SMPK PENABUR GS
Lines
A. Position of line
 1    Horizontal line



 2    Vertical line     3     Curve line
SMPK PENABUR GS
Lines
B. Position of two lines
 1   Intersection lines : two lines that joining in a point
SMPK PENABUR GS
Lines
B. Position of two lines
     Perpendicular lines : two lines that joining in a point
 2
     and form 90 degree angle
SMPK PENABUR GS
Lines
B. Position of two lines
 3   Skew lines : two lines that not intersects and not parallel
SMPK PENABUR GS
Lines
B. Position of two lines
 4   Coincide lines : two lines that overlap ( match ) each other



                  a

                  b
SMPK PENABUR GS
Lines
B. Position of two lines
 4   Parallel lines : two lines not intersects and always have
     the same distance



                                         a


                                          b
SMPK PENABUR GS




    Chapter 3

Parallel Lines
Vocabulary
• Parallel Lines                          = garis sejajar
• Skew lines                    = garis berpotongan dan tidak sejajar
• Transversal lines             = garis yang memotong dua garis
                                  dititik yang berbeda
•   Interior angles             = sudut dalam
•   Exterior angles             = sudut luar
•   Corresponding angles        = sudut sehadap
•   Alternate interior angles   = sudut dalam berseberangan
•   Alternate exterior angles   = sudut luar berseberangan
•   Consecutive interior angles = sudut dalam sepihak
•   Consecutive exterior angles = sudut luar sepihak
•   Vertical angles             = sudut bertolak –belakang
Parallel Lines




Parallel lines in our daily life




                                      SMPK Penabur GS
Parallel Lines



Parallel lines in our daily life




                                      SMPK Penabur GS
Parallel Lines



Parallel lines in our daily life




                                      SMPK Penabur GS
Parallel Lines



Parallel lines in our daily life




                                        SMPK Penabur GS
Parallel Lines




                 SMPK Penabur GS
PARALLEL LINES
• Def: line that do not intersect and always have
  the same distance.
                                         B
• Illustration:
                                 A               D
          l
         m                           C

• Notation:       l || m       AB || CD


                                             SMPK Penabur GS
Transversal
Definition: A line that intersects two or more lines in a
plane at different points is called a transversal.

When a transversal t intersects line n and m, eight angles
are formed.
                              transversal
          m             1 2
                       3 4

                    5 6
           n       7 8
                                                 SMPK Penabur GS
k                                                              m




                                                                        l



                  EXTERIOR

16
         PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Angles and Parallel Lines
When a transversal intersects parallel lines, eight angles
are formed.


                                  transvers
                          1       al
                                  2
                      3       4

                  5 6
                 7 8

                                                 SMPK Penabur GS
Vertical Angles & Linear
Pair
Vertical Angles: Two angles that are opposite angles.
                 Vertical angles are congruent.
                1   4,  2   3,  5   8,  6   7

Linear Pair: Supplementary angles that form a line (sum =
             180)
1 & 2 , 2 & 4 , 4 &3, 3 & 1,
5 & 6, 6 & 8, 8 & 7, 7 & 5

                                12
                               3 4
                              56
                             7 8                            SMPK Penabur GS
Corresponding Angles
 Two angles that occupy corresponding positions.


                                 t
       Top Left                  Top Right      1   5
                                                2   6
                     1       2

                     3       4
                                                3   7
   Bottom Left                   Bottom Right


    Top Left     5       6 Top Right            4   8
                7        8
  Bottom Left                Bottom Right
                                                       SMPK Penabur GS
Corresponding Angles
If two parallel lines cut by transversal, so the
magnitude of corresponding angles are equal
                  t




                                             SMPK Penabur GS
Corresponding Angles
  Find the measures of the missing angles


                           t

                    145  35 


               145  ?




