SlideShare a Scribd company logo
1 of 9
Download to read offline
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 5 (May. - Jun. 2013), PP 19-27
www.iosrjournals.org
www.iosrjournals.org 19 | Page
A Convergence Theorem Associated With a Pair of Second Order
Differential Equations
Amar Kumar
J R S College, Jamalpur (T M Bhagalpur University, Bhagalpur)
Abstract: We consider the second order matrix differential equation
  0, 0M x      .
Where M is a second-order matrix differential operator and  is a vector having two components. In this
paper we prove a convergence theorem for the vector function
1
2
( )
( )
( )
f x
f x
f x
 
  
 
which is continuous in
0 x   and of bounded variation in 0 x  , when ( )p x and ( )q x tend to  as x tend to  .
Key Words: Matrix differential operator, convergence theorem, bounded variation.
§1. Let M denote the matrix operator
2
2
2
2
( ) ( )
( ) ( )
d
p x r x
dx
M
d
r x q x
dx
 
 
 
 
 
 
(1.1)
and ( )x   a vector having two components ( )u u x and ( )v v x represented as a column matrix
u
v
 
   
 
.
Consider the homogenous system
  0, 0M x      . (1.2)
where  is a parameter, real or complex.
We assume the following conditions to be satisfied:
(i) ( ), ( )p x q x tend to  as x tend to .
(ii) ( ) 0, ( ) 0, ( ) 0, ( ) 0p x q x p x q x       .
(iii)  
3
( ) ( ) , 0
2
c
p x p x c    
 
 .
(iv)   1
1
3
( ) ( ) , 0
2
c
q x q x c    
 
 .
(v) ( )r x is bounded or  
1
( ) ( ) ( ) , 0 .
4
d
r x p x q x d   
 

(vi)  
1
2
0
( )p x dx


 and  
1
2
0
( )q x dx


 are divergent.
(vii)    
1 1
2 2
0 0
( ) ( )p x dx q x dx
 
 
  is convergent as x .
Following Bhagat [2], the bilinear concomitant   of two vectors
1
2


 
   
 
and
1
2



 
  
 
is defined by
  1 1 1 1 2 2 2 2               .
A Convergence Theorem Associated With A Pair Of Second Order Differential Equations
www.iosrjournals.org 20 | Page
If  and  are any two solutions of the system (1.2) for the same value of  , then   is a function of 
alone. It is an integral function of  , real for real  (see Bhagat [1]).
Let
(0 ; )
( , ) (0 ; ) , ( 1,2)
(0 ; )
j
j j
j
u x
x x j
v x

   

 
   
 
be the boundary condition vectors at 0x  by
2 1
4 3
(0 ; ) (0 ; )
, ( 1,2)
(0 ; ) (0 ; )
j j j j
j j j j
u x a u x a
j
v x a v x a
 
 
   

   
,
so that the boundary conditions to be satisfied by any solution
( , )
( , )
( , )
u x
x
v x

 

 
  
 
of (1.2) at 0x  are given by
( , ) ( , ) 0, ( 1,2)jx x j        (1.3)
and
 1 2 0   (1.4)
The vectors
(0 / ; )
( , ) (0 / ; ) , ( 1,2)
(0 / ; )
k
k k
k
x x
x x k
y x

   

 
   
 
which take real constant values (independent of
 ) at 0x  are defined by the relations
j k jk      ,  1 2 0   (1 , 2)j k  (1.5)
§2. Green Matrix:
The Green matrix
11 21
12 22
( , ; )
G G
G x y
G G

 
  
 
for the system (1.2) is given by
11 21 1 1
1
12 22 2 2
( , ) ( , ) ( , ) ( , )
( , ; )
( , ) ( , ) ( , ) ( , )
x x u y v y
G x y
x x u y v y
     

     
   
    
   
;  0,y x
1 1 11 21
2 2 12 22
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )
u x v x y y
u x v x y y
     
     
   
    
   
;  ,y x 
We shall use the notations and results of Bhagat [3] and Pandey and Kumar [6]. The method of
Titchmarsh [8] will be used to obtain the results analogous to [7].
§3. Let
( , )
( , ) , ( 1,2)
( , )
j
j
j
S x
A x j
T x



 
  
 
. It can be verified following Titehmarsh [8,§ 5.4] that ( , )jA x 
satisfies the system of integral equations.
 
 
0
0
1
( , ) (0)cos ( ) (0)sin ( ) [ ( ) ( , ) ( ) ( , )]sin ( ) ( )
,( 1,2)
1
( , ) (0)cos ( ) (0)sin ( ) [ ( ) ( , ) ( ) ( , )]sin ( ) ( )
x
j j j j j
x
j j j j j
S x S w x S w x P t S t R t T t w x w t dt
j
T x T z x T z x Q t T t R t S t z x z t dt
  

  


     


     



(3.1)
When 2
  , then
 
1
4( , ) ( ) ( , ), ( 1,2)j jS x p x u x j     (3.2)
 
1
4( , ) ( ) ( , ), ( 1,2)j jT x q x v x j     (3.3)
 
1
2
0
( ) ( )
x
w x p t dt  (3.4)
 
1
2
0
( ) ( )
x
z x q t dt  (3.5)
 
 
 
