 by B(iw)Then the closed loop system has 
Z=N+P poles in the right half plane. 
 Show with Sisotool 
K s i s i 
( 5 2 )( 5 2 ) 
    
        
( ) 
.5 2 .5 2 2 6 2 6 
B s 
s s i s i s i s i 
 
       
Summary 
 Open Loop System 
 Nyquist Plot 
 Simple Nyquist Theorem 
 Nyquist Gain Scaling 
 Conditional Stability 
 Full Nyquist Theorem 
-1 
Next Class: Stability Margins 
Im 
Re 
Unstable

More Related Content

What's hot

Effects of poles and zeros affect control system
Effects of poles and zeros affect control systemEffects of poles and zeros affect control system
Effects of poles and zeros affect control system
Gopinath S
 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteria
Aleksandar Micic
 
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond Brunkow
 

What's hot (20)

Nyquist stability criterion
Nyquist stability criterionNyquist stability criterion
Nyquist stability criterion
 
Effects of poles and zeros affect control system
Effects of poles and zeros affect control systemEffects of poles and zeros affect control system
Effects of poles and zeros affect control system
 
Modern control system
Modern control systemModern control system
Modern control system
 
[BTL] Kiểm tra tính ổn định của hệ thống liên tục
[BTL] Kiểm tra tính ổn định của hệ thống liên tục[BTL] Kiểm tra tính ổn định của hệ thống liên tục
[BTL] Kiểm tra tính ổn định của hệ thống liên tục
 
PID controller
PID controllerPID controller
PID controller
 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteria
 
BIBO stability.pptx
BIBO stability.pptxBIBO stability.pptx
BIBO stability.pptx
 
Bien doi lapalce
Bien doi lapalceBien doi lapalce
Bien doi lapalce
 
Conversion of transfer function to canonical state variable models
Conversion of transfer function to canonical state variable modelsConversion of transfer function to canonical state variable models
Conversion of transfer function to canonical state variable models
 
control systems.pdf
control systems.pdfcontrol systems.pdf
control systems.pdf
 
Control system stability routh hurwitz criterion
Control system stability routh hurwitz criterionControl system stability routh hurwitz criterion
Control system stability routh hurwitz criterion
 
Block Reduction Method
Block Reduction MethodBlock Reduction Method
Block Reduction Method
 
Ch.02 modeling in frequency domain
Ch.02 modeling in frequency domainCh.02 modeling in frequency domain
Ch.02 modeling in frequency domain
 
Modern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsModern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI Systems
 
Nyquist Stability Criterion
Nyquist  Stability CriterionNyquist  Stability Criterion
Nyquist Stability Criterion
 
Block diagram Reduction.ppt
Block diagram Reduction.pptBlock diagram Reduction.ppt
Block diagram Reduction.ppt
 
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15
 
PID Tuner: A practical guide
PID Tuner: A practical guidePID Tuner: A practical guide
PID Tuner: A practical guide
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
 
Lag lead compensator design in frequency domain 7th lecture
Lag lead compensator design in frequency domain  7th lectureLag lead compensator design in frequency domain  7th lecture
Lag lead compensator design in frequency domain 7th lecture
 

Similar to Lecture 23 loop transfer function

State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...
Anax Fotopoulos
 
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
Anax_Fotopoulos
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
lipsa91
 

Similar to Lecture 23 loop transfer function (20)

17330361.ppt
17330361.ppt17330361.ppt
17330361.ppt
 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptx
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...
 
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
 
Discrete control2
Discrete control2Discrete control2
Discrete control2
 
2706264.ppt
2706264.ppt2706264.ppt
2706264.ppt
 
Discrete control
Discrete controlDiscrete control
Discrete control
 
Time-Response Lecture
Time-Response LectureTime-Response Lecture
Time-Response Lecture
 
alt klausur
alt klausuralt klausur
alt klausur
 
1619494.ppt
1619494.ppt1619494.ppt
1619494.ppt
 
Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdf
 
rahul.ppt
rahul.pptrahul.ppt
rahul.ppt
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Ssmboost
SsmboostSsmboost
Ssmboost
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
 
Block diagrams.ppt
Block diagrams.pptBlock diagrams.ppt
Block diagrams.ppt
 
fcs-0202.pptx
fcs-0202.pptxfcs-0202.pptx
fcs-0202.pptx
 
time response analysis
time response analysistime response analysis
time response analysis
 

