SlideShare a Scribd company logo
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 162
Paper Publications
Some Continued Mock Theta Functions from
Ramanujan’s Lost Notebook (IV)
MOHAMMADI BEGUM JEELANI SHAIKH
Assistant Professor, Faculty of Mathematics and Statistics, Al Imam Mohammed IBN Saud Islamic, University, Riyadh,
Kingdom Of Saudi Arabia
Abstract: Ramanujan’s lost notebook contains many results on mock theta functions. In particular, the lost
notebook contains eight identities for tenth order mock theta functions. Previously many authors proved the first
six of Ramanujan’s tenth order mock theta function identities. It is the purpose of this paper to prove the seventh
and eighth identities of Ramanujan’s tenth order mock theta function identities which are expressed by mock theta
functions and also a definite integral. The properties of modular forms are used for the proofs of theta function
identities and L. J. Mordell’s transformation formula for the definite integral.
Keywords: Mock Theta Functions from Ramanujan’s Lost Notebook.
Let us start from the famous quote on Ramanujan by one of the prominent mathematician:
I still say to myself when I am depressed and find myself forced to listen to pompous and tiresome people, ’Well I have
done one thing you could never have done, and that is to collaborated with Little wood and Ramanujan on something
like equal terms’.
G.H.HARDY
1. INTRODUCTION
In S. Ramanujan’s last letter to G. H. Hardy [BR], Ramanujan described a mock theta function, which is a function f(q)
defined by a q-series which converges for | q |< 1 and which satisfies the following two conditions:
(1) For every root of unity ζ, there is a theta function θζ (q) such that the difference f(q) − θζ (q) is bounded as q → ζ
radially.
(2) There is no single theta function which works for all ζ: i.e., for every theta function θ(q) there is some root of unity ζ
for which f(q) − θ(q) is unbounded as q → ζ radially.
He then provided a long list of ‘third order,’ ‘fifth order,’ and ‘seventh order’ mock theta functions together with identities
satisfied by them. Further identities can be found in Ramanujan’s lost notebook [RA]. In his lost notebook [RA, p. 9],
Ramanujan also gave a list of eight identities involving the following four Ramanujan’s tenth order mock theta functions:
φ(q) :=
( 1)/2
2
0 1( ; )
n n
n n
q
q q

 
 , ψ(q) :=
( 1)( 2)/2
2
0 1( ; )
n n
n n
q
q q
 
 

X(q) :=
2
0 2
( 1)
( ; )
n n
n n
q
q q




 , and χ(q) :=
2
( 1)
0 2 1
( 1)
( ; )
n n
n n
q
q q

 



ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 163
Paper Publications
Where (a; q)n :=
1
0
(1 )
n
m
m
aq



The seventh and eighth identities of Ramanujan’s identities each expresses a combination of φ(q), ψ(q), and a definite
integral. The main purpose of this paper is to prove Ramanujan’s seventh and eighth identities. The first six of
Ramanujan’s identities were proved by the author [C1], [C2], [C3]. The seventh and eighth identities are
2
( )
5
0
1
2 1 5
cosh
45
nnx
e
n
e
dx e
x n

 

 





(1.1)
( ) ( )
5 5
5 5 5 1
2 2
n nn
e e
n
e e
n

 
 

 
  
 
And
(1.2)
2
( )
5
0
( ) ( )
5 5
1
2 1 5
cosh
45
5 5 5 1
2 2
n
n n
nx
e
n
n
e e
n
e
dx e
x n
e e
n



 
 
 




 

 
 



 
  

G. N. Watson [WG] also provided several third order mock theta function identities which include the definite integral.
Those identities are derived from the generalized Lambert series for the third order mock theta functions by using
Cauchy’s theorem.
We first need to define a few notations. Throughout the paper, summation indices run through all integers, or through all
integers satisfying the conditions listed under the summation sign.
Notation..
For a complex number q with | q |< 1 and | bc |< 1, set
0
( ; ) : (1 )m
m
a q aq


  
And
(1.3)
( 1) 2 ( 1)/2
( , ): j j j j
j
f b c b c 
 
We can easily verify the following identity
(1.4)
2 2 2 2 2 2 2
( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )a q a q a q q a q a q a q q       
Note that
(1.5)
( 1) 2 ( 1)/2
( ; ) ( ; ) ( ; )j j j j
j
b c b bc c bc bc bc 
    
Is called the Jacobi triple product identity and
(1.6)
2
( , ) ( ; )f q q q q  
is called Euler’s pentagonal number theorem [B1, p. 36]. In [C1], the author derived the following results:
(1.7)
1 10 1 10 2 5
1 1( ) ( , ) ( , ) ( ) ( , ) 2 ( , , )q f z z q L q z a q f z z q qA zq q q   
       
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 164
Paper Publications
And
(1.8)
1 10 1 10 4 2 5
2 2( ) ( , ) ( , ) ( ) ( , ) 2 ( , , )q f z z q L q z a q f z z q qA zq q q   
       
Where
(1.9)
 
 
2
5 5 1
1 10 3
1
, 2 ,
1 z
n n n
n
n
n
q z
L q z
q
 


 


(1.10)
 
 
2
5 5 1 1
2 10 1
1
, 2 ,
1 z
n nn n
n
n
q z
L q z
q
  


 


(1.11)
2 2 2 2 1 1
1 1
( ; ) ( ; ) ( , )
A(z,x,q)=
( , ) ( , ) ( , )
q q q q f zx z x q
f q q f x x q f zq z q
 
 
 
 
     
(1.12)
5 5 10 10 2 8
1 4 4 6
( ; ) ( ; ) ( ; )
( ) ,
( ; ) ( ; )
q q q q q f q q
q
f q q f q q
    
 
   
And
(1.13)
5 5 10 10 2 8
2 4 4 6
4 2 3 4 6 3 7 9 2 8
2 8 3 7 2 4 6
9 2 8 2 3 7 4 6 5 5
( ; ) ( ; ) ( ; )
( ) ,
( ; ) ( ; )
( , ) ( , ) ( , ) ( , ) ( , ) ( , ).
( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ) ( , ) / (
q q q q f q q
q
f q q f q q
f q q f q q f q q f q q qf q q f q q
f q q f q q f q q
f q q f q q f q q f q q f q q
     
 
  
           
     
           10 10 3
5 5 10 10 2 8 5 5 2 10 10 2
4 4 6 5 5 2 2 8
3 7 9 2 8
10 4 5 3
2 8 3 7
9 2 2 8 4 6
2
, ) ,
( ; ) ( ; ) ( , ) ( ; ) ( ; )
2 ,
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , )
, , , , ,
( , ) ( , )
( , ) ( , ) ( , )
(
q q
q q q q f q q q q q q
f q q f q q f q q f q q
f q q f q q f q q
q q q q q
f q q f q q
qf q q f q q f q q
f q

        
 
    
 

 
     
  8 2 3 7 5 5 9 3 7 4 6 2
9 4 6
9 4 6 4 2 3
9 3 7 4 6 2 2 8 2 3 7 5 5
9 2 8
, ) ( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , )
( , ) ( , ) ( , ) ( , )
2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ).
( , ) ( , ) (
q f q q f q q f q q f q q f q q
f q q f q q
f q q f q q f q q f q q
f q q f q q f q q f q q f q q f q q
f q q f q q f q
           
   
     
             
     3 7 4 6 2 5 5 10 10 3
, ) ( , ) ( , ) / ( , ) ,q f q q f q q q q     
These two identities (1.7) and (1.8) show that two tenth order mock theta functions can be expressed in terms of
generalized Lambert series and theta functions. D. Hickerson [H1], [H2] derived similar results for fifth and seventh order
mock theta functions, and G. E. Andrews and Hickerson [AH] derived similar results for sixth order mock theta functions.
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 165
Paper Publications
The author [C2] also derived similar results for the other tenth order mock theta funcions X(q) and χ(q). We will prove
(1.1) and (1.2) with (1.7), (1.8), and the transformation formula for the definite integral [ML] which is provided by L. J.
Mordell. In [ML, p. 333], Mordell provided the following formula related to the definite integral:
(1.14)
2
2
2
( 2 2 )
2 2
11
[( ) / , 1/ ] ( , )
( , )
i t xt
i x
t i
e F x i F x
dt e
e e x
  
    
  
     
  
 
  

   

 
Where
i
q e 
 with I(w)>0 ,
(1.15)
2
1/4 (2 1)
2 1
( 1)
( , )
1
m m m m ix
m
m
q e
iF x
q


  





And
(1.16)
2
1/4 (2 1)
11( , ) ( 1)m m m m ix
m
i x q e 
    
  .
In Section 2, we prove nine theta function identities. Six of them are proved by using properties of modular forms. In
Section 3, using (1.14), we derive an identity which shows that the definite integral in (1.1) can be expressed by F(x, ω)
and 11 (x, ω). Then, applying the generalized Lambert series (1.9) and (1.10), and the two identities (1.7) and (1.8) to the
identity, we find that the definite integral in (1.1) is represented by φ(q), ψ(q), and theta functions. Simplifying the sum of
theta functions by using the identities in Section 2, we complete the proof of (1.1). In Section 4, we will also prove
Ramanujan’s eighth identity by methods similar to those in Section 3.
2. PROOFS OF THETA FUNCTION IDENTITIES
In this section, we will prove nine theta function identities. To prove first three identities, we need the next three
theorems.
Theorem 2.1. For 0 1q  , 0, 0,x y 
1 1 1 2 1 1
( , ) ( , ) ( ,( ) ) ( , )f x x q f y y q f xy xy q f x yq xy q    
    
1 1 1 2
( ,( ) ) ( , )xf xyq xy q f x y xy q  

Proof: See Theorem (1.1) in [H1:p:643]
Theorem 2.2. . For 0 1q  , and a, b, c, and d are nonzero complex numbers, then
1 1
0 ( , ( ) ) ( , ) ( , ( ) ) ( , )
b a c d
af ab ab q f q f cd cd q f q
a b d c
 
        
1 1
( , ( ) ) ( , ) ( , ( ) ) ( , )
c b a d
bf bc bc q f q f ad ad q f q
b c d a
 
        
1 1
( , ( ) ) ( , ) ( , ( ) ) ( , ).
a c b d
cf ac ac q f q f bd bd q f q
c a d b
 
        
Proof. See Theorem (3.5) in [C1, p. 545].
Theorem 2.3. If ab = cd, then
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 166
Paper Publications
(i) f(a, b)f(c, d) + f(−a, −b)f(−c, −d)=2f(ac, bd)f(ad, bc)
And
(ii) f(a, b)f(c, d) − f(−a, −b)f(−c, −d)=2af(
b
c
,
c
b
abcd)f(
b
d
,
d
b
abcd).
Proof. See Entry 29 in [B1, p. 45].
Theorem 2.4. If 1q  then,
5 5 10 10 4 6 5 5 2 10 10 2
2 3 2 8 5 5 2 4 6
( ; ) ( ; ) ( ; ) ( ; ) ( ; )
2
( ; ) ( ; ) ( ; ) ( ; )
q q q q f q q q q q q
q
f q q f q q f q q f q q
        

     
9 3 17 4 6
4 6 9
( ; ) ( ; ) ( ; )
( ; ) ( ; )
f q q f q q f q q
f q q f q q
 

 
Proof. Replacing q, x, and y by
5
q , -q, and
2
q , respectively, in Theorem 2.1, we
find that
(2.1)
4 2 3 3 7 4 6 9 2 8
( , ) ( , ) ( , ) ( , ) ( , ) ( , ).f q q f q q f q q f q q qf q q f q q           
Replacing q, a, b, c, and d by
10
q ,
3
q ,
2
q ,
5
q , and q, respectively, in Theorem 2.2,
We find that
(2.2)
2 8 3 7 2 4 6
( , ) ( , ) ( , )f q q f q q f q q     
9 4 6 2 5 5 9 2 8 2 3 7
( , ) ( , ) ( , ) ( , ) ( , ) ( , )f q q f q q f q q qf q q f q q f q q              .
Multiplying both sides of (2.1) by
2 8
( , )f q q  3 7
( , )f q q  , and using (2.2), we find that
(2.3)
2 8 3 7
( , ) ( , )f q q f q q    4 2 3
( , ) ( , )f q q f q q 
9 4 6 2 5 5 9 2 8 2 3 7
( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )f q q f q q f q q qf q q f q q f q q              .
Now, dividing both sides of (2.3) by
9 2 8 2 3 7 4 6 5 5 10 10 3
( , ) ( , ) ( , ) ( , ) ( , ) / ( , ) ,f q q f q q f q q f q q f q q q q          
Using (1.4), and replacing q by -q, we complete the proof of theorem.
Theorem 2.5. If 1q  then,
5 5 10 10 2 8 5 5 2 10 10 2
4 4 6 5 5 2 2 8
( ; ) ( ; ) ( , ) ( ; ) ( ; )
2 ,
( , ) ( , ) ( , ) ( , )
q q q q f q q q q q q
f q q f q q f q q f q q
        
 
    
3 7 9 2 8
2 8 3 7
( , ) ( , ) ( , )
( , ) ( , )
f q q f q q f q q
f q q f q q
 

 
.
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 167
Paper Publications
Proof. Replac ing q, x, and y by
5
q , q, and -
3
q , respectively, in Theorem 2.1, we find that
(2.4)
4 2 3 4 6 3 7 9 2 8
( , ) ( , ) ( , ) ( , ) ( , ) ( , ).f q q f q q f q q f q q qf q q f q q           
Replacing q, a, b, c, and d by
10 4 5 3
, , , ,q q q q q , respectively , in Theorem 2.2
and dividing both sides of Theorem 2.2 by q, we find that
(2.5)
9 2 2 8 4 6
( , ) ( , ) ( , )qf q q f q q f q q     
2 8 2 3 7 5 5 9 3 7 4 6 2
( , ) ( , ) ( , ) ( , ) ( , ) ( , )f q q f q q f q q f q q f q q f q q              .
Multiplying both sides of (2.4 ) by
9 4 6
( , ) ( , )f q q f q q    , and using (2.5), we find that
(2.6)
9 4 6 4 2 3
9 3 7 4 6 2 2 8 2 3 7 5 5
( , ) ( , ) ( , ) ( , )
2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
f q q f q q f q q f q q
f q q f q q f q q f q q f q q f q q
     
             
Now, dividing both sides of (2.6) by
9 2 8 3 7 4 6 2 5 5 10 10 3
( , ) ( , ) ( , ) ( , ) ( , ) / ( , ) ,f q q f q q f q q f q q f q q q q          
Using (1.4) , and replacing q by -q, we complete the proof of theorem.
Theorem 2.6 . If 1q  then
15 35 25 25 3 5 45 25 25
( , ) ( , ) ( , ) ( , )f q q f q q q f q q f q q    
25 25 15 35 4 5 45 15 35
( , ) ( , ) ( , ) ( , )f q q f q q q f q q f q q      
3 25 25 5 45 4 15 35 5 45
( , ) ( , ) ( , ) ( , )q f q q f q q q f q q f q q    
(2.7)
4 16 8 12
2 ( , ) ( , ).f q q f q q    
Proof. Let ab = cd = q50 in Theorem 2.3. Replacing a and c by
15
q and
25
q
respectively, in Theorem 2.3 (i), we find that
(2.8)
15 35 25 25
( , ) ( , )f q q f q q  25 25 15 35
( , ) ( , )f q q f q q   40 60 2
2 ( , ) .f q q  
Replacing a and c by
5
q and
25
q , respectively, in Theorem 2.3 (ii), we find that
5 45 25 25 25 25 5 45 5 20 80 2
( , ) ( , ) ( , ) ( , ) 2 ( , ) .f q q f q q f q q f q q q f q q       
Replacing a and c by -
5
q and
15
q respectively, in Theorem 2.3 (i), we find that
(2.10)
5 45 15 35 15 35 5 45 20 80 40 60
( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ) .f q q f q q f q q f q q f q q f q q         
Thus, by (2.8), (2.9), and (2.10), the left side of (2.7) equals
40 60 2 8 20 80 2 4 20 80 40 60
2 ( , ) 2 ( , ) 2 ( , ) ( , )f q q q f q q q f q q f q q           .
Now, in [B2, p. 191], we find that, for 1x  ,
f(xA;,x/A)f(xB, x/B)=
5 2 5 2 1 5 1 2 5 2
( , ) ( , )f x A B x A B f x A B x A B   
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 168
Paper Publications
(2.11)
7 2 3 2 1 9 1 2 2
1 7 2 7 2 1 1 2 2
9 2 2 1 3 1 2 7 2
1 2 9 2 1 7 1 2 3 2
( , ) ( , )
( , ) ( , )
( , ) ( , )
( , ) ( , )
xBf x A B x A B f x A B x A B
xB f x A B x A B f x A B x A B
xAf x A B x A B f x A B x A B
xA f x A B x A B f x A B x A B
   