2
3 5
2 2
( )1 ( ) 5
( )
4 16
( ) ( )
p xp x
P x
p x p x 

 
 
(3.6)
 
 
 
2
3 5
2 2
( )1 ( ) 5
( )
4 16
( ) ( )
q xq x
Q x
q x q x 

 
 
(3.7)
A Convergence Theorem Associated With A Pair Of Second Order Differential Equations
www.iosrjournals.org 21 | Page
   
1 1
4 4
( )
( )
( ) ( )
r x
R x
p x q x 

 
(3.8)
We assume that ( )p x and ( )q x are bounded for all finite x and (0) (0) 0p q  . So for a fixed x and
large  , we have from (3.2) – (3.8)
 
1
4(0) (0), ( 1,2)j jS u j  (3.9)
 
1
4(0) (0), ( 1,2)j jT v j  (3.10)
 
31
44(0) (0) , ( 1,2)j jS u j 
     
 
 (3.11)
 
31
44(0) (0) , ( 1,2)j jT v j 
     
 
 (3.12)
1 1
2 2( )w x  
 
   
 
 (3.13)
1 1
2 2( )z x  
 
   
 
 (3.14)
   
31 1
44 4( )p x  
 
    
 
 (3.15)
   
31 1
44 4( )q x  
 
    
 
 (3.16)
3
4( )P x 
 
  
 
 (3.17)
3
4( )Q x 
 
  
 
 (3.18)
1
2( )R x 
 
  
 
 (3.19)
Let , 0s it t    . Therefore,
1
2
( , )
, ( 1,2)
( , )
t x
j j
t x
j j
S x H e
j
T x H e




  

  
(3.20)
Therefore, from (3.1), we have
 
1
( )
1 2
0
2
( )
0
1
( , ) (0)cos ( ) (0)sin ( )
[ ( ) ( , ) ( ) ( , )]sin ( ) ( )
1
( , ) (0)cos ( ) (0)sin ( )
[ ( )
tx
j j j
x
t x y
j j
tx
j j j
x
t x y
H x S w x S w x e
e P y H y R y H y w x w y dy
H x T z x T z x e
e Q y H


 



 

 
     
 
  
     
 


  2 1
,( 1,2)
( , ) ( ) ( , )]sin ( ) ( )j j
j
y R y H y z x z y dy 











  

(3.21)
Let
max (0), (0), (0), (0)
( ) max ( ) , ( ) , ( )
j j j jM S T S T
N y P y Q y R y
    
     
(3.22)
Now we have
cos ( ) , sin ( )
and
sin ( ) , cos ( )
tx
tx
w x w x e
z x z x e




 
for large  (3.23)
Therefore, using (3.22) and (3.23), (3.21) gives
A Convergence Theorem Associated With A Pair Of Second Order Differential Equations
www.iosrjournals.org 22 | Page
 1 2 1 2
0
1
( , ), ( , ) 1 ( , ) , ( , ) ( )
x
j j j jH x H x M H y H y N y dy   

 
     
 
 for large  .
Therefore from Conte and Sangren Lemma of [14], we have
1 2
0
1
( , ) , ( , ) 1 exp 2 ( ) , ( 1,2)
x
j jH y H y M N y dy j 

    
           
 (3.24)
Thus, we see that 1jH and 2jH are bounded for all x and large  . It follows from (3.20) that
( , ), ( , ) ( ), ( 1,2)tx
j jS x T x o e j    (3.25)
for all x and large  .
From (3.1), using (3.25)
1
2
1
2
( , ) (0)cos ( )
, ( 1,2)
( , ) (0)cos ( )
tx
j j
tx
j j
S x S w x e
j
T x T z x e
 
 


 
   
 

        


(3.26)
Using (3.2) and (3.3), we get from (3.26)
3
4
3
4
( , ) (0)cos ( )
, ( 1,2)
( , ) (0)cos ( )
tx
j j
tx
j j
u x u w x e
j
v x v z x e
 
 


 
   
 

        


(3.27)
Also, we have from [5, Chap.3, §4], for large x .
 
( )
1
1
4
( ) (1)
( , ) , ( 1,2)
( )
iw x
j
j
e M
u x j
p x




   


(3.28)
 
( )
2
1
4
( ) (1)
( , ) , ( 1,2)
( )
iz x
j
j
e M
v x j
q x




   


(3.29)
where
   
1
4
1 1 5
4 4
1 1
( )
4 4
0
(0) (0) (0)1 1
( ) (0)
2 2
4
1
+ ( ) ( ) ( , ) ( ) ( ) ( , )
2
j j
j j
iw t
j j
u u p
M u
i
e P t p t u t R t q t v t dt
i
 
 
   

  
    
 
 
 
   
 

(3.30)
   
1
4
2 1 5
4 4
1 1
( )
4 4
0
(0) (0) (0)1 1
( ) (0)
2 2
4
1
+ ( ) ( ) ( , ) ( ) ( ) ( , )
2
j j
j j
iz t
j j
v v q
M v
i
e Q t q t v t R t p t u t dt
i
 
 
   

  
    
 
 
 
   
 

(3.31)
under the condition ( ( ) ( )) (1)im w x z x   .
§4. In this section we obtain a solution of the system (1.2) which is small when imaginary part of  is
large and positive and x is large. To find such a solution we consider the system of integral equations
A Convergence Theorem Associated With A Pair Of Second Order Differential Equations
www.iosrjournals.org 23 | Page
 