                                             SMPK Penabur GS
Alternate Interior Angles
 Two angles that lie between parallel lines on
 opposite sides of the transversal

                           t



                                  3   6
               1       2

               3       4
                                  4   5
           5 6
           7       8

                                              SMPK Penabur GS
Alternate Interior Angles
If two parallel lines cut by transversal, so the
magnitude of alternate interior angles are equal
                 t




                                           SMPK Penabur GS
Alternate Interior Angles
   Find the measures of the missing angles


                           t



                    82 
                    98  ? 82 




                                              SMPK Penabur GS
Alternate Exterior Angles
 Two angles that lie outside parallel lines on opposite
 sides of the transversal

                          t



                                  2   7
              1       2

              3       4
                                  1   8
           5 6
          7       8

                                              SMPK Penabur GS
Alternate Exterior Angles
If two parallel lines cut by transversal, so the
magnitude of alternate exterior angles are equal
                 t




                                          SMPK Penabur GS
Alternate Exterior Angles
  Find the measures of the missing angles


                            t

                    120 




                  60    ? 
                         120




                                             SMPK Penabur GS
Consecutive ( Allied ) Interior Angles
 Two angles that lie between parallel lines on the
  same sides of the transversal

                           t



                                  3 +5 = 1800
               1       2

               3       4
                                  4 +6 = 1800
           5 6
           7       8

                                              SMPK Penabur GS
Consecutive (Allied) Interior Angles
If two parallel lines cut by transversal, then alternate
interior angles are supplementary
                  t




                                    +        = 1800




                                              SMPK Penabur GS
Consecutive ( Allied ) Interior Angles
    Find the measures of the missing angles


                           t


                                     1800 – 1350 = 450
                          135 

                         ? 45 




                                               SMPK Penabur GS
Consecutive Exterior Angles
 Two angles that lie outside parallel lines on the same
 sides of the transversal.

                          t



                              1 +  7 = 1800
              1       2

              3       4
                              2 +  8 = 1800
           5 6
          7       8

                                              SMPK Penabur GS
Consecutive (Allied) Exterior Angles
If two parallel lines cut by transversal, then alternate
exterior angles are supplementary
                  t




                                    +        = 1800




                                              SMPK Penabur GS
Consecutive Exterior Angles
  Find the measures of the missing angles


                            t

                    117           1800 – 1170 = 630



                63  ?
Exercise
Find the value of angles number 1 to 7 !




        4       5   1       570
    6       7       2   3
Parallel Lines
Part II: Equations


                SMPK Penabur GS
Alternate Exterior Angles
• Name the angle relationship
• Are they congruent or supplementary?      
• Find the value of x
                t
                              5x = 125
        125 
                               5    5
                               x = 25
            5x 

                                     SMPK Penabur GS
Corresponding Angles
• Name the angle relationship
• Are they congruent or supplementary?      
• Find the value of x
              t

                           2x + 1 = 151
            2x + 1            -1     -1
                               2x = 150
           151                 2    2
                                x = 75
                                          SMPK Penabur GS
Consecutive Interior Angles
• Name the angle relationship
• Are they congruent or supplementary?      supp
• Find the value of x
               t
                     7x + 15 + 81 = 180
                          7x + 96 = 180
        81                   - 96 - 96
     7x + 15                    7x = 84
                                 7   7
                                 x = 12
                                         SMPK Penabur GS
Alternate Interior Angles
• Name the angle relationship
• Are they congruent or supplementary?         
• Find the value of x
                     t

                           2x + 20 = 3x
                3x
                         - 2x      - 2x
      2x + 20                  20 = x

                                        SMPK Penabur GS
Find the value for X:




                                  7X + 30

            15X - 18




Both angles are ALTERNATE EXTERIOR and the lines are parallel, so the angles are equal

                              7X + 30 = 15X -18
                                  - 30       -30
                                  7X = 15X - 48
                                -15X -15X
                                   -8X= - 48
                                    -8 -8

                                    X=6
Find the value for X:




    14X + 6


                                8X + 54




Both angles are ALTERNATE INTERIOR and the lines are parallel, so the angles
are equal
                     14X + 6 = 8X + 54
                         -6          -6
                            14X = 8X + 48
                            -8X -8X
                            6X = 48
                            6     6

                             X=8
Find the value for X:




                              9X + 58
        16X + 9



Both angles are CORRESPONDING and the lines are parallel, so the angles
are equal
                   16X + 9 = 9X +
                   58 - 9         -
                       9
                      16X = 9X +
                      49
                      -9X -9X
                           7X = 49
                           7
                           7
                            X=7
Find the value for X:


                               Both angles are CONSECUTIVE INTERIOR
       3X + 17                 ANGLES, so they are SUPPLEMENTARY:

                                (3X + 17) + (17X + 23) = 180

                                   3X + 17X + 17 + 23 = 180
                    17X + 23
                                             20X + 40 = 180
                                                   -40 -40
                                                   20X = 140
                                                    20 20

                                                      X=7
Find the value for X and Z:



           8X + 26                     Z

                                   12X –   =12(1 ) -
                                   14      = 120 - 14
                                           14 0
                                           = 106°



           Both angles are ALTERNATE EXTERIOR :

                 8X + 26 = 12X -14
                    - 26       -26
                       8X = 12X - 40          Angles form a LINEAR PAIR:
                     -12X -12X
                                               Z + 106° = 180°
                       -4X= - 40                  -106   -
                        -4 -                   106
                                               Z = 74
                        4
                         X = 10
Find the value for Y and Z in the figure below:




                         5Z + 13
                     Y                                These are
                                                      complementary:
                                                       Y + 63° = 90°
                                                          -63 -63
                        93 – 3Z                             Y = 27°
                      = 93 – 3( )
                              10
                      = 93 -
                      =
                      30
                      63°               Both angles are ALTERNATE INTERIOR :

                                              5Z + 13 = 93 – 3Z
                                                  - 13 -13
                                                    5Z = -3Z + 80
                                                  + 3Z + 3Z
                                                  8Z = 80
                                                  8     8

                                                    Z = 10
Find the value for X and Y in the figure below:




                6Y +      = 6( 3 ) + 15
              X 15        = 18 + 15               These are
                          =                       complementary:
                                                   X + 33° = 90°
                          33°                         -33 -33

                75 –                                X = 57°
                14Y

          Both angles are ALTERNATE INTERIOR :

                6Y + 15 = 75 – 14Y
                   - 15 -15
                    6Y = -14Y
                    +60
                 + 14Y + 14Y
                       20Y = 60
                       20 20

                       Y=3
ANGLE SUM
    THEOREM:                     B

                              87°



         35°                         58°
A                                           C

    m   A + m B + m C = 180°
          35° + 87° + 58° = 180°
The sum of the interior angles of a triangle is always
180°
Find all the unknown angles in the figure
below:
                               65°
                                                     1. Vertical Angles
                         115°
                                   115°              2. Linear pair:
                      65°    65°
                                                      180°-103° = 77°
                 115° 115°
                                                      180°-65°= 115°
             103° 65°                                3. Corresponding Angles
         77°     77°
                     38°                             4. Vertical Angles
              103°        142°
                     142°          38°               5. Linear Pair:
                           38°
                                          142°            180°-65°= 115°
                                   142°
                                          38°        6. Interior Angle Sum in
                                                     triangle is 180°:
                                                     180°-77°-65° = 38°
                                7. Vertical Angles
                                8. Corresponding Angles
                                9. Linear Pair
                                180°-38°= 142°                              48
Find all the unknown angles in the figure
below:
                               85°
                                                     1. Vertical Angles
                         95°
                                     95°             2. Linear pair:
                       85°     85°
                                                      180°-110° = 70°
                 95°    95°                           180°-85°= 95°
             110° 85°                                3. Corresponding Angles
         70°     70°
                     25°                             4. Vertical Angles
              110°        155°
                     155°            25°             5. Linear Pair:
                           25°
                                            155°          180°-85°= 95°
                                     155°
                                            25°      6. Interior Angle Sum in
                                                     triangle is 180°:
                                                     180°-70°-85° = 25°
                                7. Vertical Angles
                                8. Corresponding Angles
                                9. Linear Pair
                                180°-25°= 155°
Find the value for X, Y and Z in the figure below:



                                                     Alternate Exterior Angles:
                                     Z                 Z = 145°



                            2X + 5

                      5Y + 5
                145
                °
Find the value for X, Y and Z in the figure below:


                                                        Alternate Exterior Angles:
                                    Z                     Z = 145°

                                                     Linear Pair and supplementary:
                           2X + 5
                                                        145° + (5Y + 5)° =
                     5Y + 5                             180° 150 + 5Y = 180
               145                                            -150        -
               °                                              150
                                                                     5Y = 30
                                                                     5     5

                                                                      Y=6
Find the value for X, Y and Z in the figure below:



                                                        Alternate Exterior Angles:
                                      Z                   Z = 145°

                                                     Linear Pair and supplementary:
                             2X + 5
                                                        145° + (5Y + 5)° =
                       5Y + 5                           180° 150 + 5Y = 180
                 145                                          -150        -
                 °                                            150
                                                                     5Y = 30
                                                                     5     5
                                Corresponding angles:
                                                                      Y=6
                                  2X + 5 = 145°
                                      -5    -5
                                      2X = 140
                                      2      2
                                          X = 70
Find the value for R, S and T in the figure below:



                                                     Alternate Exterior Angles:
                                  T                    T = 140°



                           2R –
                           15
                     4S – 20
               140
               °
Find the value for R, S and T in the figure below:


                                                        Alternate Exterior Angles:
                                     T                    T = 140°

                                                     Linear Pair and supplementary:
                             2R –
                                                        140° + (4S – 20 )° =
                             15
                       4S – 20                          180°    120 + 4S = 180
                 140                                           -120         -
                 °                                             120
                                                                      4S = 60
                                                                      4     4

                                                                       S = 15
Find the value for R, S and T in the figure
below:

                                                        Alternate Exterior Angles:
                                    T                     Z = 140°

                                                 Linear Pair and supplementary:
                             2R –
                                                        140° + (4S – 20 )° = 180°
                             15
                       4S – 20                                  120 + 4S = 180
                 140                                           -120        -
                 °                                             120
                                                                      4S = 60
                                                                      4     4
                                Corresponding angles:
                                                                        S = 15
                                 2R – 15 =
                                 140°+15
                                     +15
                                     2R =
                                      2
                                     155   2
                                        R=
                                        77.5
Thank you for
your attention
 God Bless You