Recently uploaded

Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
AlinaDevecerski
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Dipal Arora
 

Recently uploaded (20)

Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
Call Girls Kochi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kochi Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kochi Just Call 8250077686 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 

Lecture 23 loop transfer function

  • 1. Plane of the Open Loop Transfer Function B(0) B(iw) -B(iw) ()Bi Professor Walter W. Olson -1 Real Imaginary Stable Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo -1 is called the critical point Unstable Loop Transfer Function
  • 2. Outline of Today’s Lecture  Review  Partial Fraction Expansion  real distinct roots  repeated roots  complex conjugate roots  Open Loop System  Nyquist Plot  Simple Nyquist Theorem  Nyquist Gain Scaling  Conditional Stability  Full Nyquist Theorem
  • 3. Partial Fraction Expansion  When using Partial Fraction Expansion, our objective is to turn the Transfer Function 2 m k i i i i ni ni     K s z s s (  ) (  2  )   1 1 2 r n q  w w  w w s s p s s (  ) (  2  ) i  1 i i  1 i ni ni G s ( )  into a sum of fractions where the denominators are the factors of the denominator of the Transfer Function: K A ( s ) A ( s ) A ( s ) B ( s ) B ( s ) n q 1 2 1 G s ( ) ... ...         2 2 s s  p s  p s  p s   w s  w s   w s  w 2 2 n n n q nq nq 1 2 1 1 1 r Then we use the linear property of Laplace Transforms and the relatively easy form to make the Inverse Transform.
  • 4. Case 1: Real and Distinct Roots n i  i  Put the transfer function in the form of ( ) ... n where the are called the residue at the pole and determined by   ... 1 ( ) 0 1 2 1 2 ( ) G s ( ) 0 0 3 3 n i i s G s s s p a a a a G s s s p s p s p a p a sG s a s p                           3 1 2 1 1 2 2 ( ) ( ) ... n s p s p s p n n s p a s p G s a s p G s a s p G s        
  • 5. Case 1: Real and Distinct Roots Example         s s   2 4 1 5 0 1 2 ( ) ( ) 1 5  2   4   1   5   5   1  0 1 2       2 2 2 2 6 8 6 5 5 0 1 2 0 1 2 1 2 1 0 1 2 1 2 2 1 0 0 0.6 0.75 6 5 6 5 3.6 0.15 5 8 1.6 1.6 0.75 ( ) 1 G s s s s a a a G s s s s s s a s s a s s a s s s s a s s a s s a s s a a a a a a a a a a a a a a G s s s                                                             5 0.15 5 s  ( ) 1.6 0.75 0.15 t t g t   e   e 
  • 6. Case 2: Complex Conjugate Roots 2 2  1 2   1 1 1 ... ( ) ... ( 2 ) We can either solve this using the method of matching coefficients which is usually more difficult or by a method similar to that previously used as follows: 2 q i i i i G s s s s s  w w  w w      s s      w  w     w  w   1 1 1 1 1 1 1 1 1 1 A ( s ) a a then the term   s  s  s    s    2  w w  w w  1  w w  1 proceeding as before i i i         2 2 2 1 1 1 1 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 s 2 1 1 1 1 s 1 a s G s a s G s  w w   w w   w w   w w               
  • 7. Case 3: Repeated Roots n n n n i i i G s n i s p i   n i   1 1 1 1 2 2 2 3 3 ... ( ) n ...( ) ... i Form the equation with the repeated terms expanded as ( ) ... ... ... ( ) ( ) n ( ) ( ) n ( ) ( ) s p n n i s p n s p a a a G s s p s p s p a s p G s d a s p G s ds d a s p G s ds d a ds                             n         3 1     1 1 ( ) ... i ( ) s p n n n i s p s p G s d a s p G s ds    
  • 8. Heaviside Expansion         1 1 Heaviside Expansion Formula: L where are the distinct roots of ( ) 15( 2) 2 Example: ( ) ( 2 25) Roots of the denominator are 0, 1 4.899, and i n i b t i i i A s A b e B s d B b ds b n B s s G s s s s i                                  2 2 2    15. 73.485i 15. 73.485i 48.0     3      1 2 1 0 1 4.899 1 4.899 1 4.899 1 4.899 ( 2 25) 2 2 3 4 25 15( 2) L 3 4 25 30 ( ) 25 ( 0 9.798i 48.00 9.798i ) 1.2 0.6 1.408i i i s t i s s t i t i t i i d B s s s s s s s ds s G s e s s g t e e e g t e                                           1 4.899 0.6 1.408i t i t e     