 
 
 
 
 
( ) ( )( )
0
( ) ( )
( ) ( )( )
0
(
1
( , ) ( ) ( , ) ( ) ( , )
2
1
( ) ( , ) ( ) ( , )
2
1
( , ) ( ) ( , ) ( ) ( , )
2
1
2
x
i w x w tiw x
j j j
i w x w t
j j
x
x
i z x z tiz x
j j j
i z
X x e e P t X t R t Y t dt
i
e P t X t R t Y t dt
i
Y x e e Q t Y t R t X t dt
i
e
i
  
 
  




   
 
   




 
 ) ( )
, ( 1,2)
( ) ( , ) ( ) ( , )x z t
j j
x
j
Q t Y t R t X t dt 













 


(4.1)
Exactly following Titchmarsh [8, §6.2] and using (vii) of §3 it can be verified that the solutions of the system of
integral equations (4.1) satisfying (1.2). Also we have
( )
( )
( , )
(1 )
, ( 1,2)
( , )
(1 )
iw x
j
iz x
j
e
X x
J
j
e
Y x
J





 
 


 
(4.2)
where
   ( ) ( ) ( ) ( )
0 0 0 0
max ( ) , ( ) , ( ) , ( )im w y z y im z y w y
J P y dy Q y dy R y e dy R y e dy
   
  
  
 
   
Considering (4.1) for a fixed  or  in the bounded part of the region
1
2 1J 
 
  
 
 , if  is sufficiently
large and noting that  ( ) ( ) (1)im w x z x   , it can be shown following [8, §6.2] that
( )
1
( )
2
( , ) ( ) (1)
, ( 1,2)
( , ) ( ) (1)
iw x
j j
iz x
j j
X x e L
j
Y x e L
 
 
   

     


(4.3)
where
 
 
( )
1
0
( )
0
1
( ) 1 ( ) ( , ) ( ) ( , )
2
, ( 1,2)
1
( , ) 1 ( ) ( , ) ( ) ( , )
2
iw y
j j j
iz y
j j j
L e P y X y R y Y y dy
i
j
Y x e Q y Y y R y X y dy
i
  
  





   


   



(4.4)
From (3.2), (3.3) and (3.4), we have
( )
1
1
4
( )
2
1
4
( ) (1)
( ,)
( ( ))
, ( 1,2)
( ) (1)
( , )
( ( ))
iw x
j
j
iz x
j
j
e L
u x
p x
j
e L
v x
q x





   

 

    
 


(4.5)
§5. From (3.28) and (3,29) we see that ( , ),( 1,2)j x j   are large when the imaginary part of ( )w x and
( )z x are large and positive. Therefore ( , ),( 1,2)j x j   are not  2
0,L  . But from (4.5) we see that
( , )
( , ) , ( 1,2)
( , )
j
j
j
u x
x j
v x

 

 
  
 
are small when the imaginary part of ( )w x and ( )z x are large and positive. Thus ( , )j x  and ( , )j x  ,
( 1,2)j  are linearly independent. Then
2 2
1 1
( , ) ( ) ( , ) ( ) ( , ), ( 1,2)r rs s rs s
s s
x K x L x r       
 
    (5.1)
Since ( , ), ( 1,2)r x r   are  2
0,L  but ( , )j x  are not  2
0,L  , therefore ( ) 0, (1 , 2)rsL r s    . Hence
A Convergence Theorem Associated With A Pair Of Second Order Differential Equations
www.iosrjournals.org 24 | Page
2
1
( , ) ( ) ( , ), ( 1,2)r rs s
s
x K x r    

  (5.2)
From asymptotic formulae (3.28), (3.29) and (4.3) we have, as x tend to infinity
 
 
 
 
1
( )
4
1
1
( )
4
2
1
( )
4
1
1
( )
4
1
( , ) ( ) ( )
( , ) ( ) ( )
, ( 1,2)
( , ) ( ) ( )
( , ) ( ) ( )
iw x
j j
iz x
j j
iw x
j j
iz x
j j
u x i p x e M
v x i q x e M
j
u x i p x e L
v x i q x e L
  
  
  
  



   

   

  

   




(5.3)
where dashes denote differentiation with respect to x . Using (3.28), (3.29), (4.5), (5.2) and (5.3) we obtain from
(1.5)
  
  
  
  
21 21 22 22
11
11 22 12 21 12 21 11 22
21 11 22 12
12
11 22 12 21 12 21 11 22
11 21 12 22
21
11 22 12 21 12 21 11 22
11 11 12 12
22
11 22 12 21 12 21 11 22
( )
2
( )
2
( )
2
( )
2
M L M L
K
i M M M M L L L L
M L M L
K
i M M M M L L L L
M L M L
K
i M M M M L L L L
M L M L
K
i M M M M L L L L




 
  


 
  



 


  





(5.4)
§6. Convergence Theorem:
If
1
2
( )
( )
( )
f x
f x
f x
 
  
 
be a real valued continuous vector of bounded variation in 0 x  , and 2
[0, )L  and is such
that the integrals
1
0
( ) ( )p x f x dx