Chapter 9 PARALLEL LINES SMPK PENABUR GADING SERPONG

  • 1.
    SMPK PENABUR GS Lines A.Position of line 1 Horizontal line 2 Vertical line 3 Curve line
  • 2.
    SMPK PENABUR GS Lines B.Position of two lines 1 Intersection lines : two lines that joining in a point
  • 3.
    SMPK PENABUR GS Lines B.Position of two lines Perpendicular lines : two lines that joining in a point 2 and form 90 degree angle
  • 4.
    SMPK PENABUR GS Lines B.Position of two lines 3 Skew lines : two lines that not intersects and not parallel
  • 5.
    SMPK PENABUR GS Lines B.Position of two lines 4 Coincide lines : two lines that overlap ( match ) each other a b
  • 6.
    SMPK PENABUR GS Lines B.Position of two lines 4 Parallel lines : two lines not intersects and always have the same distance a b
  • 7.
    SMPK PENABUR GS Chapter 3 Parallel Lines
  • 8.
    Vocabulary • Parallel Lines = garis sejajar • Skew lines = garis berpotongan dan tidak sejajar • Transversal lines = garis yang memotong dua garis dititik yang berbeda • Interior angles = sudut dalam • Exterior angles = sudut luar • Corresponding angles = sudut sehadap • Alternate interior angles = sudut dalam berseberangan • Alternate exterior angles = sudut luar berseberangan • Consecutive interior angles = sudut dalam sepihak • Consecutive exterior angles = sudut luar sepihak • Vertical angles = sudut bertolak –belakang
  • 9.
    Parallel Lines Parallel linesin our daily life SMPK Penabur GS
  • 10.
    Parallel Lines Parallel linesin our daily life SMPK Penabur GS
  • 11.
    Parallel Lines Parallel linesin our daily life SMPK Penabur GS
  • 12.
    Parallel Lines Parallel linesin our daily life SMPK Penabur GS
  • 13.
    Parallel Lines SMPK Penabur GS
  • 14.
    PARALLEL LINES • Def:line that do not intersect and always have the same distance. B • Illustration: A D l m C • Notation: l || m AB || CD SMPK Penabur GS
  • 15.
    Transversal Definition: A linethat intersects two or more lines in a plane at different points is called a transversal. When a transversal t intersects line n and m, eight angles are formed. transversal m 1 2 3 4 5 6 n 7 8 SMPK Penabur GS
  • 16.
    k m l EXTERIOR 16 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 17.
    Angles and ParallelLines When a transversal intersects parallel lines, eight angles are formed. transvers 1 al 2 3 4 5 6 7 8 SMPK Penabur GS
  • 18.
    Vertical Angles &Linear Pair Vertical Angles: Two angles that are opposite angles. Vertical angles are congruent.  1   4,  2   3,  5   8,  6   7 Linear Pair: Supplementary angles that form a line (sum = 180) 1 & 2 , 2 & 4 , 4 &3, 3 & 1, 5 & 6, 6 & 8, 8 & 7, 7 & 5 12 3 4 56 7 8 SMPK Penabur GS
  • 19.
    Corresponding Angles  Twoangles that occupy corresponding positions. t Top Left Top Right 1   5 2   6 1 2 3 4 3   7 Bottom Left Bottom Right Top Left 5 6 Top Right 4   8 7 8 Bottom Left Bottom Right SMPK Penabur GS
  • 20.
    Corresponding Angles If twoparallel lines cut by transversal, so the magnitude of corresponding angles are equal t SMPK Penabur GS
  • 21.
    Corresponding Angles Find the measures of the missing angles t 145  35  145  ? SMPK Penabur GS
  • 22.
    Alternate Interior Angles Two angles that lie between parallel lines on opposite sides of the transversal t 3   6 1 2 3 4 4   5 5 6 7 8 SMPK Penabur GS