    
   
    




Multiplying both sides of (2.11) by 2, and replacing x, A, and B by
10 6
,q q and 2
q
Respectively, in (2.11), we find that
4 16 8 12
40 60 2 8 20 80 2 4 20 80 40 60
2 ( , ) ( , )
2 ( , ) 2 ( , ) 2 ( , ) ( , )
f q q f q q
f q q q f q q q f q q f q q
   
          
Thus, we have completed the proof of this theorem.
We will prove six eta-function identities by using the properties of modular forms.
Defnition of the Dedekind eta-function.
Let H = {z : Im z > 0}. For z H ,
2 iz
q = e and any positive integer n, define
inz
2 imnz 212 24 24
1
(2.12) (nz) := n = e (1 e ) ( , ) ( , ).
n n
n n n n
m
q q q q f q q


 



    
Definition of the generalized Dedekind eta-function.
Let H = {z : Im z > 0}. For z H
,
2 iz
q = e and any positive integer n and m,define
2
2 ikz 2 ikz
, ,
1 1
(mod ) (mod )
(z) := (1 e ) (1 e )
m
iP nz
n
n m n m
k k
k m n k m n
e

 
 
   
 
 
 
 
   
(2.13)
2
2 ( , )
( ; )
m n m n mP
n
n n
f q q
q
q q
  
 
 

 
 .
In this paper, we only consider the cases with m 0(mod )n for ,n m
Definition of the modular group. The modular group is the set of linear fractional transformations  , ,
az b
T T z
cz d



where a, b, c, and d are rational integers such that ad – cd = 1. The modular group is denoted by T(1). Let 1( )T N , where
N is a positive integer, be the set of linear factional transformations  ,
az b
U U z
cz d



where a, b, c, and d are rational
integers such that ad – bc = 1, c 0 (mod N), and a d 1 (mod N).
Clearly 1( )T N is a subgroup of T(1).
Definition of a fundamental region. Let T be a subgroup of T(1). A fundamental region for T is an open subset R of H
such that (a) for any two distinct points 1 2,z z in R, there is no T T such that   3T z z for some T T .
Definition of a standard fundamental region. Let T be a subgroup of T (1) with cosets 1 2, ,....,A A A in the sense that
T(1) 1 1.iU TA
 Then
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 169
Paper Publications
1
1
.
i
R U A


 (a fundamental region for T(1))
is called a standard fundamental region for T.
Definition of a cusp. Let R be a fundamental region of T. A parabolic cusp of T in R is any real point q, or q= , such
that q R

 , the closure of R in the topology of the Riemann sphere.
Definition of a modular form of weight, r. Let r be a real number. A function F(z), defined and meromorphic in H, is
said to be a modular form of weight r with respect to, T, with multiplier system v, if
(a)  F z satisfied       r
F Mz v M cz d F z  for any z H and M T ,
(b) there exists a standard fundamental region R such that  F z has at most finitely many poles in
_
R H and
(c)  F z is meromorphic at ,jq for each cusp ,jq in
_
R .
The multiplier system  v v M for the group T is a complex-valued function of absolute value 1 satisfying the
equation.
         1 2 3 3 1 2 1 2 1 2 2
r r r
z z zv M M c d v M v M c M d c d  
For 1 2,M M  T, where
         3 31 1 2 2
1 2 3 1 2
1 1 2 2 3 3
,
z z z
a z ba z b a z b
M z M z and M z M M z
c d c d c d
 
   
  
Let {T, r,v} denote the space of modular forms of weight r and multiplier system v on T, where T is a subgroup of T(1) of
finite index.
Let or d (f;z) denote the invariant order of a modular form f at z. Let  ;TOrd f z denote the order of f with respect to T,
defined by    
1
; : ; ,TOrd f z ord f z
e
 where l is the order of f at z as a fixed point of T.
Theorem 2.7. The Dedekind eta-function  n z is a modular form of weight ½ on the full modular group T(1).
Proof. See Theorem 10 in [KM, p.43].
Theorem 2.8. The multiplier system nv of the modular from is given by the following formula : for each
 1
a b
M T
c d
 
  
 
,
 
   
     
     
2
2
2
1 3
24
1 3 1
24
1 3 1
24
, ,
, 0 0,
, , 0, 0,
bd c c a d c
ac d d b c d
n
ac d d b c d
d
if c is odd
c
c
v M if d is odd andeitherc or d
d
c
if d is odd c d
d



   
    
    
 
  
 

 
    
 

     
 
( )n z
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 170
Paper Publications
where 24 is a primitive 24th
root of unity.
Proof. See Theorem 2 in [KM, p. 51].
Theorem 2.9 (The valence formula).  , , 0,If f T r v and f then 
 ;T
z R
Ord f z r

 ,
Where R is an fundamental region for T, and  
1
: 1 :
12
T T    
Proof. See Theorem 4.1.4 in [RR].
Lemma 2.10. If 1 2 2..... nmm m are positive integers, n is a positive integer, N is a positive even integer, and the least
common multiple of 1 2 2..... nmm m divides N, then for z H         1 2 2 1.... , ,nn m z n m z n m z T N n v where
 1 24,
a b
A T N
c d

 
  
 
is a primitive 24th
root of unity, and
       22
1 / / 3 1
24
1
/ i i i
n
ac d m d m b c m di
i
c m
v A
d

    

 
   
 

Proof. See Lemma 2.2.4 in [C3].
Lemma 2.11. For a positive integer n,   2
1 2
/
1
(1): 1 ,
p n
T T n n
p
 
     
 
 where the product is over all primes p
dividing n.
Proof. See Lemma 2.6.5 in [C2].
Theorem 2.12. For ,z H let    ,
,
/
0
: ,n mr
n m
n N
m n
f z n z
 
  where ,n m
r are integers.
If 2 ,
/
0
0n m
n N
m n
m
nP r
n
 
 
 
 
 (mod 2) and  2 ,
/
0
0 0n m
n N
m n
N
P r
n
 
 (mod 2), then     1 ,0f z T N I , where for
   1 , 1
a b
M T N I M
c d
 
   
 
.
Proof. See Theorem 3 in [RS, p. 126].
Theorem 2.13. For z H ,
18 4
50 10,2 10,3 20,4 100,50n n n n n
2
50,5 50,10 50,15 50,25 100,40 50,5 50,10 50,15 50,20 50,25 100,40
2 2 2
50,15 50,20 50,25 100,20 50,5 50,15 50,20 50,25 100,40
2 2 2 2
50,5 50,20 50,25 100,30 100,40 50,5 50,15 50,20 100,40 100,5
(
2
2
x n n n n n n n n n n n
n n n n n n n n n
n n n n n n n n n n
 
 
  0 )
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 171
Paper Publications
(2.14) =
2 16 2 4 2 2 9
10 100 10,1 10,2 20,8 50,10 50,15 50,20 50,25 100,50n n n n n n n n n n
Proof. For 1 < i < 7, let
1
if is the product of 18 eta-functions in each of the 7 products in (2.14), and
1
ig be the product
of the generalized eta-functions in each of the 7 products in (2.14). Each
1
if is the product of 18 eta-functions, and by
Theorem 2.10 and a straightforward calculation, each
1
if is a modular form of weight 9 on 1(300)T with the multiplier
system 1v where for        22
1 / / 3 1
24
1
/ i i i
n
ac d m d m b c m di
i
c m
v A
d

    

 
    
 
 . By Theorem 2.12 and a straightforward
calculation, each
1
ig is a modular form of weight 0 on 1(300)T with the multiplier system I. Therefore, each
1 1
i if g is a
modular form of weight 9 on 1(300)T with multiplier 1v . By Theorem 2.11,  1(1): 300 57600T T    Let 1F
denote the difference of the left and right sides of (2.14). Applying Theorem 2.9 (the valence formula), for a fundamental
region R for 1(300)T , we deduce that, for 1F ,
(2.15)      1 1 1300
9.57600
; 43200 ; ,
12T
z R
Ord F z ord F

   
Since both sides of (2.14) are analytic on R. Using Mathematica, we calculated the Taylor series of 1F is a constant, we
have a contradiction to (2.15). We have thus completed the proof of Theorem 2.13.
Theorem 2.14. For z H
18 16
50 10,1 10,2 20,6 20,8 100,50
2
50,5 50,10 50,15 50,20 50,25 100,50 50,5 50,15 50,20 50,25 100,20
2 2 2
50,5 50,10 50,25 100,20 50,5 50,10 50,15 50,25 100,20
2 2
50,10 50 15,25 100,10 100,20
(
2
2
n n n n n n
x n n n n n n n n n n n
n n n n n n n n n
n n n n n n
 
 
  2 2
50,5 50,10 50,15 100,20 100,50 )n n n n
(2.16) =
2 16 16 2 2 9
10 100 10,2 10,3 20,4 50,5 50,10 50,20 50,25 100,50n n n n n n n n n n
Proof. For 1 1 < i < 7, let
2
if be the product of eta-functions in each of the 7 products in (2.16), and
2
ig be the product
of the generated eta-functions in each of the 7 products in (2.16). Each
2
if is the product of 18 eta-functions, and by
Theorem 2.10 and a straightforward calculation, each
2
if is a modular form of weight 9 on 1(300)T with the multiplier
system 2v where for
   
   21
12 3 1
24
1 2 24300
c a ad d bd da b
A T v A
c d

     
   
 
.
By Theorem 2.12 and a straight forward calculation, each
2
ig is a modular from of weight 0 on 1(300)T with the
multiplier system I. Therefore, each
2 2
i if g is a modular form of weight 9 on 1(300)T with multiplier system 2v . Let
2F denote the difference of the left and right sides of (2.16). Applying Theorem 2.9, for a fundamental region R for
1(300)T , we deduce that, for 2F ,
(2.17)      1 2 2300
9.57600
; 43200 ; ,
12T
z R
Ord F z ord F

   
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 172
Paper Publications
Since both sides of (2.16) are analytic on R. Using Mathematica, we calculated the Taylor series of 2F about q=0 (or
about the cusp z= ) and found that 2F =0  43201
2 0F q . Unless 2F is a constant, we have a contradiction to (2.6).
We have therefore completed the proof of Theorem 2.14.
Theorem 2.15. For z H ,
(2.18)
2 2 10 3
5 100 5 ,1 6,1n n n n
3 3 2 2 2
50,5 50,10 100,40 100,50 50,15 50,20 100,20 100,50 50,10 50,20 100,25
2 2 10 3 2 2 2 2
20 25 5,1 6,1 25,5 25,5 50,10 50,20
( 3x n n n n n n n n n n n
n n n n n n n n
  

Proof. For 1 4,i  let
3
if be the product of eta-functions in each of the 4 products in (2.18), and
3
ig be the product of
the generalized eta-functions in each of the 4 products in (2.18). Each
3
ig is the product of 14 eta-functions, and by
Theorem 2.10 and a straightforward calculation, each
3
ig is a modular form of weight 2 on 1(300)T with the multiplier
system 3v , where for
   
   21
18 3 1
50
1 3 24300
c a ad d bd da b
A T v A
c d

     
   
 
.
By Theorem 2.12 and a straightforward calculation, each
3
ig is a modular form of weight 0 on 1(300)T with the
multiplier system I. Therefore, each
3 3
i if g is a modular from of weight 2 on 1(300)T with multiplier system 3v . Let
3F denote the difference of the left and rights sides of (2.18). Applying Theorem 2.9, for a fundamental region R for
1(300)T , we deduce that, for 3F ,
(2.19)      1 3 3300
2.57600
; 9600 ; ,
12T
z R
Ord F z ord F

   
Since both sides of (2.18) are analytic on R. Using Mathematica, we calculated the Taylor series of 3F about q = 0 ( or
about the cusp z = ) and found that  9601
3 0F q . Unless 3F is a constant, we have a contradiction to (2.19). We
have thus completed the proof of Theorem 2.15.
Theorem 2.16. For z H ,
(2.20)
2 2 2 3
4 50 10,1 10,2 10,3 20,2
50,5 50,15 50,25 100,50 50,5 50,15 50,25 100,30 50,5 50,15 50,25 100,10
2 2 2 2
50,5 50,15 100,50 50,5 50,25 100,30 50,5 50,25 100,30 50,15 50,25 100,10
2 2
10 20 10
(
2 )
n n n n n n
x n n n n n n n n n n n n
n n n n n n n n n n n n
n n n
 
   
 3 3 3 3
,1 10,2 20,4 20,8 50,5 50,10 50,25n n n n n n
Proof. For 1 8,i  let
4
if be the product of eta-functions in each of the 8 products in (2.20), and
4
ig be the product of
the generalized eta-functions in each of the 8 products in (2.20). Each
4
if is the product of 4 eta-functions, and by
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 173
Paper Publications
Theorem 2.10 and a straightforward calculation, each
4
if is a modular form of weight 2 on 1(300)T with the multiplier
system 4v , where for
   
   23
12 3 1
50
1 4 24300
c a ad d bd da b
A T v A
c d

     
   
 
.
By Theorem 2.12 and a straightforward calculation, each
4
ig is a modular form of weight 0 on 1(300)T with the
multiplier system I. Therefore, each
4 4
i if g is a modular from of weight 2 on 1(300)T with multiplier system 4v . Let
4F denote the difference of the left and rights sides of (2.20). Applying Theorem 2.9, for a fundamental region R for
1(300)T , we deduce that, for 4F ,
(2.21)      1 4 4300
2.57600
; 9600 ; ,
12T
z R
Ord F z ord F

   
Since both sides of (2.20) are analytic on R. Using Mathematica, we calculated the Taylor series of 4F about q = 0 ( or
about the cusp z = ) and found that  9601
4 0F q . Unless 4F is a constant, we have a contradiction to (2.21). We
have thus completed the proof of Theorem 2.16.
Theorem 2.17. For z H ,
(2.22)
8 3 2
10 20 50,1 10,4 20,4 20,8 50,5 50,15 50,25 200,50 200,100
10,1 20,10 50,10 100,40 10,3 20,2 50,10 100,40
10,1 20,10 50,20 100,20 10,3 20,2 50,20 100,20
2
10,1 10,4 20,4 20,8 40,10 50,5 50
( 4
6 )
4
n n n n n n n n n n n
x n n n n n n n n
n n n n n n n n
n n n n n n n

 
 ,10 50,15 50,20 50,25 200,100
8 3 2 2 10 3
10 20 50 100 10,1 50,10 50,20 10 20 100 10,3 20,2 20,10
8 3
10 20 50 50,5 50,10 50,15 50,20 100,50 200,50 200,100
3 2
10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2
)
( 4
n n n n
n n n n n n n n n n n n n
n n n n n n n n n n
n n n n n n n n n
 

  2 3 2
20,5 20,8 10,3 20,2 20,4 20,10
8 3
10 20 50 50,5 50,10 50,20 50,25 100,30 200,50 200,100
3 2 2 3 2
10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2 20,5 20,8 10,3 20,2 20,4 20,10
8 3
10 20 50 50,10 50,1
)
(2 2 3 )
n n n n n
n n n n n n n n n n
n n n n n n n n n n n n n n
n n n n n


  
 5 50,20 50,25 100,10 200,50 200,100
3 2 2 3 2
10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2 20,5 20,8 10,3 20,2 20,4 20,10(3 2 2 )
n n n n n
n n n n n n n n n n n n n n  
Proof. For 1 15,i  let
5
if be the product of eta-functions in each of the 15 products in (2.22), and
5
ig be the product
of the generalized eta-functions in each of the 15 products in (2.22). Each
5
if is the product of 12 eta-functions, and by
Theorem 2.10 and a straightforward calculation, each
5
if is a modular form of weight 6 on 1(200)T with the multiplier
system 5v , where for
   