 ; 1
0
( ) ( )p x f x dx

 (6.1)
are uniformly convergent for large  , then
1
( ) lim ( , )
R i
R
R i
f x x d
i


  



 
   (6.2)
uniformly for 0 1  , where
1
2 0
( , )
( , ) ( , ; ) ( )
( , )
x
x G x y f y dy
x
 
  
 

 
  
 
 (6.3)
We prove convergence theorem for 1( , )x  because similar result holds for 2 ( , )x  .
Now we write 1( , )x  as
   
   
1 11 1 21 2
0 0
1 1 2 2
( , ) ( , ) , ( ) ( , ) , ( )
( , ) , ( ) ( , ) , ( ) .
x x
T T
T T
x x
x x y f y dy x y f y dy
u x y f y dy u x y f y dy
         
     
 
  
 
 
 
     
     
 
1 11 1 1 1 11 1 21 2 1
0 0
2 21 1 11 1 2 21 2 2
0 0
1 12 2
( , ) ( , ) , ( ) ( , ) , ( ) ( , ) , ( )
+ ( , ) , ( ) ( , ) , ( ) ( , ) , ( )
+ ( , ) ,
x x
x
x x
x
x
x x u y f y dy u x y f y dy x u y f y dy
u x y f y dy x v y f y dy x v y f y dy
u x y f
          
        
  



   
  
  
  
  2 22 2( ) ( , ) , ( ) .
x
y dy u x y f y dy  

 
A B C D E F      (6.4)
where
A Convergence Theorem Associated With A Pair Of Second Order Differential Equations
www.iosrjournals.org 25 | Page
   11 1 1 1 11 1
0
( , ) , ( ) ( , ) , ( )
x
x
A x u y f y dy u x y f y dy     

  
   21 2 1 2 21 1
0
( , ) , ( ) + ( , ) , ( )
x
x
B x u y f y dy u x y f y dy     

  
 11 1 2
0
( , ) , ( )
x
C x v y f y dy   
 21 2 2
0
( , ) , ( )
x
D x v y f y dy   
 1 12 2( , ) , ( )
x
E u x y f y dy  

 
 2 22 2( , ) , ( ) .
x
F u x y f y dy  

 
We evaluate A , the other term can be evaluated in the same way. Now
   11 1 1 1 11 1
0
( , ) , ( ) ( , ) , ( )
x
x
A x u y f y dy u x y f y dy     

  
   11 1 1 1 11 1
0
( , ) , ( ) ( , ) , ( )
x x x
x x x
x u y f y dy u x y f y dy
 
 
     
  
 
   
     
   
   
1 2 3 4A A A A    , say
For 1J  , if  is sufficiently large, we have from (5.2) and (5.4)
 
 
 
( )
22
11 1
4
11 22 12 21
1
( )
4
22
1
4
11 22 12 21
( )
( , )
2 ( ) ( ) ( ) ( ) ( )
( ) ( )
1
2 ( ) ( ) ( ) ( )
iw x
im w x
M e
x
M M M M p x
M e p x
M M M M

 
    


    

 
 
 
  
 

(6.5)
Therefore, using (3.2), (3.25) and (6.5), we have
4 11
2
( )
tx
ty
x
e
A o e f y dy




 
 
  
 
 

For a fixed y , ( )p y is less than  . Therefore, using (6.1), we have
4 1
2
t
e
A o


 
 
  
 
 
(6.6)
The integral of (6.6) round the semicircle tends to zero as R tends to infinity for any fixed 0  . A similar
argument holds for 1A also. Now, we consider 3A . For fixed x or in a finite interval, from (4.1), we have
 
   
 ( ) ( ) ( ) ( )( )
0
1 1
( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
2 2
x
i w x w y i w y w xiw x
j j j j j
x
X x e e P y X y R y Y y dy e P y X y R y Y y dy
i i
    

 
     
 ( )
( )
2
im w x
e
J

    
 ( )
, ( 1,2)
im w x
e j 
   (say) (6.7)
Similarly,
( )
( , ) iz x
jY x e 
 ( )
, ( 1,2)
im z x
e j 
   (say) (6.8)
Also from (4.4), we have
A Convergence Theorem Associated With A Pair Of Second Order Differential Equations
www.iosrjournals.org 26 | Page
1
2
1
1
2
2
( ) 1
, ( 1,2)
( ) 1
j
j
L
j
L
 
 


 
   
 

     


(6.9)
Similarly from (3.30) and (3.31), we have
1 1
4 4
1
1 1
4 4
2
1
( ) (0)
2
, ( 1,2)
1
( ) (0)
2
j j
j j
M u
j
M v
  
  


 
   
 

     


(6.10)
Therefore, by using (6.9), (4.3) can be written as
1
( )
2
1
( )
2
( , ) 1
, ( 1,2)
( , ) 1
iw x
j
iz x
j
X x e
j
Y x e
 
 


  
    
  

           


(6.11)
Now using (4.5), (6.10) and (6.11), (5.2) and (5.4) give
 
  
1
( ) 2
2
11 1 1
4 4
1 2 1 2
(0) 1
( , )
(0) (0) (0) (0) ( )
iw x
v e
x
i v u u v p x

 
 
 
  
 
 

 
 
