Obj. 12 Parallel Lines
The student is able to (I can):
• Identify parallel lines, perpendicular lines, skew lines, and
parallel planes
• Identify• Identify
— Transversals
— Corresponding angles
— Alternate Interior Angles
— Alternate Exterior Angles
— Same-side Interior Angles
Parallel Lines
Perpendicular
Coplanar lines that do not intersect
Two coplanar lines that intersect at right
m
n
m n
Perpendicular
Lines
Two coplanar lines that intersect at right
angles (90˚)
f
g
f ⊥ g
Skew Lines
Parallel Planes
Noncoplanar lines that do not intersect
Planes that do not intersectParallel Planes Planes that do not intersect
RRRR
SSSS
Plane R Plane S
transversal A line that intersects two coplanar lines at
two different points
r
s
t
corresponding
angles
Lie on the same side of the transversal t,
on the same sides of lines r and s
Example: ∠1 and ∠5
1 2
r t
87
65
4
3
1 2
s
alternate
interior angles
Nonadjacent angles that lie on opposite
sides of the transversal t, between lines r
and s
Example: ∠3 and ∠6
1 2
r
t
87
65
43
1 2
s
interior
alternate
exterior angles
Lie on opposite sides of the transversal t,
outside lines r and s
Example: ∠1 and ∠8
1 2
r texterior
87
65
43
1 2
s
exterior
same-side
interior angles
Lie on the same side of the transversal t,
between the lines r and s
Example: ∠3 and ∠5
3
1
2
r t
87
65
43
2
s
interior
transversal
Corresponding angles are congruentCorresponding angles are congruent
87 6
5
4
3
1
2
∠1 ≅ ∠5
∠2 ≅ ∠6
∠3 ≅ ∠7
∠4 ≅ ∠8
Alternate interior angles are congruent
Alternate exterior angles are congruent
8
7 6
5
4
3
1
2
∠2 ≅ ∠7
∠4 ≅ ∠5
Alternate exterior angles are congruent
8
7
6
5
4
3
1
2
∠1 ≅ ∠8
∠4 ≅ ∠5
Same-side interior angles are
supplementary.
87
65
43
1 2
87
m∠3 + m∠5 = 180˚
m∠4 + m∠6 = 180˚
1. Find the measures of the
numbered angles
2. List each angle pair
corresponding angles
∠1 & ∠4; ∠2 & ∠5;
∠3 & ∠6; ∠8 & ∠7
1 2
3 125˚
(8)
Practice
m∠1 = 125˚; m∠2 = 55˚;
m∠3 = 55˚; m∠4 = 125˚;
m∠5 = 55˚; m∠6 = 55˚;
m∠7 = 125˚
∠3 & ∠6; ∠8 & ∠7
alt. interior angles
∠3 & ∠5; ∠8 & ∠4
alt. exterior angles
∠1 & ∠7; ∠2 & ∠6
same-side interior angles
∠3 & ∠4; ∠8 & ∠5
4 5
6 7

Obj. 12 Parallel Lines

  • 1.
    Obj. 12 ParallelLines The student is able to (I can): • Identify parallel lines, perpendicular lines, skew lines, and parallel planes • Identify• Identify — Transversals — Corresponding angles — Alternate Interior Angles — Alternate Exterior Angles — Same-side Interior Angles
  • 2.
    Parallel Lines Perpendicular Coplanar linesthat do not intersect Two coplanar lines that intersect at right m n m n Perpendicular Lines Two coplanar lines that intersect at right angles (90˚) f g f ⊥ g
  • 3.
    Skew Lines Parallel Planes Noncoplanarlines that do not intersect Planes that do not intersectParallel Planes Planes that do not intersect RRRR SSSS Plane R Plane S
  • 4.
    transversal A linethat intersects two coplanar lines at two different points r s t
  • 5.
    corresponding angles Lie on thesame side of the transversal t, on the same sides of lines r and s Example: ∠1 and ∠5 1 2 r t 87 65 4 3 1 2 s
  • 6.
    alternate interior angles Nonadjacent anglesthat lie on opposite sides of the transversal t, between lines r and s Example: ∠3 and ∠6 1 2 r t 87 65 43 1 2 s interior
  • 7.
    alternate exterior angles Lie onopposite sides of the transversal t, outside lines r and s Example: ∠1 and ∠8 1 2 r texterior 87 65 43 1 2 s exterior
  • 8.
    same-side interior angles Lie onthe same side of the transversal t, between the lines r and s Example: ∠3 and ∠5 3 1 2 r t 87 65 43 2 s interior
  • 9.
    transversal Corresponding angles arecongruentCorresponding angles are congruent 87 6 5 4 3 1 2 ∠1 ≅ ∠5 ∠2 ≅ ∠6 ∠3 ≅ ∠7 ∠4 ≅ ∠8
  • 10.
    Alternate interior anglesare congruent Alternate exterior angles are congruent 8 7 6 5 4 3 1 2 ∠2 ≅ ∠7 ∠4 ≅ ∠5 Alternate exterior angles are congruent 8 7 6 5 4 3 1 2 ∠1 ≅ ∠8 ∠4 ≅ ∠5
  • 11.
    Same-side interior anglesare supplementary. 87 65 43 1 2 87 m∠3 + m∠5 = 180˚ m∠4 + m∠6 = 180˚
  • 12.
    1. Find themeasures of the numbered angles 2. List each angle pair corresponding angles ∠1 & ∠4; ∠2 & ∠5; ∠3 & ∠6; ∠8 & ∠7 1 2 3 125˚ (8) Practice m∠1 = 125˚; m∠2 = 55˚; m∠3 = 55˚; m∠4 = 125˚; m∠5 = 55˚; m∠6 = 55˚; m∠7 = 125˚ ∠3 & ∠6; ∠8 & ∠7 alt. interior angles ∠3 & ∠5; ∠8 & ∠4 alt. exterior angles ∠1 & ∠7; ∠2 & ∠6 same-side interior angles ∠3 & ∠4; ∠8 & ∠5 4 5 6 7