   21
22 3 1
100
1 5 24
10
200
c a ad d bd da b
A T v A
c d d

      
          
.
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 174
Paper Publications
By Theorem 2.12 and a straightforward calculation, each
5
ig is a modular form of weight 0 on 1(200)T with the
multiplier system I. Therefore, each
5 5
i if g is a modular from of weight 6 on 1(200)T with multiplier system 5v . By
Theorem 2.11,  1(1): 200 28800T T    Let 5F denote the difference of the left and rights sides of (2.22). Applying
Theorem 2.9, for a fundamental region R for 1(200)T , we deduce that, for 5F ,
(2.23)      1 5 5200
6.28800
; 14400 ; ,
12T
z R
Ord F z ord F

   
Since both sides of (2.22) are analytic on R. Using Mathematica, we calculated the Taylor series of 5F about q = 0 ( or
about the cusp z = ) and found that  14401
5 0F q . Unless 5F is a constant, we have a contradiction to (2.23). We
have thus completed the proof of Theorem 2.17.
Theorem 2.18. For z H ,
(2.24)
8 3 3 2 2
10 20 50 10,1 20,4 20,6 20,8 50,15 50,25 200,50 200,100
10,1 20,10 50,10 100,40 10,1 20,10 50,20 100,20 10,3 20,2 50,20 100,20
10 2 2 2 3
10 20 50 100 10,1 10,3 20,2 20,4 20,6 20,8 20,8 40,10
( 2 )
4
n n n n n n n n n n n
n n n n n n n n n n n n
n n n n n n n n n n n n
  
 50,5 50,10 50,15 50,20
2
100,25 200,100
8 3 3
10 20 50 50,10 50,20 200,50 200,100
3 2 3 2
10,1 20,6 20,8 20,10 50,5 50,15 100,50 10,3 20,2 20,4 20,10 50,5 50,15 50,100
3 2
10,3 20,2 20,4 20,10 50,5 50,25
(
n n n n
n n
n n n n n n n
n n n n n n n n n n n n n n
n n n n n n


 
 3 2
100,30 10,1 20,6 20,8 20,10 50,15 50,25 100,10
10,1 10,3 20,2 20,5 20,6 20,8 50,15 50,25 100,102 )
n n n n n n n n
n n n n n n n n n


Proof. For 1 10,i  let
6
if be the product of eta-functions in each of the 10 products in (2.24), and
6
ig be the product
of the generalized eta-functions in each of the 10 products in (2.24). Each
6
if is the product of 14 eta-functions, and by
Theorem 2.10 and a straightforward calculation, each
6
if is a modular form of weight 7 on 1(200)T with the multiplier
system 6v , where for
   
   21
2 3 1
20
1 6 24
10
200
c a ad d bd da b
A T v A
c d d

      
          
.
By Theorem 2.12 and a straightforward calculation, each
6
ig is a modular form of weight 0 on 1(200)T with the
multiplier system I. Therefore, each
6 6
i if g is a modular from of weight 7 on 1(200)T with multiplier system 6v . Let
6F denote the difference of the left and rights sides of (2.24). Applying Theorem 2.9, for a fundamental region R for
1(200)T , we deduce that, for 5F ,
(2.25)      1 6 6200
7.28800
; 16800 ; ,
12T
z R
Ord F z ord F

   
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 175
Paper Publications
Since both sides of (2.24) are analytic on R. Using Mathematica, we calculated the Taylor series of 6F about q = 0 ( or
about the cusp z = ) and found that  16801
6 0F q . Unless 6F is a constant, we have a contradiction to (2.25). We
have thus completed the proof of Theorem 2.18.
We have proved six eta-function identities with the properties of modular forms. In the next step, we will derive six theta
function identities from the eta-function identities above.
Theorem 2.19. For 1,q 
(2.26)
     
 
    
 
 
        
      
   
5 45 40 60 50 50
6 10 40 4 20 30
220 30
50 50
3 15 35 20 80 2 5 45 40 60
10 40
25 45 40 60 50 50 100 100
2
15 35 10 90 20
, , ,
, ,
,
,
, , 2 , ,
,
, , ; ;
2
, ,
q q f q q f q q
q f q q q f q q
f q q
f q q
q f q q f q q q f q q f q q
f q q
f q q f q q q q q q
q
f q q f q q f q
     
     
 
 
         
 
      

    

 
    
       
      
     
80
2 35 45 40 60 50 50
25 25 10 90 20 80 30 70
29 8 12 10 10 20 20
3 7 2 18 4 16
,
, , ;
, , , ,
, , ; ;
, , ,
q
f q q f q q q q
f q q f q q f q q f q q
f q q f q q q q q q
f q q f q q f q q

    

       
       

     
Proof. By applying
2 2
100,50 100 50n n n to the right side of (2.14), dividing both sides of (2.14) by
451
18 4 2 230
50 10,2 10,3 20,2 20,4 50,10 50,15 50,20 50,25 100/q n n n n n n n n n n and applying (2.12) and (2.13) , we derive (2.26) from (2.14)
Theorem 2.20. For 1,q 
(2.27)
     
 
    
 
 
        
      
   
15 35 20 80 50 50
2 10 40 4 20 30
240 40
50 50
3 5 45 40 60 4 15 35 20 80
20 30
215 35 20 80 50 50 100 100
5
5 45 30 70 4
, , ,
, ,
,
,
, , 2 , ,
,
, , ; ;
2
, ,
q q f q q f q q
q f q q q f q q
f q q
f q q
q f q q f q q q f q q f q q
f q q
f q q f q q q q q q
q
f q q f q q f q
     
     
 
 
         
 
      

    

 
    
       
      
     
0 60
2 315 35 20 80 50 50
25 25 10 90 30 70 40 60
23 7 4 16 10 10 20 20
9 6 14 8 12
,
, , ;
, , , ,
, , ; ;
, , ,
q
f q q f q q q q
q
f q q f q q f q q f q q
f q q f q q q q q q
f q q f q q f q q

    

       
     

     
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 176
Paper Publications
Proof. By applying
2 2
100,50 100 100n n n to the right side of (2.16), dividing both sides of (2.16) by
589
18 16 2 230
50 10,1 10,2 20,6 20,8 50,5 50,10 50,20 50,25 100/q n n n n n n n n n n and applying (2.12) and (2.13) , we derive (2.27) from (2.16)
Theorem 2.21. For IF 1,q 
(2.28)
       
 
       
 
 
5 45 10 40 40 60 50 50
5
220 30
15 35 20 30 20 80 50 50
210 40
25 15
, , , ,
,
, , , ,
,
,
f q q f q q f q q f q q
q
q q
f q q f q q f q q f q q
f q q
q q
       
 
       

 
  
Proof. By applying 25,5 25,10 25 5n n n n to the right side of (2.18), in Theorem 2.15, dividing both sides of (2.18) by
25
2 10 3 2 24
5 5,1 6,1 50,10 50,20q n n n n n and applying (2.12) and (2.13) , we derive (2.28) from (2.18)
Theorem 2.23. For IF 1,q 
(2.29)
           
       
       
    
   
25 25 25 25 2 15 35 15 35 8 5 45 5 45
4 25 25 5 45 15 35 25 25
5 15 35 5 45 5 5 45 15 35
9 4 4 10 10
3 7 2 18
, , , , , ,
, , , ,
2 , , , ,
, , ;
, ,
f q q f q q q f q q f q q q f q q f q q
q f q q f q q f q q f q q
q f q q f q q q f q q f q q
f q q q q q q
f q q f q q
       
     
     
  

   
Proof. We can easily derive that for any integers n,
(2.30)
   
   
 
250 50 2 100 2
50
100 100 50
, ,
,
, ,
n n
n n
n n
q q f q q
f q q
q q f q q



  

  
Now, applying 20 20,4 20 8 4n n n n n to the right side of (2.20), dividing both sides of (2.20) by
329
2 2 330
4 10,1 10,2 10,3 20,2 50,5 50,15 50,25q n n n n n n n n and applying (2.12) and (2.13) , and (2.30) with n replaced by 5, 15 and 25,
repeatedly, we complete the Proof.
Theorem 2.23. IF 1,q 
(2.31)
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 177
Paper Publications
 
    
   
   
 
    
   
   
 
    
 
29 4 4 10 10
20 20 4 4 16 8 12
3 7 2 18
29 4 4 10 10
2 10 40 4 16 8 12
3 7 2 18
29 4 4 10 10
6 50 150
3 7
, , ;
, 4 , ,
, ,
, , ;
, 6 , ,
, ,
, , ;
4 ,
,
f q q q q q q
f q q q f q q f q q
f q q f q q
f q q q q q q
q f q q q f q q f q q
f q q f q q
f q q q q q q
q f q q
f q q f
    
     
    
 
    
      
    
 
   

   
   
 
      
     
 
      
     
4 16 8 12
2 18
29 8 12 10 10 20 20
25 25
3 7 2 18 4 16
23 7 4 16 10 10 20 20
25 15
9 6 14 8 12
15
, ,
,
, , , ;
,
, , ,
, , ; ;
4 ,
, , ,
,
qf q q f q q
q q
f q q f q q q q q q
f q q
f q q f q q f q q
f q q f q q q q q q
qf q q q
f q q f q q f q q
qf q
 
     
  
 
     
 
      
 
      
    
      
 
  
      
     
 
      
     
 
      
29 8 12 10 10 20 20
35
3 7 2 18 4 16
23 7 4 16 10 10 20 20
25 15
9 6 14 8 12
29 8 12 10 10 20 20
4 25 25
, , , ;
2
, , ,
, , ; ;
2 , 3
, , ,
, , , ;
, 3
f q q f q q q q q q
q
f q q f q q f q q
f q q f q q q q q q
qf q q q
f q q f q q f q q
f q q f q q q q q q
q f q q
f q
     
 
      
 
      
    
      
 
    

     
 
      
     
3 7 2 18 4 16
23 7 4 16 10 10 20 20
25 15
9 6 14 8 12
, , ,
, , ; ;
2 , 2
, , ,
q f q q f q q
f q q f q q q q q q
qf q q q
f q q f q q f q q
 
 
     
 
      
   
      