1
( ) 2 1
2
4
1
2
1 2 1 2
(0) 1
( )
1
(0) (0) (0) (0)
iw x
v e
p x
i v u u v





 
  
    
 


(6.12)
Thus from the first result of (3.27) and (6.12), we get
 
1
4
( )1 2
3 11
2
1 2 1 2
(0) (0)cos ( ) ( )
( ) 1
(0) (0) (0) (0)
x
iw y
x
u v w x P y
A e f y dy
i v u u v



 
   
 

 
1
4( )
1
( )
+o ( ) 1
xtx
im w y
x
e P y
e f y dy

 


 
  
  
   
 (6.13)
 
 ( )( )1 2
1 11
2
1 2 1 2
(0) (0)cos ( )
( ) o ( )
(0) (0) (0) (0)
x xtx
im w yiw y
x x
u v w x e
e f y dy e f y dy
i v u u v
 

 
  
   
  
 
 ( )
13
2
+o ( ) ( )
xtx
im w y
x
e
e p y f y dy




 
 
 
 
 
 (6.14)
The last two terms of 3A are
1
1
o ( )
x
x
f y dy



  
 
  
 and 3
2
1
o ( ) ( )
x
x
f y p y dy


 
 
 
 
 
 . (6.15)
The integral of these round the semicircle are 1o ( )
x
x
f y dy

  
 
  
 and 1
2
1
o ( ) ( )
x
x
f y p y dy


 
 
 
 
 
 respectively. These
integrals can be made as small as we please by properly choosing  and using (6.1). The first term in 3A can
be written as
 
( ) ( )
1 2 ( )
11
2
1 2 1 2
(0) (0)
( )
2 (0) (0) (0) (0)
iw x iw x x
iw y
x
u v e e
e f y dy
i v u u v


   

 (6.16)
A Convergence Theorem Associated With A Pair Of Second Order Differential Equations
www.iosrjournals.org 27 | Page
Using (3.13), we have from (6.13), the first term of 3A is
 
( ) ( )
1 2 ( )
1
1 2 1 2
(0) (0)
( )
2 (0) (0) (0) (0)
i x i x x
i y
x
u v e e
e f y dy
i v u u v
  


   
  .
The term involving
i x
e 
also gives a zero limit. The other term is the same as in the case of an ordinary
Fourier series, and similarly for 2A . Hence we conclude that in the case of continuous function of bounded
variation
1 2 1
1 2 1 2
(0) (0) ( )
lim
(0) (0) (0) (0)
R i
R
R i
iu v f x
A d
v u u v






 
 

Similarly
1 2 1
1 2 1 2
(0) (0) ( )
lim
(0) (0) (0) (0)
R i
R
R i
iv u f x
B d
v u u v






 
  

2 1 2
1 2 1 2
(0) (0) ( )1
lim
2 (0) (0) (0) (0)
R i
R
R i
iv v f x
C d
v u u v






 
 

2 1 2
1 2 1 2
(0) (0) ( )1
lim
2 (0) (0) (0) (0)
R i
R
R i
iv v f x
D d
v u u v






 
  

1 2 2
1 2 1 2
(0) (0) ( )1
lim
2 (0) (0) (0) (0)
R i
R
R i
iu u f x
E d
v u u v






 
  

1 2 2
1 2 1 2
(0) (0) ( )1
lim
2 (0) (0) (0) (0)
R i
R
R i
iu u f x
F d
v u u v






 
 

Thus we have
1 1
1
( ) lim ( , )
R i
R
R i
f x x d
i


  



 
   (6.17)
Similarly
2 2
1
( ) lim ( , )
R i
R
R i
f x x d
i


  



 
   (6.18)
The above results are true, uniformly for 0 1  .
References
[1]. Bhagat, B.‘Eigen function expansions associated with a pair of second order differential equations.’Proc. National Inst. Sciences of
India. Vol. 35,A, No. 1 (1969)
[2]. Bhagat, B.‘Some problems on a pair of singular second order differential equations’ Ibid. 35A (1969), 232-244.
[3]. Bhagat, B.‘A spectral theorem for a pair of second order singular differential equations’ Quart. J. Math. Oxford 21, (1970), 487-495.
[4]. Conte, S. D.andSangren, W.C.‘On asymptotic solution for a pair of singular first order equations’ Proc. Amer. Math. Soc. 4, (1953)
696-702
[5]. Pandey, Y.P.‘Some problems on eigenfunction expansion associated with a pair of second order differential equations.’ Thesis, Bhag.
Univ. Bihar
[6]. Pandey, Y. P.and Kumar, A. ‘Spectral theorem and eigenfunction expansion associated with a pair of second order differential
equations.’ Thesis, T. M. Bhag. Univ. , Bihar
[7]. Rose, B. W.andSangren, W. C.‘Expansions associated with a pair of a singular first order differential equations’ J. Math. Physics 4
(1963) 999-1008.
[8]. Titchmarsh, E.C.‘Eigenfunction expansions associated with second order differential equation’ Part I, Oxford 1962

More Related Content

What's hot

On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...BRNSS Publication Hub
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Fuad Anwar
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...ijfls
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...Alexander Decker
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...IOSR Journals
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4sophiabelthome
 