  • 23.
    Alternate Interior Angles Iftwo parallel lines cut by transversal, so the magnitude of alternate interior angles are equal t SMPK Penabur GS
  • 24.
    Alternate Interior Angles  Find the measures of the missing angles t 82  98  ? 82  SMPK Penabur GS
  • 25.
    Alternate Exterior Angles Two angles that lie outside parallel lines on opposite sides of the transversal t 2   7 1 2 3 4 1   8 5 6 7 8 SMPK Penabur GS
  • 26.
    Alternate Exterior Angles Iftwo parallel lines cut by transversal, so the magnitude of alternate exterior angles are equal t SMPK Penabur GS
  • 27.
    Alternate Exterior Angles  Find the measures of the missing angles t 120  60  ?  120 SMPK Penabur GS
  • 28.
    Consecutive ( Allied) Interior Angles  Two angles that lie between parallel lines on the same sides of the transversal t 3 +5 = 1800 1 2 3 4 4 +6 = 1800 5 6 7 8 SMPK Penabur GS
  • 29.
    Consecutive (Allied) InteriorAngles If two parallel lines cut by transversal, then alternate interior angles are supplementary t + = 1800 SMPK Penabur GS
  • 30.
    Consecutive ( Allied) Interior Angles  Find the measures of the missing angles t 1800 – 1350 = 450 135  ? 45  SMPK Penabur GS
  • 31.
    Consecutive Exterior Angles Two angles that lie outside parallel lines on the same sides of the transversal. t 1 +  7 = 1800 1 2 3 4 2 +  8 = 1800 5 6 7 8 SMPK Penabur GS
  • 32.
    Consecutive (Allied) ExteriorAngles If two parallel lines cut by transversal, then alternate exterior angles are supplementary t + = 1800 SMPK Penabur GS
  • 33.
    Consecutive Exterior Angles  Find the measures of the missing angles t 117  1800 – 1170 = 630 63  ?
  • 34.
    Exercise Find the valueof angles number 1 to 7 ! 4 5 1 570 6 7 2 3
  • 35.
    Parallel Lines Part II:Equations SMPK Penabur GS
  • 36.
    Alternate Exterior Angles •Name the angle relationship • Are they congruent or supplementary?  • Find the value of x t 5x = 125 125  5 5 x = 25 5x  SMPK Penabur GS
  • 37.
    Corresponding Angles • Namethe angle relationship • Are they congruent or supplementary?  • Find the value of x t 2x + 1 = 151 2x + 1 -1 -1 2x = 150 151 2 2 x = 75 SMPK Penabur GS
  • 38.
    Consecutive Interior Angles •Name the angle relationship • Are they congruent or supplementary? supp • Find the value of x t 7x + 15 + 81 = 180 7x + 96 = 180 81 - 96 - 96 7x + 15 7x = 84 7 7 x = 12 SMPK Penabur GS
  • 39.
    Alternate Interior Angles •Name the angle relationship • Are they congruent or supplementary?  • Find the value of x t 2x + 20 = 3x 3x - 2x - 2x 2x + 20 20 = x SMPK Penabur GS
  • 40.
    Find the valuefor X: 7X + 30 15X - 18 Both angles are ALTERNATE EXTERIOR and the lines are parallel, so the angles are equal 7X + 30 = 15X -18 - 30 -30 7X = 15X - 48 -15X -15X -8X= - 48 -8 -8 X=6
  • 41.
    Find the valuefor X: 14X + 6 8X + 54 Both angles are ALTERNATE INTERIOR and the lines are parallel, so the angles are equal 14X + 6 = 8X + 54 -6 -6 14X = 8X + 48 -8X -8X 6X = 48 6 6 X=8
  • 42.
    Find the valuefor X: 9X + 58 16X + 9 Both angles are CORRESPONDING and the lines are parallel, so the angles are equal 16X + 9 = 9X + 58 - 9 - 9 16X = 9X + 49 -9X -9X 7X = 49 7 7 X=7
  • 43.