 
Proof. applying
2 2
20 20 10 10, 20 20,4 20,8 4n n n n n n n n  and 50 50,10 50,20 10n n n n  to (2.22), dividing both sides of (2.22)
by
233
86
10 20 10,1 10,3 20,2 20,4 20,6 20,8 50,5 50,10 50,15 50,20 50,25 200,50 200,100q n n n n n n n n n n n n n n n and applying (2.12) and (2.13) , and
(2.30) with n replaced by 5, 10, 15, 20 and 25, repeatedly, and with q and n replaced by
4
q and
50
q , respectively, we
derive (2.32) from (2.20)
Theorem 2.24
(2.32)
( )
( )( ) ( )
( ) ( )
( ) (
( )( ) ( )
( ) ( )
( ) ( ))
+4 ( ) ( ) ( )
( ) (
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
)
( ) ( ( )
( ) ( )( ) ( )
( ) ( ) ( )
)
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 178
Paper Publications
( ) (
( ) ( )( ) ( )
( ) ( ) ( )
( ) )
Proof. Applying
, and to (2.24),
Dividing both sides of (2.24) by ,
and applying (2.12), (2.13), and (2.30) with n replaced by 5, 10, 15, 20 and 25, repeatedly, and with q and n replaced by q4
and q50
, respectively, we derive (2.32) from (2.24).
3. PROOF OF RAMANUJAN’S SEVENTH IDENTITY
In this section we will prove Ramanujan’s seventh identity, (1.1).
Theorem 3.1 (Ramanujan’s seventh tenth order mock theta function identity).
∫
√
√ √
( )
√ √
( )
√
√
( )
Proof. Replacing , x, t, and θ by 5in, –5n,
√
, and θ’ – i, respectively, in the left side of (1.14), we find that
(3.1) ∫ √
∫
√
Replacing by in (3.1), and using (1.14), we have
(3.2) ∫
√
√
( ) ( )
( )
,
and Replacing by in (3.1), and using (1.14), we have
(3.3) ∫
√
√
( ) ( )
( )
Using (3.2) and (3.3), we can easily derive that
∫
√
√
∫
√
√
∫ (
√ √
)
( ∫
√
∫
√
)
√ √
√
(
( ) ( )
( )
( ) ( )
( )
)
(3.4) Let . Then, using (1.15), (1.16), (1.3), (1.10) with q and z replaced by – q and q4
, respectively, (1.8),
(1.11) with q, z, and x replaced by –q5
, 1 and q2
, respectively, (1.13) with q replaced by – q, and Theorem 2.4, we can
derive that
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 179
Paper Publications
√ √
(
( )
( )
( )
( )
)
√ √
(
∑
( )
( )
∑
( )
( )
)
√ √ ( )
( )
√ √
( ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
)
(3.5) √ √
( ) √ √ ( ) ( ) ( )
( ) ( )
We now need to use the following transformation formula for in [ML, p. 330]:
(3.6) ( ) √ ( )
Replacing and by and , respectively, in (3.6), we find that
(3.7) ( ) √ ( )
and replacing and by and , respectively, in (3.6), we find that
(3.8) ( ) √ ( )
Let and Then, using (3.7), (3.8), (1.15), and (1.16), we find that
(3.9)
√
(
( )
( )
( )
( )
)
( )
( )
( )
( )
∑
( ) ( )
∑ ( )
By (1.3), we easily reformulate the denominator of the right hand side of (3.9):
(3.10)
∑( ) ∑ ∑( )
( ) ( ) ( ) ( )
Now, multiplying by both the numerator and the denominator of the numerator of
the right side of (3.9), we find that the numerator of the right side of (3.9) equals
(3.11)
∑
( )
* ( ) +
∑ ∑
( )
( ) ( )
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 180
Paper Publications
* ( ) +.
We will transform some of the generalized Lambert series in (3.11) into L1 and L2, and we need the following
hypergeometric series from [GR, p. 128] to handle the other generalized Lambert series in (3.11):
∑
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
(3.12)
( ) ( ) ( )
( ) ( )
,
provided | |
Replacing q, a, b, and c by √ and √ , respectively, in (3.12), letting d and e tend to , and using (1.3),
(1.5), and (2.30) with n replaced by 5, we find that
∑( )
( )( ) ( )
( )
(3.13)
( ) ( ) ( )( )
( ) ( ) ( ) ( )
Replacing q, a, b, and c by √ and √ , respectively, in (3.12), letting d and e tend to , and using
(1.3), (1.5), and (2.30) with n replaced by 15, we find that
∑( )
( )( ) ( )
( )
(3.14)
( ) ( ) ( )( )
( ) ( ) ( ) ( )
With Entry 8(vii) in [B1, p. 114], we find that
(3.15)
∑
( )
( )
Using (1.9), (1.10), (3.11), (3.13), (3.14), and (3.15), we find that
(3.16)
∑
( ) ( )
(1+ )( ( ) ( ) ( ) ( ))
( )( ( ) ( ) ( ) ( ))
( ( ) ( ))
( )
( )( ) ( )
( )
( )
( )( ) ( )
( )
( )
To proceed to the next step, we need the following result, which can be proved by a the simple calculation:
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 181
Paper Publications
(3.17)
{
√ √
( )
√ √
( ) or √ √
( )
√ √
( )
Transforming and in the right side of (3.16) into the sums of ψ (q) and theta functions, and ϕ (q) and theta functions,
respectively, with (1.7) and (1.8), using (3.10) and (3.17) to simplify the terms related to ϕ (q) and ψ (q), using (1.11),
(1.12), and (1.13), replacing q by in Theorem 2.19, Theorem 2.20, and Theorem 2.21, and applying Theorem 2.19,
Theorem 2.20, and Theorem 2.21, we find that the right side of (3.16) equals
(3.18)
∑( ) ( √ √
( ) √ √
( ))
( )( ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )
( )( ) ( )
( )
)
( )( ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )
( )( ) ( )
( )
)
( ( ) ( ) ( ) ( ) ( )
( ) )
∑( ) ( √ √
( ) √ √
( ))
( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
Therefore, by (3.9), (3.16), and (3.18), we derive
(3.19)
√ √
√
(
( )
( )
( )
( )
)
√
( )
√
√
( )
√ √
√ ∑ ( )
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 182
Paper Publications
(( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) )
To complete the proof of Theorem 3.1, we need the following identities. Using (1.3), we can derive that
∑ ( ) equals
(3.20)
{
( ) ( )
if
( ) ( ) ( ) ( )
if
( ) ( ) ( ) ( ) ( )
if or
and ∑ ( ) equals
(3.21)
{
( ) ( ) ( ) ( ) ( )
if or
( ) ( ) ( ) ( ) ( )
if or
Recall that and . By (1.3), (1.16), and (3.6), we are able to derive the following four identities:
(3.22)
{
( )
√
∑ ( )
( )
√
∑ ( )
( )
√
∑ ( )
( )
√
∑ ( )
By (3.22), we find that
(3.23)
( ) ( ) ( )
( )
∑ ( ) ∑ ( ) ∑ ( )
∑ ( )
Recall that and By (3.20), (3.21), Theorem 2.22 with q replaced by and Theorem 2.6 with q
replaced by , the numerator of the right side of (3.23) equals
(( ) ( ) ( ) ( ) ( ))
( ( ) ( ) ( ) ( ) ( ))
( ( ) ( ) ( ) ( ) ( ))
(( ) ( ) ( ) ( ) ( ))
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 183
Paper Publications
(
( )( ) ( )
( ) ( )
( ) ( ) ( ))
( ) ( )
( )( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )
( )( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( )
( )( ) ( )
( ) ( )
(3.24) ( ) ( ) ( ) ( )
Here, we easily calculate that
√ √
and
√
Now, let the left
side of (2.31) with q replaced by q1,
√
the left side of (2.32) with q replaced by q1, the right side of
(2.31) with q replaced by q1, and
√
the right side of (2.32) with q replaced by q1. Then, we easily verify that the
right side of (3.24) equals the sum of LS1 and LS2. Therefore, we can say that the right side of (3.24) equals the sum of
RS1 and RS2. Using (3.21), we can find that the sum of RS1 and RS2 equals
( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ( ) ( ) ( ) ( ) ( ))
(( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) )
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 184
Paper Publications
∑( )
(( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
(3.25) ( ) )
By (3.7), (1.3), and (1.16), we find that
(3.26) ( )
∑ ( )
√
By (3.23), (3.24), (3.25), and (3.26), we find that
(3.27)
√ √ ( ) ( ) ( )
( ) ( )
√ √
√
∑ ( ) ∑ ( ) ∑ ( )
∑ ( )
( )
∑ ( )
√ √
∑ ( )
(( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) )
In conclusion, using (3.4), (3.5), (3.19), and (3.27), we see that we have completed the proof of Ramanujan's seventh
identity.
4. PROOF OF RAMANUJAN'S EIGHTH IDENTITY
In this section, we will prove the Ramanujan's eighth identity (1.2). The proof of eighth identity is similar to that of
seventh identity.
Theorem 4.1 (Ramanujan's eighth tenth order mock theta function identity).
∫
√
√ √
( )
√ √
( )
√
√
( )
Proof. Replacing by in (3.1), and using (1.14), we find that
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 185
Paper Publications
(4.1) ∫
√
√
( ) ( )
( )
,
Similarly, replacing by in (3.1), and using (1.14), we find that
(4.2) ∫
√
√
( ) ( )
( )
Using (4.1) and (4.2), we find that
∫
√
√
∫
√
√
∫ (
√ √
)
( ∫
√
∫
√
)
(4.3)
√ √
√
(
( ) ( )
( )
( ) ( )
( )
)
(3.4) Let . Then, using (1.15), (1.16), (1.3), (1.9) with q and z replaced by – q and q2
, respectively, (1.7),
(1.11) with q, z, and x replaced by –q5
, 1 and – q, respectively, (1.12) with q replaced by – q, and Theorem 2.5, we can
derive that
√ √
(
( )
( )
( )
( )
)
√ √
(
∑
( )
( )
∑
( )
( )
)
√ √ ( )
( )
√ √
( ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
)
(4.4) √ √
( ) √ √ ( ) ( ) ( )
( ) ( )
Replacing and by and , respectively, in (3.6), we find that
(4.5) ( ) √ ( )
Replacing and by and , respectively, in (3.6), we find that
(4.6) ( ) √ ( )
Let and Then, using (4.5), (4.6), (1.15), and (1.16), we find that
(4.7)
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 186
Paper Publications
√
(
( )
( )
( )
( )
)
( )
( )
( )
( )
∑
( ) ( )
∑ ( )
If we replace by in the right side of (3.9), we can find that the right side of (3.9) equals the right side of (4.7). And,
it's easy to verify that (3.10), (3.11), and (3.16) are correct if we replace by in (3.10), (3.11), and (3.16). Therefore,
we find that
(4.8)
∑ ( ) ( ) ( ) ( ) ( ) and the numerator of (4.7) equals
(4.9)
(1+ )( ( ) ( ) ( ) ( ))
( )( ( ) ( ) ( ) ( ))
( ( ) ( ))
( )
( )( ) ( )
( )
( )
( )( ) ( )
( )
( )
we also need the following results, which can be obtained by an easy calculation:
(4.10)
{
√ √
( )
√ √
( ) or √ √
( )
√ √
( )
Transforming and into the sums of ψ (q) and theta functions, and ϕ (q) and theta functions with (1.7) and (1.8),
using (4.8) and (4.10) to simplify the terms related to ϕ (q) and ψ (q), replacing q by in Theorem 2.19, Theorem 2.20,
and Theorem 2.21, and applying Theorem 2.19, Theorem 2.20, and Theorem 2.21, we find that (4.9) equals
(4.11)
∑( ) ( √ √
( ) √ √
( ))
( )( ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )
( )( ) ( )
( )
)
( )( ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 187
Paper Publications
( )
( )( ) ( )
( )
)
( ( ) ( ) ( ) ( ) ( )
( ) )
∑( ) ( √ √
( ) √ √
( ))
( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
By (4.7), (4.9), and (4.11), we find that
(4.12)
√ √
√
(
( )
( )
( )
( )
)
√
( )
√
√
( )
√ √
√ ∑ ( )
(( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) )
By (1.3), (1.16), and (3.6), we derive the next two identities:
(4.13) {
( )
√
∑ ( )
( )
√
∑ ( )
Using (3.22) and (4.13), we find that
(4.14)
( ) ( ) ( )
( )
∑ ( ) ∑ ( ) ∑ ( )
∑ ( )
Recall that and By (3.20), (3.21), Theorem 2.22 with q replaced by and Theorem 2.6 with q
replaced by , the numerator of the right side of (4.14) equals
(4.15)
(( ) ( ) ( ) ( ) ( ))
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 188
Paper Publications
( ( ) ( ) ( ) ( ) ( ))
( ( ) ( ) ( ) ( ) ( ))
(( ) ( ) ( ) ( ) ( ))
(
( )( ) ( )
( ) ( )
( ) ( ) ( ))
( ) ( )
( )( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )
( )( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( )
( )( ) ( )
( ) ( )
( ) ( ) ( ) ( )
Here, we easily calculate that
√ √
and
√
Let the left
side of (2.31) with q replaced by q1,
√
the left side of (2.32) with q replaced by q1, the right
side of (2.31) with q replaced by q1, and
√
the right side of (2.32) with q replaced by q1. Then, we easily
verify that the right side of (4.16) equals the sum of LS'1 and LS'2. Therefore, we can say that the right side of (4.15)
equals the sum of RS'1 and RS'2. Using (3.21), we can find that the right side of (4.15) equals
(4.16)
(( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
)
( ( ) ( ) ( ) ( ) ( ))
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 189
Paper Publications
(( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) )
∑ (( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
( ) )
By (4.5), (1.3), and (1.16), we find that
(4.17) ( )
∑ ( )
√
By (4.16) and (4.17), we find that
√ √ ( ) ( ) ( )
( ) ( )
√ √
√
∑ ( ) ∑ ( ) ∑ ( )
∑ ( ) ∑ ( )
√ √
∑ ( )
(( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) ( )
(4.18) ( ) )
In conclusion, using (4.3), (4.4), (4.12), and (4.18), we have completed the proof of Ramanujan's eighth identity.
REFERENCES
[1] G. E. Andrews and D. Hickerson, Ramanujan’s ”Lost” Notebook VII:The sixth order mock theta functions, Adv.
Math. 89 (1991), 60–105. MR 92i:11027
[2] B. C. Berndt, Ramanujan’s Notebooks Part III, Springer-Verlag, New York, 1991. MR 92j:01069
[3] B. C. Berndt, Ramanujan’s Notebooks Part IV, Springer-Verlag, New York, 1994. MR 95e:11028
[4] B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, Amer. Math. Soc., Providence, 1995; London
Math. Soc., London, 1995. MR 97c:01034
[5] Y.-S. Choi, Tenth order mock theta functions in Ramanujan’s Lost Notebook, Invent. Math. 136 (1999), 497–569.
MR 2000f:11016
[6] Y.-S. Choi, Tenth order mock theta functions in Ramanujan’s Lost Notebook (II), Adv. Math. 156 (2000), 180–285.
CMP 2001:07
ISSN 2350-1022
International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 190
Paper Publications
[7] Y.-S. Choi, Two identities for tenth order mock theta functions in Ramanujan’s Lost Note- book, submitted for
publication.
[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990. MR
91d:33034
[9] D. Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988), 639–660. MR 90f:11028a
[10] D. Hickerson, On the seventh order mock theta functions, Invent. Math. 94 (1988), 661–677. MR 90f:11028b
[11] M. I. Knopp, Modular Functions in Analytic Number Theory, reprint, Chelsea Publishing Co., New York, 1993. MR
42:198 (original ed.)
[12] L. J. Mordell, The value of the definite integral, Quarterly Journal of Mathematics 48 (1920), 329–342.
[13] S. Ramanujan, the Lost Notebook and Other Unpublished papers, Narosa Publishing House, New Delhi, 1988. MR
89j:01078
[14] R. A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1977. MR 58:16518
[15] S. Robins, Generalized Dedekind η-products, Contemp. Math. 166 (1994), 119-128. MR 95k:11061
[16] G. N. Watson, The final problem:An account of the mock theta functions, J. London Math. Soc. 11 (1936), 55–80.

More Related Content

What's hot

D044042432
D044042432D044042432
D044042432
IJERA Editor
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
Alexander Decker
 
2nd Semester M Tech: CMOS VLSI Design (June-2015) Question Papers
2nd Semester M Tech: CMOS VLSI Design (June-2015) Question Papers2nd Semester M Tech: CMOS VLSI Design (June-2015) Question Papers
2nd Semester M Tech: CMOS VLSI Design (June-2015) Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4
sophiabelthome
 
2nd Semester M Tech: Computer Science and Engineering (Jun-2016) Question Pa...
2nd  Semester M Tech: Computer Science and Engineering (Jun-2016) Question Pa...2nd  Semester M Tech: Computer Science and Engineering (Jun-2016) Question Pa...
2nd Semester M Tech: Computer Science and Engineering (Jun-2016) Question Pa...
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
A new non symmetric information divergence of
A new non symmetric information divergence ofA new non symmetric information divergence of
A new non symmetric information divergence of
eSAT Publishing House
 
Section3 containment and methods
Section3 containment and methodsSection3 containment and methods
Section3 containment and methods
Dương Tùng
 
Skiena algorithm 2007 lecture15 backtracing
Skiena algorithm 2007 lecture15 backtracingSkiena algorithm 2007 lecture15 backtracing
Skiena algorithm 2007 lecture15 backtracingzukun
 
A generalization of fuzzy pre-boundary
A generalization of fuzzy pre-boundaryA generalization of fuzzy pre-boundary
A generalization of fuzzy pre-boundary
IJESM JOURNAL
 
Quiz 1
Quiz 1Quiz 1
Cooperative Techniques for SPARQL Query Relaxation in RDF Databases: ESWC 2015
Cooperative Techniques for SPARQL Query Relaxation in RDF Databases: ESWC 2015Cooperative Techniques for SPARQL Query Relaxation in RDF Databases: ESWC 2015
Cooperative Techniques for SPARQL Query Relaxation in RDF Databases: ESWC 2015
stephane.jean
 
LeetCode Solutions In Java .pdf
LeetCode Solutions In Java .pdfLeetCode Solutions In Java .pdf
LeetCode Solutions In Java .pdf
zupsezekno
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Some fixed point and common fixed point theorems of integral
Some fixed point and common fixed point theorems of integralSome fixed point and common fixed point theorems of integral
Some fixed point and common fixed point theorems of integral
Alexander Decker
 
Dsp
DspDsp
Zeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given CircleZeros of a Polynomial in a given Circle
A generalization of fuzzy semi-pre open sets.
A generalization of fuzzy semi-pre open sets.A generalization of fuzzy semi-pre open sets.
A generalization of fuzzy semi-pre open sets.
IJESM JOURNAL
 

What's hot (20)

D044042432
D044042432D044042432
D044042432
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
2nd Semester M Tech: CMOS VLSI Design (June-2015) Question Papers
2nd Semester M Tech: CMOS VLSI Design (June-2015) Question Papers2nd Semester M Tech: CMOS VLSI Design (June-2015) Question Papers
2nd Semester M Tech: CMOS VLSI Design (June-2015) Question Papers
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4
 
2nd Semester M Tech: Computer Science and Engineering (Jun-2016) Question Pa...
2nd  Semester M Tech: Computer Science and Engineering (Jun-2016) Question Pa...2nd  Semester M Tech: Computer Science and Engineering (Jun-2016) Question Pa...
2nd Semester M Tech: Computer Science and Engineering (Jun-2016) Question Pa...
 
A new non symmetric information divergence of
A new non symmetric information divergence ofA new non symmetric information divergence of
A new non symmetric information divergence of
 
Section3 containment and methods
Section3 containment and methodsSection3 containment and methods
Section3 containment and methods
 
Skiena algorithm 2007 lecture15 backtracing
Skiena algorithm 2007 lecture15 backtracingSkiena algorithm 2007 lecture15 backtracing
Skiena algorithm 2007 lecture15 backtracing
 
A generalization of fuzzy pre-boundary
A generalization of fuzzy pre-boundaryA generalization of fuzzy pre-boundary
A generalization of fuzzy pre-boundary
 
A0750105
A0750105A0750105
A0750105
 
Quiz 1
Quiz 1Quiz 1
Quiz 1
 
Cooperative Techniques for SPARQL Query Relaxation in RDF Databases: ESWC 2015
Cooperative Techniques for SPARQL Query Relaxation in RDF Databases: ESWC 2015Cooperative Techniques for SPARQL Query Relaxation in RDF Databases: ESWC 2015
Cooperative Techniques for SPARQL Query Relaxation in RDF Databases: ESWC 2015
 
LeetCode Solutions In Java .pdf
LeetCode Solutions In Java .pdfLeetCode Solutions In Java .pdf
LeetCode Solutions In Java .pdf
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Some fixed point and common fixed point theorems of integral
Some fixed point and common fixed point theorems of integralSome fixed point and common fixed point theorems of integral
Some fixed point and common fixed point theorems of integral
 
Dsp
DspDsp
Dsp
 
Zeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given CircleZeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given Circle
 
A generalization of fuzzy semi-pre open sets.
A generalization of fuzzy semi-pre open sets.A generalization of fuzzy semi-pre open sets.
A generalization of fuzzy semi-pre open sets.
 