On 1 d fractional supersymmetric theory
  On 1 d fractional supersymmetric theory  On 1 d fractional supersymmetric theory
On 1 d fractional supersymmetric theoryAlexander Decker
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...ijtsrd
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distributionmathsjournal
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...YogeshIJTSRD
 
A03401001005
A03401001005A03401001005
A03401001005theijes
 
Neutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsNeutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsIJSRED
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new informationijitjournal
 
Stability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsStability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsAI Publications
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform meshAlexander Decker
 

What's hot (19)

A Numerical Solution for Sine Gordon Type System
A Numerical Solution for Sine Gordon Type SystemA Numerical Solution for Sine Gordon Type System
A Numerical Solution for Sine Gordon Type System
 
C024015024
C024015024C024015024
C024015024
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
International journal of engineering issues vol 2015 - no 1 - paper4
International journal of engineering issues   vol 2015 - no 1 - paper4International journal of engineering issues   vol 2015 - no 1 - paper4
International journal of engineering issues vol 2015 - no 1 - paper4
 
B0560508
B0560508B0560508
B0560508
 
D024025032
D024025032D024025032
D024025032
 
On 1 d fractional supersymmetric theory
  On 1 d fractional supersymmetric theory  On 1 d fractional supersymmetric theory
On 1 d fractional supersymmetric theory
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
 
A03401001005
A03401001005A03401001005
A03401001005
 
Neutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsNeutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New Operations
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new information
 
Stability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsStability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problems
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform mesh
 

Viewers also liked

Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...IOSR Journals
 
Role of Virtual Machine Live Migration in Cloud Load Balancing
Role of Virtual Machine Live Migration in Cloud Load BalancingRole of Virtual Machine Live Migration in Cloud Load Balancing
Role of Virtual Machine Live Migration in Cloud Load BalancingIOSR Journals
 
Factors Influencing the Choice of Promotional Practices of Agricultural Equip...
Factors Influencing the Choice of Promotional Practices of Agricultural Equip...Factors Influencing the Choice of Promotional Practices of Agricultural Equip...
Factors Influencing the Choice of Promotional Practices of Agricultural Equip...IOSR Journals
 
Synthesis of Optimized Asymmetrical Sum Patterns Using Conventional Method
Synthesis of Optimized Asymmetrical Sum Patterns Using Conventional MethodSynthesis of Optimized Asymmetrical Sum Patterns Using Conventional Method
Synthesis of Optimized Asymmetrical Sum Patterns Using Conventional MethodIOSR Journals
 
Restoration of Images Corrupted by High Density Salt & Pepper Noise through A...
Restoration of Images Corrupted by High Density Salt & Pepper Noise through A...Restoration of Images Corrupted by High Density Salt & Pepper Noise through A...
Restoration of Images Corrupted by High Density Salt & Pepper Noise through A...IOSR Journals
 
Optimization of Complete Monopole Antennato Exhibit Wideband Capabilities.
Optimization of Complete Monopole Antennato Exhibit Wideband Capabilities.Optimization of Complete Monopole Antennato Exhibit Wideband Capabilities.
Optimization of Complete Monopole Antennato Exhibit Wideband Capabilities.IOSR Journals
 
Performance Evaluation of Basic Segmented Algorithms for Brain Tumor Detection
Performance Evaluation of Basic Segmented Algorithms for Brain Tumor DetectionPerformance Evaluation of Basic Segmented Algorithms for Brain Tumor Detection
Performance Evaluation of Basic Segmented Algorithms for Brain Tumor DetectionIOSR Journals
 
Compatible Mapping and Common Fixed Point Theorem
Compatible Mapping and Common Fixed Point TheoremCompatible Mapping and Common Fixed Point Theorem
Compatible Mapping and Common Fixed Point TheoremIOSR Journals
 
A Novel Interface to a Web Crawler using VB.NET Technology
A Novel Interface to a Web Crawler using VB.NET TechnologyA Novel Interface to a Web Crawler using VB.NET Technology
A Novel Interface to a Web Crawler using VB.NET TechnologyIOSR Journals
 
Decision Making and Autonomic Computing
Decision Making and Autonomic ComputingDecision Making and Autonomic Computing
Decision Making and Autonomic ComputingIOSR Journals
 
Has Hiroshima Bombing Continued
Has Hiroshima Bombing ContinuedHas Hiroshima Bombing Continued
Has Hiroshima Bombing ContinuedIOSR Journals
 
Investigating ATM System Accessibility for People with Visual Impairments
Investigating ATM System Accessibility for People with Visual ImpairmentsInvestigating ATM System Accessibility for People with Visual Impairments
Investigating ATM System Accessibility for People with Visual ImpairmentsIOSR Journals
 
Online Technology and Marketing of Financial Services in Nigeria: An Impact A...
Online Technology and Marketing of Financial Services in Nigeria: An Impact A...Online Technology and Marketing of Financial Services in Nigeria: An Impact A...
Online Technology and Marketing of Financial Services in Nigeria: An Impact A...IOSR Journals
 
кайртаева жадыра ювелирный салон - предприниматели
кайртаева жадыра   ювелирный салон - предпринимателикайртаева жадыра   ювелирный салон - предприниматели
кайртаева жадыра ювелирный салон - предпринимателиIOSR Journals
 