    Find the valuefor X: Both angles are CONSECUTIVE INTERIOR 3X + 17 ANGLES, so they are SUPPLEMENTARY: (3X + 17) + (17X + 23) = 180 3X + 17X + 17 + 23 = 180 17X + 23 20X + 40 = 180 -40 -40 20X = 140 20 20 X=7
  • 44.
    Find the valuefor X and Z: 8X + 26 Z 12X – =12(1 ) - 14 = 120 - 14 14 0 = 106° Both angles are ALTERNATE EXTERIOR : 8X + 26 = 12X -14 - 26 -26 8X = 12X - 40 Angles form a LINEAR PAIR: -12X -12X Z + 106° = 180° -4X= - 40 -106 - -4 - 106 Z = 74 4 X = 10
  • 45.
    Find the valuefor Y and Z in the figure below: 5Z + 13 Y These are complementary: Y + 63° = 90° -63 -63 93 – 3Z Y = 27° = 93 – 3( ) 10 = 93 - = 30 63° Both angles are ALTERNATE INTERIOR : 5Z + 13 = 93 – 3Z - 13 -13 5Z = -3Z + 80 + 3Z + 3Z 8Z = 80 8 8 Z = 10
  • 46.
    Find the valuefor X and Y in the figure below: 6Y + = 6( 3 ) + 15 X 15 = 18 + 15 These are = complementary: X + 33° = 90° 33° -33 -33 75 – X = 57° 14Y Both angles are ALTERNATE INTERIOR : 6Y + 15 = 75 – 14Y - 15 -15 6Y = -14Y +60 + 14Y + 14Y 20Y = 60 20 20 Y=3
  • 47.
    ANGLE SUM THEOREM: B 87° 35° 58° A C m A + m B + m C = 180° 35° + 87° + 58° = 180° The sum of the interior angles of a triangle is always 180°
  • 48.
    Find all theunknown angles in the figure below: 65° 1. Vertical Angles 115° 115° 2. Linear pair: 65° 65° 180°-103° = 77° 115° 115° 180°-65°= 115° 103° 65° 3. Corresponding Angles 77° 77° 38° 4. Vertical Angles 103° 142° 142° 38° 5. Linear Pair: 38° 142° 180°-65°= 115° 142° 38° 6. Interior Angle Sum in triangle is 180°: 180°-77°-65° = 38° 7. Vertical Angles 8. Corresponding Angles 9. Linear Pair 180°-38°= 142° 48
  • 49.
    Find all theunknown angles in the figure below: 85° 1. Vertical Angles 95° 95° 2. Linear pair: 85° 85° 180°-110° = 70° 95° 95° 180°-85°= 95° 110° 85° 3. Corresponding Angles 70° 70° 25° 4. Vertical Angles 110° 155° 155° 25° 5. Linear Pair: 25° 155° 180°-85°= 95° 155° 25° 6. Interior Angle Sum in triangle is 180°: 180°-70°-85° = 25° 7. Vertical Angles 8. Corresponding Angles 9. Linear Pair 180°-25°= 155°
  • 50.
    Find the valuefor X, Y and Z in the figure below: Alternate Exterior Angles: Z Z = 145° 2X + 5 5Y + 5 145 °
  • 51.
    Find the valuefor X, Y and Z in the figure below: Alternate Exterior Angles: Z Z = 145° Linear Pair and supplementary: 2X + 5 145° + (5Y + 5)° = 5Y + 5 180° 150 + 5Y = 180 145 -150 - ° 150 5Y = 30 5 5 Y=6
  • 52.
    Find the valuefor X, Y and Z in the figure below: Alternate Exterior Angles: Z Z = 145° Linear Pair and supplementary: 2X + 5 145° + (5Y + 5)° = 5Y + 5 180° 150 + 5Y = 180 145 -150 - ° 150 5Y = 30 5 5 Corresponding angles: Y=6 2X + 5 = 145° -5 -5 2X = 140 2 2 X = 70
  • 53.
    Find the valuefor R, S and T in the figure below: Alternate Exterior Angles: T T = 140° 2R – 15 4S – 20 140 °
  • 54.
    Find the valuefor R, S and T in the figure below: Alternate Exterior Angles: T T = 140° Linear Pair and supplementary: 2R – 140° + (4S – 20 )° = 15 4S – 20 180° 120 + 4S = 180 140 -120 - ° 120 4S = 60 4 4 S = 15
  • 55.
    Find the valuefor R, S and T in the figure below: Alternate Exterior Angles: T Z = 140° Linear Pair and supplementary: 2R – 140° + (4S – 20 )° = 180° 15 4S – 20 120 + 4S = 180 140 -120 - ° 120 4S = 60 4 4 Corresponding angles: S = 15 2R – 15 = 140°+15 +15 2R = 2 155 2 R= 77.5
  • 56.
    Thank you for yourattention God Bless You