Origin and history of convolution
Origin and history of convolutionOrigin and history of convolution
Origin and history of convolution
 

Viewers also liked

Deterministic AODV Routing Protocol for Vehicular Ad-Hoc Network
Deterministic AODV Routing Protocol for Vehicular Ad-Hoc NetworkDeterministic AODV Routing Protocol for Vehicular Ad-Hoc Network
Deterministic AODV Routing Protocol for Vehicular Ad-Hoc Network
paperpublications3
 
Study of Color Image Processing For Capturing and Comparing Images
Study of Color Image Processing For Capturing and Comparing ImagesStudy of Color Image Processing For Capturing and Comparing Images
Study of Color Image Processing For Capturing and Comparing Images
paperpublications3
 
Applying Agile Methodologies on Large Software Projects
Applying Agile Methodologies on Large Software ProjectsApplying Agile Methodologies on Large Software Projects
Applying Agile Methodologies on Large Software Projects
paperpublications3
 
Research on Lexicographic Linear Goal Programming Problem Based on LINGO and ...
Research on Lexicographic Linear Goal Programming Problem Based on LINGO and ...Research on Lexicographic Linear Goal Programming Problem Based on LINGO and ...
Research on Lexicographic Linear Goal Programming Problem Based on LINGO and ...
paperpublications3
 
Using ψ-Operator to Formulate a New Definition of Local Function
Using ψ-Operator to Formulate a New Definition of Local FunctionUsing ψ-Operator to Formulate a New Definition of Local Function
Using ψ-Operator to Formulate a New Definition of Local Function
paperpublications3
 
Big Data on Implementation of Many to Many Clustering
Big Data on Implementation of Many to Many ClusteringBig Data on Implementation of Many to Many Clustering
Big Data on Implementation of Many to Many Clustering
paperpublications3
 
Cloud Computing Security Issues and Challenges
Cloud Computing Security Issues and ChallengesCloud Computing Security Issues and Challenges
Cloud Computing Security Issues and Challenges
paperpublications3
 
Co-Clustering For Cross-Domain Text Classification
Co-Clustering For Cross-Domain Text ClassificationCo-Clustering For Cross-Domain Text Classification
Co-Clustering For Cross-Domain Text Classification
paperpublications3
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivatives
paperpublications3
 
Study Kc - Spaces Via ω-Open Sets
Study Kc - Spaces Via ω-Open SetsStudy Kc - Spaces Via ω-Open Sets
Study Kc - Spaces Via ω-Open Sets
paperpublications3
 
Non Split Edge Domination in Fuzzy Graphs
Non Split Edge Domination in Fuzzy GraphsNon Split Edge Domination in Fuzzy Graphs
Non Split Edge Domination in Fuzzy Graphs
paperpublications3
 
Enhance The Technique For Searching Dimension Incomplete Databases
Enhance The Technique For Searching Dimension Incomplete DatabasesEnhance The Technique For Searching Dimension Incomplete Databases
Enhance The Technique For Searching Dimension Incomplete Databases
paperpublications3
 
Private Mobile Search Engine Using RSVM Training
Private Mobile Search Engine Using RSVM TrainingPrivate Mobile Search Engine Using RSVM Training
Private Mobile Search Engine Using RSVM Training
paperpublications3
 
Delay Constrained Energy Efficient Data Transmission over WSN
Delay Constrained Energy Efficient Data Transmission over WSNDelay Constrained Energy Efficient Data Transmission over WSN
Delay Constrained Energy Efficient Data Transmission over WSN
paperpublications3
 
An Algorithm Analysis on Data Mining
An Algorithm Analysis on Data MiningAn Algorithm Analysis on Data Mining
An Algorithm Analysis on Data Mining
paperpublications3
 
Analysis of Classification Approaches
Analysis of Classification ApproachesAnalysis of Classification Approaches
Analysis of Classification Approaches
paperpublications3
 
Comparative Performance Analysis & Complexity of Different Sorting Algorithm
Comparative Performance Analysis & Complexity of Different Sorting AlgorithmComparative Performance Analysis & Complexity of Different Sorting Algorithm
Comparative Performance Analysis & Complexity of Different Sorting Algorithm
paperpublications3
 
An Advanced IR System of Relational Keyword Search Technique
An Advanced IR System of Relational Keyword Search TechniqueAn Advanced IR System of Relational Keyword Search Technique
An Advanced IR System of Relational Keyword Search Technique
paperpublications3
 
A SURVEY AND COMPARETIVE ANALYSIS OF E-LEARNING PLATFORM (MOODLE AND BLACKBOARD)
A SURVEY AND COMPARETIVE ANALYSIS OF E-LEARNING PLATFORM (MOODLE AND BLACKBOARD)A SURVEY AND COMPARETIVE ANALYSIS OF E-LEARNING PLATFORM (MOODLE AND BLACKBOARD)
A SURVEY AND COMPARETIVE ANALYSIS OF E-LEARNING PLATFORM (MOODLE AND BLACKBOARD)
paperpublications3
 
Entropy based Digital Watermarking using 2-D Biorthogonal WAVELET
Entropy based Digital Watermarking using 2-D Biorthogonal WAVELETEntropy based Digital Watermarking using 2-D Biorthogonal WAVELET
Entropy based Digital Watermarking using 2-D Biorthogonal WAVELET
paperpublications3
 

Viewers also liked (20)

Deterministic AODV Routing Protocol for Vehicular Ad-Hoc Network
Deterministic AODV Routing Protocol for Vehicular Ad-Hoc NetworkDeterministic AODV Routing Protocol for Vehicular Ad-Hoc Network
Deterministic AODV Routing Protocol for Vehicular Ad-Hoc Network
 
Study of Color Image Processing For Capturing and Comparing Images
Study of Color Image Processing For Capturing and Comparing ImagesStudy of Color Image Processing For Capturing and Comparing Images
Study of Color Image Processing For Capturing and Comparing Images
 
Applying Agile Methodologies on Large Software Projects
Applying Agile Methodologies on Large Software ProjectsApplying Agile Methodologies on Large Software Projects
Applying Agile Methodologies on Large Software Projects
 
Research on Lexicographic Linear Goal Programming Problem Based on LINGO and ...
Research on Lexicographic Linear Goal Programming Problem Based on LINGO and ...Research on Lexicographic Linear Goal Programming Problem Based on LINGO and ...
Research on Lexicographic Linear Goal Programming Problem Based on LINGO and ...
 
Using ψ-Operator to Formulate a New Definition of Local Function
Using ψ-Operator to Formulate a New Definition of Local FunctionUsing ψ-Operator to Formulate a New Definition of Local Function
Using ψ-Operator to Formulate a New Definition of Local Function
 
Big Data on Implementation of Many to Many Clustering
Big Data on Implementation of Many to Many ClusteringBig Data on Implementation of Many to Many Clustering
Big Data on Implementation of Many to Many Clustering
 
Cloud Computing Security Issues and Challenges
Cloud Computing Security Issues and ChallengesCloud Computing Security Issues and Challenges
Cloud Computing Security Issues and Challenges
 
Co-Clustering For Cross-Domain Text Classification
Co-Clustering For Cross-Domain Text ClassificationCo-Clustering For Cross-Domain Text Classification
Co-Clustering For Cross-Domain Text Classification
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivatives
 
Study Kc - Spaces Via ω-Open Sets
Study Kc - Spaces Via ω-Open SetsStudy Kc - Spaces Via ω-Open Sets
Study Kc - Spaces Via ω-Open Sets
 
Non Split Edge Domination in Fuzzy Graphs
Non Split Edge Domination in Fuzzy GraphsNon Split Edge Domination in Fuzzy Graphs
Non Split Edge Domination in Fuzzy Graphs
 
Enhance The Technique For Searching Dimension Incomplete Databases
Enhance The Technique For Searching Dimension Incomplete DatabasesEnhance The Technique For Searching Dimension Incomplete Databases
Enhance The Technique For Searching Dimension Incomplete Databases
 
Private Mobile Search Engine Using RSVM Training
Private Mobile Search Engine Using RSVM TrainingPrivate Mobile Search Engine Using RSVM Training
Private Mobile Search Engine Using RSVM Training
 
Delay Constrained Energy Efficient Data Transmission over WSN
Delay Constrained Energy Efficient Data Transmission over WSNDelay Constrained Energy Efficient Data Transmission over WSN
Delay Constrained Energy Efficient Data Transmission over WSN
 
An Algorithm Analysis on Data Mining
An Algorithm Analysis on Data MiningAn Algorithm Analysis on Data Mining
An Algorithm Analysis on Data Mining
 
Analysis of Classification Approaches
Analysis of Classification ApproachesAnalysis of Classification Approaches
Analysis of Classification Approaches
 
Comparative Performance Analysis & Complexity of Different Sorting Algorithm
Comparative Performance Analysis & Complexity of Different Sorting AlgorithmComparative Performance Analysis & Complexity of Different Sorting Algorithm
Comparative Performance Analysis & Complexity of Different Sorting Algorithm
 
An Advanced IR System of Relational Keyword Search Technique
An Advanced IR System of Relational Keyword Search TechniqueAn Advanced IR System of Relational Keyword Search Technique
An Advanced IR System of Relational Keyword Search Technique
 
A SURVEY AND COMPARETIVE ANALYSIS OF E-LEARNING PLATFORM (MOODLE AND BLACKBOARD)
A SURVEY AND COMPARETIVE ANALYSIS OF E-LEARNING PLATFORM (MOODLE AND BLACKBOARD)A SURVEY AND COMPARETIVE ANALYSIS OF E-LEARNING PLATFORM (MOODLE AND BLACKBOARD)
A SURVEY AND COMPARETIVE ANALYSIS OF E-LEARNING PLATFORM (MOODLE AND BLACKBOARD)
 
Entropy based Digital Watermarking using 2-D Biorthogonal WAVELET
Entropy based Digital Watermarking using 2-D Biorthogonal WAVELETEntropy based Digital Watermarking using 2-D Biorthogonal WAVELET
Entropy based Digital Watermarking using 2-D Biorthogonal WAVELET
 

Similar to Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)

C023014030
C023014030C023014030
C023014030
inventionjournals
 
C023014030
C023014030C023014030
C023014030
inventionjournals
 
A02402001011
A02402001011A02402001011
A02402001011
inventionjournals
 
Ck4201578592
Ck4201578592Ck4201578592
Ck4201578592
IJERA Editor
 
C024015024
C024015024C024015024
C024015024
inventionjournals
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricKomal Goyal
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with Application
TELKOMNIKA JOURNAL
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
Scientific Review SR
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
Alexander Decker
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
Alexander Decker
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
sophiabelthome
 
paper acii sm.pdf
paper acii sm.pdfpaper acii sm.pdf
paper acii sm.pdf
aciijournal
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
aciijournal
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
aciijournal
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
aciijournal
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
aciijournal
 
F023064072
F023064072F023064072
F023064072
inventionjournals
 
F023064072
F023064072F023064072
F023064072
inventionjournals
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
ijtsrd
 
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
IJERA Editor
 

Similar to Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV) (20)

C023014030
C023014030C023014030
C023014030
 
C023014030
C023014030C023014030
C023014030
 
A02402001011
A02402001011A02402001011
A02402001011
 
Ck4201578592
Ck4201578592Ck4201578592
Ck4201578592
 
C024015024
C024015024C024015024
C024015024
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with Application
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
 
paper acii sm.pdf
paper acii sm.pdfpaper acii sm.pdf
paper acii sm.pdf
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
 
F023064072
F023064072F023064072
F023064072
 
F023064072
F023064072F023064072
F023064072
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
 

Recently uploaded

Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 

Recently uploaded (20)

Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 

Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)