Project Managers Vs Operations Managers: A comparison based on the style of l...
Project Managers Vs Operations Managers: A comparison based on the style of l...Project Managers Vs Operations Managers: A comparison based on the style of l...
Project Managers Vs Operations Managers: A comparison based on the style of l...IOSR Journals
 
Exploring the Effect of Web Based Communications on Organizations Service Qua...
Exploring the Effect of Web Based Communications on Organizations Service Qua...Exploring the Effect of Web Based Communications on Organizations Service Qua...
Exploring the Effect of Web Based Communications on Organizations Service Qua...IOSR Journals
 
Effect of glycine as an impurity on the properties of Epsomite single crystals
Effect of glycine as an impurity on the properties of Epsomite single crystalsEffect of glycine as an impurity on the properties of Epsomite single crystals
Effect of glycine as an impurity on the properties of Epsomite single crystalsIOSR Journals
 

Viewers also liked (20)

Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
Performance Analysis of Various Symbol Detection Techniques in Wireless MIMO ...
 
Role of Virtual Machine Live Migration in Cloud Load Balancing
Role of Virtual Machine Live Migration in Cloud Load BalancingRole of Virtual Machine Live Migration in Cloud Load Balancing
Role of Virtual Machine Live Migration in Cloud Load Balancing
 
Factors Influencing the Choice of Promotional Practices of Agricultural Equip...
Factors Influencing the Choice of Promotional Practices of Agricultural Equip...Factors Influencing the Choice of Promotional Practices of Agricultural Equip...
Factors Influencing the Choice of Promotional Practices of Agricultural Equip...
 
Synthesis of Optimized Asymmetrical Sum Patterns Using Conventional Method
Synthesis of Optimized Asymmetrical Sum Patterns Using Conventional MethodSynthesis of Optimized Asymmetrical Sum Patterns Using Conventional Method
Synthesis of Optimized Asymmetrical Sum Patterns Using Conventional Method
 
Restoration of Images Corrupted by High Density Salt & Pepper Noise through A...
Restoration of Images Corrupted by High Density Salt & Pepper Noise through A...Restoration of Images Corrupted by High Density Salt & Pepper Noise through A...
Restoration of Images Corrupted by High Density Salt & Pepper Noise through A...
 
K1303058689
K1303058689K1303058689
K1303058689
 
Optimization of Complete Monopole Antennato Exhibit Wideband Capabilities.
Optimization of Complete Monopole Antennato Exhibit Wideband Capabilities.Optimization of Complete Monopole Antennato Exhibit Wideband Capabilities.
Optimization of Complete Monopole Antennato Exhibit Wideband Capabilities.
 
K016136062
K016136062K016136062
K016136062
 
Performance Evaluation of Basic Segmented Algorithms for Brain Tumor Detection
Performance Evaluation of Basic Segmented Algorithms for Brain Tumor DetectionPerformance Evaluation of Basic Segmented Algorithms for Brain Tumor Detection
Performance Evaluation of Basic Segmented Algorithms for Brain Tumor Detection
 
Compatible Mapping and Common Fixed Point Theorem
Compatible Mapping and Common Fixed Point TheoremCompatible Mapping and Common Fixed Point Theorem
Compatible Mapping and Common Fixed Point Theorem
 
A Novel Interface to a Web Crawler using VB.NET Technology
A Novel Interface to a Web Crawler using VB.NET TechnologyA Novel Interface to a Web Crawler using VB.NET Technology
A Novel Interface to a Web Crawler using VB.NET Technology
 
Decision Making and Autonomic Computing
Decision Making and Autonomic ComputingDecision Making and Autonomic Computing
Decision Making and Autonomic Computing
 
Has Hiroshima Bombing Continued
Has Hiroshima Bombing ContinuedHas Hiroshima Bombing Continued
Has Hiroshima Bombing Continued
 
Investigating ATM System Accessibility for People with Visual Impairments
Investigating ATM System Accessibility for People with Visual ImpairmentsInvestigating ATM System Accessibility for People with Visual Impairments
Investigating ATM System Accessibility for People with Visual Impairments
 
Online Technology and Marketing of Financial Services in Nigeria: An Impact A...
Online Technology and Marketing of Financial Services in Nigeria: An Impact A...Online Technology and Marketing of Financial Services in Nigeria: An Impact A...
Online Technology and Marketing of Financial Services in Nigeria: An Impact A...
 
C017121219
C017121219C017121219
C017121219
 
кайртаева жадыра ювелирный салон - предприниматели
кайртаева жадыра   ювелирный салон - предпринимателикайртаева жадыра   ювелирный салон - предприниматели
кайртаева жадыра ювелирный салон - предприниматели
 
Project Managers Vs Operations Managers: A comparison based on the style of l...
Project Managers Vs Operations Managers: A comparison based on the style of l...Project Managers Vs Operations Managers: A comparison based on the style of l...
Project Managers Vs Operations Managers: A comparison based on the style of l...
 
Exploring the Effect of Web Based Communications on Organizations Service Qua...
Exploring the Effect of Web Based Communications on Organizations Service Qua...Exploring the Effect of Web Based Communications on Organizations Service Qua...
Exploring the Effect of Web Based Communications on Organizations Service Qua...
 