  • 9. Loop Nomenclature Reference Input R(s) +- Output y(s) Error signal E(s) Open Loop Signal B(s) Plant G(s) Disturbance/Noise Sensor H(s) Prefilter F(s) Controller C(s) +- The plant is that which is to be controlled with transfer function G(s) The prefilter and the controller define the control laws of the system. The open loop signal is the signal that results from the actions of the prefilter, the controller, the plant and the sensor and has the transfer function F(s)C(s)G(s)H(s) The closed loop signal is the output of the system and has the transfer function F ( s ) C ( s ) G ( s )  C s G s H s 1 ( ) ( ) ( )
  • 10. Closed Loop System ++ Output y(s) Error signal E(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) The closed loop transfer function is             -1     n s n s y s C s P s d s d s n s n s                         ( )               ( ) ( ) 1 1 The characteristic polynomial is ( ) 1 For stability, the roots of ( ) m c p c p c p yr c p c p c p c p c p c p G s r s C s P s n s n s d s d s n s n s d s d s s C s P s d s d s n s n s s        ust have negative real parts While we can check for stability, it does not give us design guidance
  • 11. Note: Your book uses L(s) rather than B(s) To avoid confusion with the Laplace transform, I will use B(s) Open Loop System ++ Output y(s) Error signal E(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor b s n s n s             ( ) The open loop transfer function is ( )    ( ) c p c p B s C s P s r s d s d s -1 If in the closed loop, the input r(s) were sinusoidal and if the signal were to continue in the same form and magnitude after the signal were disconnected, it would be necessary for n  s  n  s  ( w )  c p   1 0     c p B i d s d s
  • 12. Open Loop System Nyquist Plot Error signal E(s) ++ Output y(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor -1 n  s  n  s  ( w )  c p   1 0     c p B i d s d s -1 Real Imaginary Plane of the Open Loop Transfer Function B(0) B(iw) B(i) -1 is called the critical point B(-iw)
  • 13. Simple Nyquist TheoremError signal E(s) ++ Output y(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor -1 -1 Plane of the Open Loop Transfer Function Real Imaginary B(0) B(iw) -B(iw) ()Bi -1 is called the critical point Stable Unstable Simple Nyquist Theorem: For the loop transfer function, B(iw), if B(iw) has no poles in the right hand side, expect for simple poles on the imaginary axis, then the system is stable if there are no encirclements of the critical point -1.
  • 14. Example 1  Plot the Nyquist plot for ( )  2  2 2 B s s s s    1    2 B i ( ) i w i w w i   2 2 w  B (0)   i B (1 i )   0.4  0.2 i B (  1 i )   0.4  0.2 i B (2 i )   0.1  0.05 i B (  2 i )   0.1  0.05 i -1 Im Re Stable
  • 15. Example  Plot the Nyquist plot for 10   ( ) 2 2 B s s s s    10 20 20 10           2 4 ( ) 2 2 4 (0) (1 ) 4 2 ( 1 ) 4 2 (2 ) 1 0.5 ( 2 ) 1 0.5 (4 ) 0.077 0.135 ( 4 ) 0.077 135 i B i i i i B i B i i B i i B i i B i i B i i B i i w w w w w w                          -1 Im Re Unstable
  • 16. Nyquist Gain Scaling  The form of the Nyquist plot is scaled by the system gain K   B s ( ) s s s   2 2   Show with Sisotool
  • 17. Conditional Stabilty  While most system increase stability by decreasing gain, some can be stabilized by increasing gain  Show with Sisotool 2 K s s (0.25 0.12 1)    2  ( ) 1.69 1.09 1 B s s s s   
  • 18. Full Nyquist Theorem  Assume that the transfer function B(iw) with P poles has been plotted as a Nyquist plot. Let N be the number of clockwise encirclements of -1 by B(iw) minus the counterclockwise encirclements of -1 by B(iw)Then the closed loop system has Z=N+P poles in the right half plane.  Show with Sisotool K s i s i ( 5 2 )( 5 2 )             ( ) .5 2 .5 2 2 6 2 6 B s s s i s i s i s i         
  • 19. Summary  Open Loop System  Nyquist Plot  Simple Nyquist Theorem  Nyquist Gain Scaling  Conditional Stability  Full Nyquist Theorem -1 Next Class: Stability Margins Im Re Unstable