  • 1. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 162 Paper Publications Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV) MOHAMMADI BEGUM JEELANI SHAIKH Assistant Professor, Faculty of Mathematics and Statistics, Al Imam Mohammed IBN Saud Islamic, University, Riyadh, Kingdom Of Saudi Arabia Abstract: Ramanujan’s lost notebook contains many results on mock theta functions. In particular, the lost notebook contains eight identities for tenth order mock theta functions. Previously many authors proved the first six of Ramanujan’s tenth order mock theta function identities. It is the purpose of this paper to prove the seventh and eighth identities of Ramanujan’s tenth order mock theta function identities which are expressed by mock theta functions and also a definite integral. The properties of modular forms are used for the proofs of theta function identities and L. J. Mordell’s transformation formula for the definite integral. Keywords: Mock Theta Functions from Ramanujan’s Lost Notebook. Let us start from the famous quote on Ramanujan by one of the prominent mathematician: I still say to myself when I am depressed and find myself forced to listen to pompous and tiresome people, ’Well I have done one thing you could never have done, and that is to collaborated with Little wood and Ramanujan on something like equal terms’. G.H.HARDY 1. INTRODUCTION In S. Ramanujan’s last letter to G. H. Hardy [BR], Ramanujan described a mock theta function, which is a function f(q) defined by a q-series which converges for | q |< 1 and which satisfies the following two conditions: (1) For every root of unity ζ, there is a theta function θζ (q) such that the difference f(q) − θζ (q) is bounded as q → ζ radially. (2) There is no single theta function which works for all ζ: i.e., for every theta function θ(q) there is some root of unity ζ for which f(q) − θ(q) is unbounded as q → ζ radially. He then provided a long list of ‘third order,’ ‘fifth order,’ and ‘seventh order’ mock theta functions together with identities satisfied by them. Further identities can be found in Ramanujan’s lost notebook [RA]. In his lost notebook [RA, p. 9], Ramanujan also gave a list of eight identities involving the following four Ramanujan’s tenth order mock theta functions: φ(q) := ( 1)/2 2 0 1( ; ) n n n n q q q     , ψ(q) := ( 1)( 2)/2 2 0 1( ; ) n n n n q q q      X(q) := 2 0 2 ( 1) ( ; ) n n n n q q q      , and χ(q) := 2 ( 1) 0 2 1 ( 1) ( ; ) n n n n q q q      
  • 2. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 163 Paper Publications Where (a; q)n := 1 0 (1 ) n m m aq    The seventh and eighth identities of Ramanujan’s identities each expresses a combination of φ(q), ψ(q), and a definite integral. The main purpose of this paper is to prove Ramanujan’s seventh and eighth identities. The first six of Ramanujan’s identities were proved by the author [C1], [C2], [C3]. The seventh and eighth identities are 2 ( ) 5 0 1 2 1 5 cosh 45 nnx e n e dx e x n            (1.1) ( ) ( ) 5 5 5 5 5 1 2 2 n nn e e n e e n              And (1.2) 2 ( ) 5 0 ( ) ( ) 5 5 1 2 1 5 cosh 45 5 5 5 1 2 2 n n n nx e n n e e n e dx e x n e e n                              G. N. Watson [WG] also provided several third order mock theta function identities which include the definite integral. Those identities are derived from the generalized Lambert series for the third order mock theta functions by using Cauchy’s theorem. We first need to define a few notations. Throughout the paper, summation indices run through all integers, or through all integers satisfying the conditions listed under the summation sign. Notation.. For a complex number q with | q |< 1 and | bc |< 1, set 0 ( ; ) : (1 )m m a q aq      And (1.3) ( 1) 2 ( 1)/2 ( , ): j j j j j f b c b c    We can easily verify the following identity (1.4) 2 2 2 2 2 2 2 ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )a q a q a q q a q a q a q q        Note that (1.5) ( 1) 2 ( 1)/2 ( ; ) ( ; ) ( ; )j j j j j b c b bc c bc bc bc       Is called the Jacobi triple product identity and (1.6) 2 ( , ) ( ; )f q q q q   is called Euler’s pentagonal number theorem [B1, p. 36]. In [C1], the author derived the following results: (1.7) 1 10 1 10 2 5 1 1( ) ( , ) ( , ) ( ) ( , ) 2 ( , , )q f z z q L q z a q f z z q qA zq q q           
  • 3. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 164 Paper Publications And (1.8) 1 10 1 10 4 2 5 2 2( ) ( , ) ( , ) ( ) ( , ) 2 ( , , )q f z z q L q z a q f z z q qA zq q q            Where (1.9)     2 5 5 1 1 10 3 1 , 2 , 1 z n n n n n n q z L q z q         (1.10)     2 5 5 1 1 2 10 1 1 , 2 , 1 z n nn n n n q z L q z q          (1.11) 2 2 2 2 1 1 1 1 ( ; ) ( ; ) ( , ) A(z,x,q)= ( , ) ( , ) ( , ) q q q q f zx z x q f q q f x x q f zq z q               (1.12) 5 5 10 10 2 8 1 4 4 6 ( ; ) ( ; ) ( ; ) ( ) , ( ; ) ( ; ) q q q q q f q q q f q q f q q            And (1.13) 5 5 10 10 2 8 2 4 4 6 4 2 3 4 6 3 7 9 2 8 2 8 3 7 2 4 6 9 2 8 2 3 7 4 6 5 5 ( ; ) ( ; ) ( ; ) ( ) , ( ; ) ( ; ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ). ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) / ( q q q q f q q q f q q f q q f q q f q q f q q f q q qf q q f q q f q q f q q f q q f q q f q q f q q f q q f q q                                         10 10 3 5 5 10 10 2 8 5 5 2 10 10 2 4 4 6 5 5 2 2 8 3 7 9 2 8 10 4 5 3 2 8 3 7 9 2 2 8 4 6 2 , ) , ( ; ) ( ; ) ( , ) ( ; ) ( ; ) 2 , ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , , , , , ( , ) ( , ) ( , ) ( , ) ( , ) ( q q q q q q f q q q q q q f q q f q q f q q f q q f q q f q q f q q q q q q q f q q f q q qf q q f q q f q q f q                               8 2 3 7 5 5 9 3 7 4 6 2 9 4 6 9 4 6 4 2 3 9 3 7 4 6 2 2 8 2 3 7 5 5 9 2 8 , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ). ( , ) ( , ) ( q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q f q                                          3 7 4 6 2 5 5 10 10 3 , ) ( , ) ( , ) / ( , ) ,q f q q f q q q q      These two identities (1.7) and (1.8) show that two tenth order mock theta functions can be expressed in terms of generalized Lambert series and theta functions. D. Hickerson [H1], [H2] derived similar results for fifth and seventh order mock theta functions, and G. E. Andrews and Hickerson [AH] derived similar results for sixth order mock theta functions.
  • 4. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 165 Paper Publications The author [C2] also derived similar results for the other tenth order mock theta funcions X(q) and χ(q). We will prove (1.1) and (1.2) with (1.7), (1.8), and the transformation formula for the definite integral [ML] which is provided by L. J. Mordell. In [ML, p. 333], Mordell provided the following formula related to the definite integral: (1.14) 2 2 2 ( 2 2 ) 2 2 11 [( ) / , 1/ ] ( , ) ( , ) i t xt i x t i e F x i F x dt e e e x                                  Where i q e   with I(w)>0 , (1.15) 2 1/4 (2 1) 2 1 ( 1) ( , ) 1 m m m m ix m m q e iF x q           And (1.16) 2 1/4 (2 1) 11( , ) ( 1)m m m m ix m i x q e         . In Section 2, we prove nine theta function identities. Six of them are proved by using properties of modular forms. In Section 3, using (1.14), we derive an identity which shows that the definite integral in (1.1) can be expressed by F(x, ω) and 11 (x, ω). Then, applying the generalized Lambert series (1.9) and (1.10), and the two identities (1.7) and (1.8) to the identity, we find that the definite integral in (1.1) is represented by φ(q), ψ(q), and theta functions. Simplifying the sum of theta functions by using the identities in Section 2, we complete the proof of (1.1). In Section 4, we will also prove Ramanujan’s eighth identity by methods similar to those in Section 3. 2. PROOFS OF THETA FUNCTION IDENTITIES In this section, we will prove nine theta function identities. To prove first three identities, we need the next three theorems. Theorem 2.1. For 0 1q  , 0, 0,x y  1 1 1 2 1 1 ( , ) ( , ) ( ,( ) ) ( , )f x x q f y y q f xy xy q f x yq xy q          1 1 1 2 ( ,( ) ) ( , )xf xyq xy q f x y xy q    Proof: See Theorem (1.1) in [H1:p:643] Theorem 2.2. . For 0 1q  , and a, b, c, and d are nonzero complex numbers, then 1 1 0 ( , ( ) ) ( , ) ( , ( ) ) ( , ) b a c d af ab ab q f q f cd cd q f q a b d c            1 1 ( , ( ) ) ( , ) ( , ( ) ) ( , ) c b a d bf bc bc q f q f ad ad q f q b c d a            1 1 ( , ( ) ) ( , ) ( , ( ) ) ( , ). a c b d cf ac ac q f q f bd bd q f q c a d b            Proof. See Theorem (3.5) in [C1, p. 545]. Theorem 2.3. If ab = cd, then
  • 5. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 166 Paper Publications (i) f(a, b)f(c, d) + f(−a, −b)f(−c, −d)=2f(ac, bd)f(ad, bc) And (ii) f(a, b)f(c, d) − f(−a, −b)f(−c, −d)=2af( b c , c b abcd)f( b d , d b abcd). Proof. See Entry 29 in [B1, p. 45]. Theorem 2.4. If 1q  then, 5 5 10 10 4 6 5 5 2 10 10 2 2 3 2 8 5 5 2 4 6 ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) 2 ( ; ) ( ; ) ( ; ) ( ; ) q q q q f q q q q q q q f q q f q q f q q f q q                 9 3 17 4 6 4 6 9 ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) f q q f q q f q q f q q f q q      Proof. Replacing q, x, and y by 5 q , -q, and 2 q , respectively, in Theorem 2.1, we find that (2.1) 4 2 3 3 7 4 6 9 2 8 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ).f q q f q q f q q f q q qf q q f q q            Replacing q, a, b, c, and d by 10 q , 3 q , 2 q , 5 q , and q, respectively, in Theorem 2.2, We find that (2.2) 2 8 3 7 2 4 6 ( , ) ( , ) ( , )f q q f q q f q q      9 4 6 2 5 5 9 2 8 2 3 7 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )f q q f q q f q q qf q q f q q f q q              . Multiplying both sides of (2.1) by 2 8 ( , )f q q  3 7 ( , )f q q  , and using (2.2), we find that (2.3) 2 8 3 7 ( , ) ( , )f q q f q q    4 2 3 ( , ) ( , )f q q f q q  9 4 6 2 5 5 9 2 8 2 3 7 ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )f q q f q q f q q qf q q f q q f q q              . Now, dividing both sides of (2.3) by 9 2 8 2 3 7 4 6 5 5 10 10 3 ( , ) ( , ) ( , ) ( , ) ( , ) / ( , ) ,f q q f q q f q q f q q f q q q q           Using (1.4), and replacing q by -q, we complete the proof of theorem. Theorem 2.5. If 1q  then, 5 5 10 10 2 8 5 5 2 10 10 2 4 4 6 5 5 2 2 8 ( ; ) ( ; ) ( , ) ( ; ) ( ; ) 2 , ( , ) ( , ) ( , ) ( , ) q q q q f q q q q q q f q q f q q f q q f q q                 3 7 9 2 8 2 8 3 7 ( , ) ( , ) ( , ) ( , ) ( , ) f q q f q q f q q f q q f q q      .
  • 6. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 167 Paper Publications Proof. Replac ing q, x, and y by 5 q , q, and - 3 q , respectively, in Theorem 2.1, we find that (2.4) 4 2 3 4 6 3 7 9 2 8 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ).f q q f q q f q q f q q qf q q f q q            Replacing q, a, b, c, and d by 10 4 5 3 , , , ,q q q q q , respectively , in Theorem 2.2 and dividing both sides of Theorem 2.2 by q, we find that (2.5) 9 2 2 8 4 6 ( , ) ( , ) ( , )qf q q f q q f q q      2 8 2 3 7 5 5 9 3 7 4 6 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )f q q f q q f q q f q q f q q f q q              . Multiplying both sides of (2.4 ) by 9 4 6 ( , ) ( , )f q q f q q    , and using (2.5), we find that (2.6) 9 4 6 4 2 3 9 3 7 4 6 2 2 8 2 3 7 5 5 ( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) f q q f q q f q q f q q f q q f q q f q q f q q f q q f q q                     Now, dividing both sides of (2.6) by 9 2 8 3 7 4 6 2 5 5 10 10 3 ( , ) ( , ) ( , ) ( , ) ( , ) / ( , ) ,f q q f q q f q q f q q f q q q q           Using (1.4) , and replacing q by -q, we complete the proof of theorem. Theorem 2.6 . If 1q  then 15 35 25 25 3 5 45 25 25 ( , ) ( , ) ( , ) ( , )f q q f q q q f q q f q q     25 25 15 35 4 5 45 15 35 ( , ) ( , ) ( , ) ( , )f q q f q q q f q q f q q       3 25 25 5 45 4 15 35 5 45 ( , ) ( , ) ( , ) ( , )q f q q f q q q f q q f q q     (2.7) 4 16 8 12 2 ( , ) ( , ).f q q f q q     Proof. Let ab = cd = q50 in Theorem 2.3. Replacing a and c by 15 q and 25 q respectively, in Theorem 2.3 (i), we find that (2.8) 15 35 25 25 ( , ) ( , )f q q f q q  25 25 15 35 ( , ) ( , )f q q f q q   40 60 2 2 ( , ) .f q q   Replacing a and c by 5 q and 25 q , respectively, in Theorem 2.3 (ii), we find that 5 45 25 25 25 25 5 45 5 20 80 2 ( , ) ( , ) ( , ) ( , ) 2 ( , ) .f q q f q q f q q f q q q f q q        Replacing a and c by - 5 q and 15 q respectively, in Theorem 2.3 (i), we find that (2.10) 5 45 15 35 15 35 5 45 20 80 40 60 ( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ) .f q q f q q f q q f q q f q q f q q          Thus, by (2.8), (2.9), and (2.10), the left side of (2.7) equals 40 60 2 8 20 80 2 4 20 80 40 60 2 ( , ) 2 ( , ) 2 ( , ) ( , )f q q q f q q q f q q f q q           . Now, in [B2, p. 191], we find that, for 1x  , f(xA;,x/A)f(xB, x/B)= 5 2 5 2 1 5 1 2 5 2 ( , ) ( , )f x A B x A B f x A B x A B   
  • 7. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 168 Paper Publications (2.11) 7 2 3 2 1 9 1 2 2 1 7 2 7 2 1 1 2 2 9 2 2 1 3 1 2 7 2 1 2 9 2 1 7 1 2 3 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) xBf x A B x A B f x A B x A B xB f x A B x A B f x A B x A B xAf x A B x A B f x A B x A B xA f x A B x A B f x A B x A B                       Multiplying both sides of (2.11) by 2, and replacing x, A, and B by 10 6 ,q q and 2 q Respectively, in (2.11), we find that 4 16 8 12 40 60 2 8 20 80 2 4 20 80 40 60 2 ( , ) ( , ) 2 ( , ) 2 ( , ) 2 ( , ) ( , ) f q q f q q f q q q f q q q f q q f q q                Thus, we have completed the proof of this theorem. We will prove six eta-function identities by using the properties of modular forms. Defnition of the Dedekind eta-function. Let H = {z : Im z > 0}. For z H , 2 iz q = e and any positive integer n, define inz 2 imnz 212 24 24 1 (2.12) (nz) := n = e (1 e ) ( , ) ( , ). n n n n n n m q q q q f q q             Definition of the generalized Dedekind eta-function. Let H = {z : Im z > 0}. For z H , 2 iz q = e and any positive integer n and m,define 2 2 ikz 2 ikz , , 1 1 (mod ) (mod ) (z) := (1 e ) (1 e ) m iP nz n n m n m k k k m n k m n e                      (2.13) 2 2 ( , ) ( ; ) m n m n mP n n n f q q q q q            . In this paper, we only consider the cases with m 0(mod )n for ,n m Definition of the modular group. The modular group is the set of linear fractional transformations  , , az b T T z cz d    where a, b, c, and d are rational integers such that ad – cd = 1. The modular group is denoted by T(1). Let 1( )T N , where N is a positive integer, be the set of linear factional transformations  , az b U U z cz d    where a, b, c, and d are rational integers such that ad – bc = 1, c 0 (mod N), and a d 1 (mod N). Clearly 1( )T N is a subgroup of T(1). Definition of a fundamental region. Let T be a subgroup of T(1). A fundamental region for T is an open subset R of H such that (a) for any two distinct points 1 2,z z in R, there is no T T such that   3T z z for some T T . Definition of a standard fundamental region. Let T be a subgroup of T (1) with cosets 1 2, ,....,A A A in the sense that T(1) 1 1.iU TA  Then
  • 8. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 169 Paper Publications 1 1 . i R U A    (a fundamental region for T(1)) is called a standard fundamental region for T. Definition of a cusp. Let R be a fundamental region of T. A parabolic cusp of T in R is any real point q, or q= , such that q R   , the closure of R in the topology of the Riemann sphere. Definition of a modular form of weight, r. Let r be a real number. A function F(z), defined and meromorphic in H, is said to be a modular form of weight r with respect to, T, with multiplier system v, if (a)  F z satisfied       r F Mz v M cz d F z  for any z H and M T , (b) there exists a standard fundamental region R such that  F z has at most finitely many poles in _ R H and (c)  F z is meromorphic at ,jq for each cusp ,jq in _ R . The multiplier system  v v M for the group T is a complex-valued function of absolute value 1 satisfying the equation.          1 2 3 3 1 2 1 2 1 2 2 r r r z z zv M M c d v M v M c M d c d   For 1 2,M M  T, where          3 31 1 2 2 1 2 3 1 2 1 1 2 2 3 3 , z z z a z ba z b a z b M z M z and M z M M z c d c d c d          Let {T, r,v} denote the space of modular forms of weight r and multiplier system v on T, where T is a subgroup of T(1) of finite index. Let or d (f;z) denote the invariant order of a modular form f at z. Let  ;TOrd f z denote the order of f with respect to T, defined by     1 ; : ; ,TOrd f z ord f z e  where l is the order of f at z as a fixed point of T. Theorem 2.7. The Dedekind eta-function  n z is a modular form of weight ½ on the full modular group T(1). Proof. See Theorem 10 in [KM, p.43]. Theorem 2.8. The multiplier system nv of the modular from is given by the following formula : for each  1 a b M T c d        ,                   2 2 2 1 3 24 1 3 1 24 1 3 1 24 , , , 0 0, , , 0, 0, bd c c a d c ac d d b c d n ac d d b c d d if c is odd c c v M if d is odd andeitherc or d d c if d is odd c d d                                            ( )n z
  • 9. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 170 Paper Publications where 24 is a primitive 24th root of unity. Proof. See Theorem 2 in [KM, p. 51]. Theorem 2.9 (The valence formula).  , , 0,If f T r v and f then   ;T z R Ord f z r   , Where R is an fundamental region for T, and   1 : 1 : 12 T T     Proof. See Theorem 4.1.4 in [RR]. Lemma 2.10. If 1 2 2..... nmm m are positive integers, n is a positive integer, N is a positive even integer, and the least common multiple of 1 2 2..... nmm m divides N, then for z H         1 2 2 1.... , ,nn m z n m z n m z T N n v where  1 24, a b A T N c d         is a primitive 24th root of unity, and        22 1 / / 3 1 24 1 / i i i n ac d m d m b c m di i c m v A d                 Proof. See Lemma 2.2.4 in [C3]. Lemma 2.11. For a positive integer n,   2 1 2 / 1 (1): 1 , p n T T n n p            where the product is over all primes p dividing n. Proof. See Lemma 2.6.5 in [C2]. Theorem 2.12. For ,z H let    , , / 0 : ,n mr n m n N m n f z n z     where ,n m r are integers. If 2 , / 0 0n m n N m n m nP r n          (mod 2) and  2 , / 0 0 0n m n N m n N P r n    (mod 2), then     1 ,0f z T N I , where for    1 , 1 a b M T N I M c d         . Proof. See Theorem 3 in [RS, p. 126]. Theorem 2.13. For z H , 18 4 50 10,2 10,3 20,4 100,50n n n n n 2 50,5 50,10 50,15 50,25 100,40 50,5 50,10 50,15 50,20 50,25 100,40 2 2 2 50,15 50,20 50,25 100,20 50,5 50,15 50,20 50,25 100,40 2 2 2 2 50,5 50,20 50,25 100,30 100,40 50,5 50,15 50,20 100,40 100,5 ( 2 2 x n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n       0 )
  • 10. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 171 Paper Publications (2.14) = 2 16 2 4 2 2 9 10 100 10,1 10,2 20,8 50,10 50,15 50,20 50,25 100,50n n n n n n n n n n Proof. For 1 < i < 7, let 1 if is the product of 18 eta-functions in each of the 7 products in (2.14), and 1 ig be the product of the generalized eta-functions in each of the 7 products in (2.14). Each 1 if is the product of 18 eta-functions, and by Theorem 2.10 and a straightforward calculation, each 1 if is a modular form of weight 9 on 1(300)T with the multiplier system 1v where for        22 1 / / 3 1 24 1 / i i i n ac d m d m b c m di i c m v A d                  . By Theorem 2.12 and a straightforward calculation, each 1 ig is a modular form of weight 0 on 1(300)T with the multiplier system I. Therefore, each 1 1 i if g is a modular form of weight 9 on 1(300)T with multiplier 1v . By Theorem 2.11,  1(1): 300 57600T T    Let 1F denote the difference of the left and right sides of (2.14). Applying Theorem 2.9 (the valence formula), for a fundamental region R for 1(300)T , we deduce that, for 1F , (2.15)      1 1 1300 9.57600 ; 43200 ; , 12T z R Ord F z ord F      Since both sides of (2.14) are analytic on R. Using Mathematica, we calculated the Taylor series of 1F is a constant, we have a contradiction to (2.15). We have thus completed the proof of Theorem 2.13. Theorem 2.14. For z H 18 16 50 10,1 10,2 20,6 20,8 100,50 2 50,5 50,10 50,15 50,20 50,25 100,50 50,5 50,15 50,20 50,25 100,20 2 2 2 50,5 50,10 50,25 100,20 50,5 50,10 50,15 50,25 100,20 2 2 50,10 50 15,25 100,10 100,20 ( 2 2 n n n n n n x n n n n n n n n n n n n n n n n n n n n n n n n n n       2 2 50,5 50,10 50,15 100,20 100,50 )n n n n (2.16) = 2 16 16 2 2 9 10 100 10,2 10,3 20,4 50,5 50,10 50,20 50,25 100,50n n n n n n n n n n Proof. For 1 1 < i < 7, let 2 if be the product of eta-functions in each of the 7 products in (2.16), and 2 ig be the product of the generated eta-functions in each of the 7 products in (2.16). Each 2 if is the product of 18 eta-functions, and by Theorem 2.10 and a straightforward calculation, each 2 if is a modular form of weight 9 on 1(300)T with the multiplier system 2v where for        21 12 3 1 24 1 2 24300 c a ad d bd da b A T v A c d              . By Theorem 2.12 and a straight forward calculation, each 2 ig is a modular from of weight 0 on 1(300)T with the multiplier system I. Therefore, each 2 2 i if g is a modular form of weight 9 on 1(300)T with multiplier system 2v . Let 2F denote the difference of the left and right sides of (2.16). Applying Theorem 2.9, for a fundamental region R for 1(300)T , we deduce that, for 2F , (2.17)      1 2 2300 9.57600 ; 43200 ; , 12T z R Ord F z ord F     
  • 11. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 172 Paper Publications Since both sides of (2.16) are analytic on R. Using Mathematica, we calculated the Taylor series of 2F about q=0 (or about the cusp z= ) and found that 2F =0  43201 2 0F q . Unless 2F is a constant, we have a contradiction to (2.6). We have therefore completed the proof of Theorem 2.14. Theorem 2.15. For z H , (2.18) 2 2 10 3 5 100 5 ,1 6,1n n n n 3 3 2 2 2 50,5 50,10 100,40 100,50 50,15 50,20 100,20 100,50 50,10 50,20 100,25 2 2 10 3 2 2 2 2 20 25 5,1 6,1 25,5 25,5 50,10 50,20 ( 3x n n n n n n n n n n n n n n n n n n n     Proof. For 1 4,i  let 3 if be the product of eta-functions in each of the 4 products in (2.18), and 3 ig be the product of the generalized eta-functions in each of the 4 products in (2.18). Each 3 ig is the product of 14 eta-functions, and by Theorem 2.10 and a straightforward calculation, each 3 ig is a modular form of weight 2 on 1(300)T with the multiplier system 3v , where for        21 18 3 1 50 1 3 24300 c a ad d bd da b A T v A c d              . By Theorem 2.12 and a straightforward calculation, each 3 ig is a modular form of weight 0 on 1(300)T with the multiplier system I. Therefore, each 3 3 i if g is a modular from of weight 2 on 1(300)T with multiplier system 3v . Let 3F denote the difference of the left and rights sides of (2.18). Applying Theorem 2.9, for a fundamental region R for 1(300)T , we deduce that, for 3F , (2.19)      1 3 3300 2.57600 ; 9600 ; , 12T z R Ord F z ord F      Since both sides of (2.18) are analytic on R. Using Mathematica, we calculated the Taylor series of 3F about q = 0 ( or about the cusp z = ) and found that  9601 3 0F q . Unless 3F is a constant, we have a contradiction to (2.19). We have thus completed the proof of Theorem 2.15. Theorem 2.16. For z H , (2.20) 2 2 2 3 4 50 10,1 10,2 10,3 20,2 50,5 50,15 50,25 100,50 50,5 50,15 50,25 100,30 50,5 50,15 50,25 100,10 2 2 2 2 50,5 50,15 100,50 50,5 50,25 100,30 50,5 50,25 100,30 50,15 50,25 100,10 2 2 10 20 10 ( 2 ) n n n n n n x n n n n n n n n n n n n n n n n n n n n n n n n n n n        3 3 3 3 ,1 10,2 20,4 20,8 50,5 50,10 50,25n n n n n n Proof. For 1 8,i  let 4 if be the product of eta-functions in each of the 8 products in (2.20), and 4 ig be the product of the generalized eta-functions in each of the 8 products in (2.20). Each 4 if is the product of 4 eta-functions, and by
  • 12. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 173 Paper Publications Theorem 2.10 and a straightforward calculation, each 4 if is a modular form of weight 2 on 1(300)T with the multiplier system 4v , where for        23 12 3 1 50 1 4 24300 c a ad d bd da b A T v A c d              . By Theorem 2.12 and a straightforward calculation, each 4 ig is a modular form of weight 0 on 1(300)T with the multiplier system I. Therefore, each 4 4 i if g is a modular from of weight 2 on 1(300)T with multiplier system 4v . Let 4F denote the difference of the left and rights sides of (2.20). Applying Theorem 2.9, for a fundamental region R for 1(300)T , we deduce that, for 4F , (2.21)      1 4 4300 2.57600 ; 9600 ; , 12T z R Ord F z ord F      Since both sides of (2.20) are analytic on R. Using Mathematica, we calculated the Taylor series of 4F about q = 0 ( or about the cusp z = ) and found that  9601 4 0F q . Unless 4F is a constant, we have a contradiction to (2.21). We have thus completed the proof of Theorem 2.16. Theorem 2.17. For z H , (2.22) 8 3 2 10 20 50,1 10,4 20,4 20,8 50,5 50,15 50,25 200,50 200,100 10,1 20,10 50,10 100,40 10,3 20,2 50,10 100,40 10,1 20,10 50,20 100,20 10,3 20,2 50,20 100,20 2 10,1 10,4 20,4 20,8 40,10 50,5 50 ( 4 6 ) 4 n n n n n n n n n n n x n n n n n n n n n n n n n n n n n n n n n n n     ,10 50,15 50,20 50,25 200,100 8 3 2 2 10 3 10 20 50 100 10,1 50,10 50,20 10 20 100 10,3 20,2 20,10 8 3 10 20 50 50,5 50,10 50,15 50,20 100,50 200,50 200,100 3 2 10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2 ) ( 4 n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n      2 3 2 20,5 20,8 10,3 20,2 20,4 20,10 8 3 10 20 50 50,5 50,10 50,20 50,25 100,30 200,50 200,100 3 2 2 3 2 10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2 20,5 20,8 10,3 20,2 20,4 20,10 8 3 10 20 50 50,10 50,1 ) (2 2 3 ) n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n       5 50,20 50,25 100,10 200,50 200,100 3 2 2 3 2 10,1 20,6 20,8 20,10 10,1 10,3 10,4 20,2 20,5 20,8 10,3 20,2 20,4 20,10(3 2 2 ) n n n n n n n n n n n n n n n n n n n   Proof. For 1 15,i  let 5 if be the product of eta-functions in each of the 15 products in (2.22), and 5 ig be the product of the generalized eta-functions in each of the 15 products in (2.22). Each 5 if is the product of 12 eta-functions, and by Theorem 2.10 and a straightforward calculation, each 5 if is a modular form of weight 6 on 1(200)T with the multiplier system 5v , where for        21 22 3 1 100 1 5 24 10 200 c a ad d bd da b A T v A c d d                    .
  • 13. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 174 Paper Publications By Theorem 2.12 and a straightforward calculation, each 5 ig is a modular form of weight 0 on 1(200)T with the multiplier system I. Therefore, each 5 5 i if g is a modular from of weight 6 on 1(200)T with multiplier system 5v . By Theorem 2.11,  1(1): 200 28800T T    Let 5F denote the difference of the left and rights sides of (2.22). Applying Theorem 2.9, for a fundamental region R for 1(200)T , we deduce that, for 5F , (2.23)      1 5 5200 6.28800 ; 14400 ; , 12T z R Ord F z ord F      Since both sides of (2.22) are analytic on R. Using Mathematica, we calculated the Taylor series of 5F about q = 0 ( or about the cusp z = ) and found that  14401 5 0F q . Unless 5F is a constant, we have a contradiction to (2.23). We have thus completed the proof of Theorem 2.17. Theorem 2.18. For z H , (2.24) 8 3 3 2 2 10 20 50 10,1 20,4 20,6 20,8 50,15 50,25 200,50 200,100 10,1 20,10 50,10 100,40 10,1 20,10 50,20 100,20 10,3 20,2 50,20 100,20 10 2 2 2 3 10 20 50 100 10,1 10,3 20,2 20,4 20,6 20,8 20,8 40,10 ( 2 ) 4 n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n     50,5 50,10 50,15 50,20 2 100,25 200,100 8 3 3 10 20 50 50,10 50,20 200,50 200,100 3 2 3 2 10,1 20,6 20,8 20,10 50,5 50,15 100,50 10,3 20,2 20,4 20,10 50,5 50,15 50,100 3 2 10,3 20,2 20,4 20,10 50,5 50,25 ( n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n      3 2 100,30 10,1 20,6 20,8 20,10 50,15 50,25 100,10 10,1 10,3 20,2 20,5 20,6 20,8 50,15 50,25 100,102 ) n n n n n n n n n n n n n n n n n   Proof. For 1 10,i  let 6 if be the product of eta-functions in each of the 10 products in (2.24), and 6 ig be the product of the generalized eta-functions in each of the 10 products in (2.24). Each 6 if is the product of 14 eta-functions, and by Theorem 2.10 and a straightforward calculation, each 6 if is a modular form of weight 7 on 1(200)T with the multiplier system 6v , where for        21 2 3 1 20 1 6 24 10 200 c a ad d bd da b A T v A c d d                    . By Theorem 2.12 and a straightforward calculation, each 6 ig is a modular form of weight 0 on 1(200)T with the multiplier system I. Therefore, each 6 6 i if g is a modular from of weight 7 on 1(200)T with multiplier system 6v . Let 6F denote the difference of the left and rights sides of (2.24). Applying Theorem 2.9, for a fundamental region R for 1(200)T , we deduce that, for 5F , (2.25)      1 6 6200 7.28800 ; 16800 ; , 12T z R Ord F z ord F     
  • 14. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 175 Paper Publications Since both sides of (2.24) are analytic on R. Using Mathematica, we calculated the Taylor series of 6F about q = 0 ( or about the cusp z = ) and found that  16801 6 0F q . Unless 6F is a constant, we have a contradiction to (2.25). We have thus completed the proof of Theorem 2.18. We have proved six eta-function identities with the properties of modular forms. In the next step, we will derive six theta function identities from the eta-function identities above. Theorem 2.19. For 1,q  (2.26)                                      5 45 40 60 50 50 6 10 40 4 20 30 220 30 50 50 3 15 35 20 80 2 5 45 40 60 10 40 25 45 40 60 50 50 100 100 2 15 35 10 90 20 , , , , , , , , , 2 , , , , , ; ; 2 , , q q f q q f q q q f q q q f q q f q q f q q q f q q f q q q f q q f q q f q q f q q f q q q q q q q f q q f q q f q                                                                       80 2 35 45 40 60 50 50 25 25 10 90 20 80 30 70 29 8 12 10 10 20 20 3 7 2 18 4 16 , , , ; , , , , , , ; ; , , , q f q q f q q q q f q q f q q f q q f q q f q q f q q q q q q f q q f q q f q q                               Proof. By applying 2 2 100,50 100 50n n n to the right side of (2.14), dividing both sides of (2.14) by 451 18 4 2 230 50 10,2 10,3 20,2 20,4 50,10 50,15 50,20 50,25 100/q n n n n n n n n n n and applying (2.12) and (2.13) , we derive (2.26) from (2.14) Theorem 2.20. For 1,q  (2.27)                                      15 35 20 80 50 50 2 10 40 4 20 30 240 40 50 50 3 5 45 40 60 4 15 35 20 80 20 30 215 35 20 80 50 50 100 100 5 5 45 30 70 4 , , , , , , , , , 2 , , , , , ; ; 2 , , q q f q q f q q q f q q q f q q f q q f q q q f q q f q q q f q q f q q f q q f q q f q q q q q q q f q q f q q f q                                                                       0 60 2 315 35 20 80 50 50 25 25 10 90 30 70 40 60 23 7 4 16 10 10 20 20 9 6 14 8 12 , , , ; , , , , , , ; ; , , , q f q q f q q q q q f q q f q q f q q f q q f q q f q q q q q q f q q f q q f q q                            
  • 15. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 176 Paper Publications Proof. By applying 2 2 100,50 100 100n n n to the right side of (2.16), dividing both sides of (2.16) by 589 18 16 2 230 50 10,1 10,2 20,6 20,8 50,5 50,10 50,20 50,25 100/q n n n n n n n n n n and applying (2.12) and (2.13) , we derive (2.27) from (2.16) Theorem 2.21. For IF 1,q  (2.28)                       5 45 10 40 40 60 50 50 5 220 30 15 35 20 30 20 80 50 50 210 40 25 15 , , , , , , , , , , , f q q f q q f q q f q q q q q f q q f q q f q q f q q f q q q q                         Proof. By applying 25,5 25,10 25 5n n n n to the right side of (2.18), in Theorem 2.15, dividing both sides of (2.18) by 25 2 10 3 2 24 5 5,1 6,1 50,10 50,20q n n n n n and applying (2.12) and (2.13) , we derive (2.28) from (2.18) Theorem 2.23. For IF 1,q  (2.29)                                      25 25 25 25 2 15 35 15 35 8 5 45 5 45 4 25 25 5 45 15 35 25 25 5 15 35 5 45 5 5 45 15 35 9 4 4 10 10 3 7 2 18 , , , , , , , , , , 2 , , , , , , ; , , f q q f q q q f q q f q q q f q q f q q q f q q f q q f q q f q q q f q q f q q q f q q f q q f q q q q q q f q q f q q                             Proof. We can easily derive that for any integers n, (2.30)           250 50 2 100 2 50 100 100 50 , , , , , n n n n n n q q f q q f q q q q f q q           Now, applying 20 20,4 20 8 4n n n n n to the right side of (2.20), dividing both sides of (2.20) by 329 2 2 330 4 10,1 10,2 10,3 20,2 50,5 50,15 50,25q n n n n n n n n and applying (2.12) and (2.13) , and (2.30) with n replaced by 5, 15 and 25, repeatedly, we complete the Proof. Theorem 2.23. IF 1,q  (2.31)
  • 16. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 177 Paper Publications                                        29 4 4 10 10 20 20 4 4 16 8 12 3 7 2 18 29 4 4 10 10 2 10 40 4 16 8 12 3 7 2 18 29 4 4 10 10 6 50 150 3 7 , , ; , 4 , , , , , , ; , 6 , , , , , , ; 4 , , f q q q q q q f q q q f q q f q q f q q f q q f q q q q q q q f q q q f q q f q q f q q f q q f q q q q q q q f q q f q q f                                                                                 4 16 8 12 2 18 29 8 12 10 10 20 20 25 25 3 7 2 18 4 16 23 7 4 16 10 10 20 20 25 15 9 6 14 8 12 15 , , , , , , ; , , , , , , ; ; 4 , , , , , qf q q f q q q q f q q f q q q q q q f q q f q q f q q f q q f q q f q q q q q q qf q q q f q q f q q f q q qf q                                                                                            29 8 12 10 10 20 20 35 3 7 2 18 4 16 23 7 4 16 10 10 20 20 25 15 9 6 14 8 12 29 8 12 10 10 20 20 4 25 25 , , , ; 2 , , , , , ; ; 2 , 3 , , , , , , ; , 3 f q q f q q q q q q q f q q f q q f q q f q q f q q q q q q qf q q q f q q f q q f q q f q q f q q q q q q q f q q f q                                                                  3 7 2 18 4 16 23 7 4 16 10 10 20 20 25 15 9 6 14 8 12 , , , , , ; ; 2 , 2 , , , q f q q f q q f q q f q q q q q q qf q q q f q q f q q f q q                                 Proof. applying 2 2 20 20 10 10, 20 20,4 20,8 4n n n n n n n n  and 50 50,10 50,20 10n n n n  to (2.22), dividing both sides of (2.22) by 233 86 10 20 10,1 10,3 20,2 20,4 20,6 20,8 50,5 50,10 50,15 50,20 50,25 200,50 200,100q n n n n n n n n n n n n n n n and applying (2.12) and (2.13) , and (2.30) with n replaced by 5, 10, 15, 20 and 25, repeatedly, and with q and n replaced by 4 q and 50 q , respectively, we derive (2.32) from (2.20) Theorem 2.24 (2.32) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ( )( ) ( ) ( ) ( ) ( ) ( )) +4 ( ) ( ) ( ) ( ) ( ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ) ( ) ( ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) )
  • 17. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 178 Paper Publications ( ) ( ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ) Proof. Applying , and to (2.24), Dividing both sides of (2.24) by , and applying (2.12), (2.13), and (2.30) with n replaced by 5, 10, 15, 20 and 25, repeatedly, and with q and n replaced by q4 and q50 , respectively, we derive (2.32) from (2.24). 3. PROOF OF RAMANUJAN’S SEVENTH IDENTITY In this section we will prove Ramanujan’s seventh identity, (1.1). Theorem 3.1 (Ramanujan’s seventh tenth order mock theta function identity). ∫ √ √ √ ( ) √ √ ( ) √ √ ( ) Proof. Replacing , x, t, and θ by 5in, –5n, √ , and θ’ – i, respectively, in the left side of (1.14), we find that (3.1) ∫ √ ∫ √ Replacing by in (3.1), and using (1.14), we have (3.2) ∫ √ √ ( ) ( ) ( ) , and Replacing by in (3.1), and using (1.14), we have (3.3) ∫ √ √ ( ) ( ) ( ) Using (3.2) and (3.3), we can easily derive that ∫ √ √ ∫ √ √ ∫ ( √ √ ) ( ∫ √ ∫ √ ) √ √ √ ( ( ) ( ) ( ) ( ) ( ) ( ) ) (3.4) Let . Then, using (1.15), (1.16), (1.3), (1.10) with q and z replaced by – q and q4 , respectively, (1.8), (1.11) with q, z, and x replaced by –q5 , 1 and q2 , respectively, (1.13) with q replaced by – q, and Theorem 2.4, we can derive that
  • 18. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 179 Paper Publications √ √ ( ( ) ( ) ( ) ( ) ) √ √ ( ∑ ( ) ( ) ∑ ( ) ( ) ) √ √ ( ) ( ) √ √ ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) (3.5) √ √ ( ) √ √ ( ) ( ) ( ) ( ) ( ) We now need to use the following transformation formula for in [ML, p. 330]: (3.6) ( ) √ ( ) Replacing and by and , respectively, in (3.6), we find that (3.7) ( ) √ ( ) and replacing and by and , respectively, in (3.6), we find that (3.8) ( ) √ ( ) Let and Then, using (3.7), (3.8), (1.15), and (1.16), we find that (3.9) √ ( ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ∑ ( ) ( ) ∑ ( ) By (1.3), we easily reformulate the denominator of the right hand side of (3.9): (3.10) ∑( ) ∑ ∑( ) ( ) ( ) ( ) ( ) Now, multiplying by both the numerator and the denominator of the numerator of the right side of (3.9), we find that the numerator of the right side of (3.9) equals (3.11) ∑ ( ) * ( ) + ∑ ∑ ( ) ( ) ( )
  • 19. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 180 Paper Publications * ( ) +. We will transform some of the generalized Lambert series in (3.11) into L1 and L2, and we need the following hypergeometric series from [GR, p. 128] to handle the other generalized Lambert series in (3.11): ∑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (3.12) ( ) ( ) ( ) ( ) ( ) , provided | | Replacing q, a, b, and c by √ and √ , respectively, in (3.12), letting d and e tend to , and using (1.3), (1.5), and (2.30) with n replaced by 5, we find that ∑( ) ( )( ) ( ) ( ) (3.13) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) Replacing q, a, b, and c by √ and √ , respectively, in (3.12), letting d and e tend to , and using (1.3), (1.5), and (2.30) with n replaced by 15, we find that ∑( ) ( )( ) ( ) ( ) (3.14) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) With Entry 8(vii) in [B1, p. 114], we find that (3.15) ∑ ( ) ( ) Using (1.9), (1.10), (3.11), (3.13), (3.14), and (3.15), we find that (3.16) ∑ ( ) ( ) (1+ )( ( ) ( ) ( ) ( )) ( )( ( ) ( ) ( ) ( )) ( ( ) ( )) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) To proceed to the next step, we need the following result, which can be proved by a the simple calculation:
  • 20. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 181 Paper Publications (3.17) { √ √ ( ) √ √ ( ) or √ √ ( ) √ √ ( ) Transforming and in the right side of (3.16) into the sums of ψ (q) and theta functions, and ϕ (q) and theta functions, respectively, with (1.7) and (1.8), using (3.10) and (3.17) to simplify the terms related to ϕ (q) and ψ (q), using (1.11), (1.12), and (1.13), replacing q by in Theorem 2.19, Theorem 2.20, and Theorem 2.21, and applying Theorem 2.19, Theorem 2.20, and Theorem 2.21, we find that the right side of (3.16) equals (3.18) ∑( ) ( √ √ ( ) √ √ ( )) ( )( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ) ( )( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ) ( ( ) ( ) ( ) ( ) ( ) ( ) ) ∑( ) ( √ √ ( ) √ √ ( )) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) Therefore, by (3.9), (3.16), and (3.18), we derive (3.19) √ √ √ ( ( ) ( ) ( ) ( ) ) √ ( ) √ √ ( ) √ √ √ ∑ ( )
  • 21. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 182 Paper Publications (( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ) To complete the proof of Theorem 3.1, we need the following identities. Using (1.3), we can derive that ∑ ( ) equals (3.20) { ( ) ( ) if ( ) ( ) ( ) ( ) if ( ) ( ) ( ) ( ) ( ) if or and ∑ ( ) equals (3.21) { ( ) ( ) ( ) ( ) ( ) if or ( ) ( ) ( ) ( ) ( ) if or Recall that and . By (1.3), (1.16), and (3.6), we are able to derive the following four identities: (3.22) { ( ) √ ∑ ( ) ( ) √ ∑ ( ) ( ) √ ∑ ( ) ( ) √ ∑ ( ) By (3.22), we find that (3.23) ( ) ( ) ( ) ( ) ∑ ( ) ∑ ( ) ∑ ( ) ∑ ( ) Recall that and By (3.20), (3.21), Theorem 2.22 with q replaced by and Theorem 2.6 with q replaced by , the numerator of the right side of (3.23) equals (( ) ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) ( )) (( ) ( ) ( ) ( ) ( ))
  • 22. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 183 Paper Publications ( ( )( ) ( ) ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) (3.24) ( ) ( ) ( ) ( ) Here, we easily calculate that √ √ and √ Now, let the left side of (2.31) with q replaced by q1, √ the left side of (2.32) with q replaced by q1, the right side of (2.31) with q replaced by q1, and √ the right side of (2.32) with q replaced by q1. Then, we easily verify that the right side of (3.24) equals the sum of LS1 and LS2. Therefore, we can say that the right side of (3.24) equals the sum of RS1 and RS2. Using (3.21), we can find that the sum of RS1 and RS2 equals ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( )) (( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) )
  • 23. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 184 Paper Publications ∑( ) (( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) (3.25) ( ) ) By (3.7), (1.3), and (1.16), we find that (3.26) ( ) ∑ ( ) √ By (3.23), (3.24), (3.25), and (3.26), we find that (3.27) √ √ ( ) ( ) ( ) ( ) ( ) √ √ √ ∑ ( ) ∑ ( ) ∑ ( ) ∑ ( ) ( ) ∑ ( ) √ √ ∑ ( ) (( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ) In conclusion, using (3.4), (3.5), (3.19), and (3.27), we see that we have completed the proof of Ramanujan's seventh identity. 4. PROOF OF RAMANUJAN'S EIGHTH IDENTITY In this section, we will prove the Ramanujan's eighth identity (1.2). The proof of eighth identity is similar to that of seventh identity. Theorem 4.1 (Ramanujan's eighth tenth order mock theta function identity). ∫ √ √ √ ( ) √ √ ( ) √ √ ( ) Proof. Replacing by in (3.1), and using (1.14), we find that
  • 24. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 185 Paper Publications (4.1) ∫ √ √ ( ) ( ) ( ) , Similarly, replacing by in (3.1), and using (1.14), we find that (4.2) ∫ √ √ ( ) ( ) ( ) Using (4.1) and (4.2), we find that ∫ √ √ ∫ √ √ ∫ ( √ √ ) ( ∫ √ ∫ √ ) (4.3) √ √ √ ( ( ) ( ) ( ) ( ) ( ) ( ) ) (3.4) Let . Then, using (1.15), (1.16), (1.3), (1.9) with q and z replaced by – q and q2 , respectively, (1.7), (1.11) with q, z, and x replaced by –q5 , 1 and – q, respectively, (1.12) with q replaced by – q, and Theorem 2.5, we can derive that √ √ ( ( ) ( ) ( ) ( ) ) √ √ ( ∑ ( ) ( ) ∑ ( ) ( ) ) √ √ ( ) ( ) √ √ ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) (4.4) √ √ ( ) √ √ ( ) ( ) ( ) ( ) ( ) Replacing and by and , respectively, in (3.6), we find that (4.5) ( ) √ ( ) Replacing and by and , respectively, in (3.6), we find that (4.6) ( ) √ ( ) Let and Then, using (4.5), (4.6), (1.15), and (1.16), we find that (4.7)
  • 25. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 186 Paper Publications √ ( ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ∑ ( ) ( ) ∑ ( ) If we replace by in the right side of (3.9), we can find that the right side of (3.9) equals the right side of (4.7). And, it's easy to verify that (3.10), (3.11), and (3.16) are correct if we replace by in (3.10), (3.11), and (3.16). Therefore, we find that (4.8) ∑ ( ) ( ) ( ) ( ) ( ) and the numerator of (4.7) equals (4.9) (1+ )( ( ) ( ) ( ) ( )) ( )( ( ) ( ) ( ) ( )) ( ( ) ( )) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) we also need the following results, which can be obtained by an easy calculation: (4.10) { √ √ ( ) √ √ ( ) or √ √ ( ) √ √ ( ) Transforming and into the sums of ψ (q) and theta functions, and ϕ (q) and theta functions with (1.7) and (1.8), using (4.8) and (4.10) to simplify the terms related to ϕ (q) and ψ (q), replacing q by in Theorem 2.19, Theorem 2.20, and Theorem 2.21, and applying Theorem 2.19, Theorem 2.20, and Theorem 2.21, we find that (4.9) equals (4.11) ∑( ) ( √ √ ( ) √ √ ( )) ( )( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ) ( )( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
  • 26. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 187 Paper Publications ( ) ( )( ) ( ) ( ) ) ( ( ) ( ) ( ) ( ) ( ) ( ) ) ∑( ) ( √ √ ( ) √ √ ( )) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) By (4.7), (4.9), and (4.11), we find that (4.12) √ √ √ ( ( ) ( ) ( ) ( ) ) √ ( ) √ √ ( ) √ √ √ ∑ ( ) (( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ) By (1.3), (1.16), and (3.6), we derive the next two identities: (4.13) { ( ) √ ∑ ( ) ( ) √ ∑ ( ) Using (3.22) and (4.13), we find that (4.14) ( ) ( ) ( ) ( ) ∑ ( ) ∑ ( ) ∑ ( ) ∑ ( ) Recall that and By (3.20), (3.21), Theorem 2.22 with q replaced by and Theorem 2.6 with q replaced by , the numerator of the right side of (4.14) equals (4.15) (( ) ( ) ( ) ( ) ( ))
  • 27. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 188 Paper Publications ( ( ) ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) ( )) (( ) ( ) ( ) ( ) ( )) ( ( )( ) ( ) ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Here, we easily calculate that √ √ and √ Let the left side of (2.31) with q replaced by q1, √ the left side of (2.32) with q replaced by q1, the right side of (2.31) with q replaced by q1, and √ the right side of (2.32) with q replaced by q1. Then, we easily verify that the right side of (4.16) equals the sum of LS'1 and LS'2. Therefore, we can say that the right side of (4.15) equals the sum of RS'1 and RS'2. Using (3.21), we can find that the right side of (4.15) equals (4.16) (( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ) ( ( ) ( ) ( ) ( ) ( ))
  • 28. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 189 Paper Publications (( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ) ∑ (( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ) By (4.5), (1.3), and (1.16), we find that (4.17) ( ) ∑ ( ) √ By (4.16) and (4.17), we find that √ √ ( ) ( ) ( ) ( ) ( ) √ √ √ ∑ ( ) ∑ ( ) ∑ ( ) ∑ ( ) ∑ ( ) √ √ ∑ ( ) (( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) (4.18) ( ) ) In conclusion, using (4.3), (4.4), (4.12), and (4.18), we have completed the proof of Ramanujan's eighth identity. REFERENCES [1] G. E. Andrews and D. Hickerson, Ramanujan’s ”Lost” Notebook VII:The sixth order mock theta functions, Adv. Math. 89 (1991), 60–105. MR 92i:11027 [2] B. C. Berndt, Ramanujan’s Notebooks Part III, Springer-Verlag, New York, 1991. MR 92j:01069 [3] B. C. Berndt, Ramanujan’s Notebooks Part IV, Springer-Verlag, New York, 1994. MR 95e:11028 [4] B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, Amer. Math. Soc., Providence, 1995; London Math. Soc., London, 1995. MR 97c:01034 [5] Y.-S. Choi, Tenth order mock theta functions in Ramanujan’s Lost Notebook, Invent. Math. 136 (1999), 497–569. MR 2000f:11016 [6] Y.-S. Choi, Tenth order mock theta functions in Ramanujan’s Lost Notebook (II), Adv. Math. 156 (2000), 180–285. CMP 2001:07
  • 29. ISSN 2350-1022 International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 2, Issue 1, pp: (162-190), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 190 Paper Publications [7] Y.-S. Choi, Two identities for tenth order mock theta functions in Ramanujan’s Lost Note- book, submitted for publication. [8] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990. MR 91d:33034 [9] D. Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988), 639–660. MR 90f:11028a [10] D. Hickerson, On the seventh order mock theta functions, Invent. Math. 94 (1988), 661–677. MR 90f:11028b [11] M. I. Knopp, Modular Functions in Analytic Number Theory, reprint, Chelsea Publishing Co., New York, 1993. MR 42:198 (original ed.) [12] L. J. Mordell, The value of the definite integral, Quarterly Journal of Mathematics 48 (1920), 329–342. [13] S. Ramanujan, the Lost Notebook and Other Unpublished papers, Narosa Publishing House, New Delhi, 1988. MR 89j:01078 [14] R. A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1977. MR 58:16518 [15] S. Robins, Generalized Dedekind η-products, Contemp. Math. 166 (1994), 119-128. MR 95k:11061 [16] G. N. Watson, The final problem:An account of the mock theta functions, J. London Math. Soc. 11 (1936), 55–80.