Effect of glycine as an impurity on the properties of Epsomite single crystals
Effect of glycine as an impurity on the properties of Epsomite single crystalsEffect of glycine as an impurity on the properties of Epsomite single crystals
Effect of glycine as an impurity on the properties of Epsomite single crystals
 

Similar to A Convergence Theorem Associated With a Pair of Second Order Differential Equations

Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationTELKOMNIKA JOURNAL
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comAbu Bakar Soomro
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsStavros Vologiannidis
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671MatcontYu Zhang
 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18foxtrot jp R
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesAlexander Decker
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...Wireilla
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletScientific Review SR
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space AnalysisHussain K
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedcairo university
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation Lossian Barbosa Bacelar Miranda
 
Some fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsSome fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsAlexander Decker
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 

Similar to A Convergence Theorem Associated With a Pair of Second Order Differential Equations (20)

Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with Application
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spaces
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typed
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
Ck4201578592
Ck4201578592Ck4201578592
Ck4201578592
 
New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation
 
D021018022
D021018022D021018022
D021018022
 
Sub1567
Sub1567Sub1567
Sub1567
 
Some fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsSome fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappings
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 

Recently uploaded (20)

Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 

A Convergence Theorem Associated With a Pair of Second Order Differential Equations

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 5 (May. - Jun. 2013), PP 19-27 www.iosrjournals.org www.iosrjournals.org 19 | Page A Convergence Theorem Associated With a Pair of Second Order Differential Equations Amar Kumar J R S College, Jamalpur (T M Bhagalpur University, Bhagalpur) Abstract: We consider the second order matrix differential equation   0, 0M x      . Where M is a second-order matrix differential operator and  is a vector having two components. In this paper we prove a convergence theorem for the vector function 1 2 ( ) ( ) ( ) f x f x f x        which is continuous in 0 x   and of bounded variation in 0 x  , when ( )p x and ( )q x tend to  as x tend to  . Key Words: Matrix differential operator, convergence theorem, bounded variation. §1. Let M denote the matrix operator 2 2 2 2 ( ) ( ) ( ) ( ) d p x r x dx M d r x q x dx             (1.1) and ( )x   a vector having two components ( )u u x and ( )v v x represented as a column matrix u v         . Consider the homogenous system   0, 0M x      . (1.2) where  is a parameter, real or complex. We assume the following conditions to be satisfied: (i) ( ), ( )p x q x tend to  as x tend to . (ii) ( ) 0, ( ) 0, ( ) 0, ( ) 0p x q x p x q x       . (iii)   3 ( ) ( ) , 0 2 c p x p x c        . (iv)   1 1 3 ( ) ( ) , 0 2 c q x q x c        . (v) ( )r x is bounded or   1 ( ) ( ) ( ) , 0 . 4 d r x p x q x d       (vi)   1 2 0 ( )p x dx    and   1 2 0 ( )q x dx    are divergent. (vii)     1 1 2 2 0 0 ( ) ( )p x dx q x dx       is convergent as x . Following Bhagat [2], the bilinear concomitant   of two vectors 1 2           and 1 2           is defined by   1 1 1 1 2 2 2 2               .
  • 2. A Convergence Theorem Associated With A Pair Of Second Order Differential Equations www.iosrjournals.org 20 | Page If  and  are any two solutions of the system (1.2) for the same value of  , then   is a function of  alone. It is an integral function of  , real for real  (see Bhagat [1]). Let (0 ; ) ( , ) (0 ; ) , ( 1,2) (0 ; ) j j j j u x x x j v x               be the boundary condition vectors at 0x  by 2 1 4 3 (0 ; ) (0 ; ) , ( 1,2) (0 ; ) (0 ; ) j j j j j j j j u x a u x a j v x a v x a              , so that the boundary conditions to be satisfied by any solution ( , ) ( , ) ( , ) u x x v x            of (1.2) at 0x  are given by ( , ) ( , ) 0, ( 1,2)jx x j        (1.3) and  1 2 0   (1.4) The vectors (0 / ; ) ( , ) (0 / ; ) , ( 1,2) (0 / ; ) k k k k x x x x k y x               which take real constant values (independent of  ) at 0x  are defined by the relations j k jk      ,  1 2 0   (1 , 2)j k  (1.5) §2. Green Matrix: The Green matrix 11 21 12 22 ( , ; ) G G G x y G G         for the system (1.2) is given by 11 21 1 1 1 12 22 2 2 ( , ) ( , ) ( , ) ( , ) ( , ; ) ( , ) ( , ) ( , ) ( , ) x x u y v y G x y x x u y v y                           ;  0,y x 1 1 11 21 2 2 12 22 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) u x v x y y u x v x y y                          ;  ,y x  We shall use the notations and results of Bhagat [3] and Pandey and Kumar [6]. The method of Titchmarsh [8] will be used to obtain the results analogous to [7]. §3. Let ( , ) ( , ) , ( 1,2) ( , ) j j j S x A x j T x           . It can be verified following Titehmarsh [8,§ 5.4] that ( , )jA x  satisfies the system of integral equations.     0 0 1 ( , ) (0)cos ( ) (0)sin ( ) [ ( ) ( , ) ( ) ( , )]sin ( ) ( ) ,( 1,2) 1 ( , ) (0)cos ( ) (0)sin ( ) [ ( ) ( , ) ( ) ( , )]sin ( ) ( ) x j j j j j x j j j j j S x S w x S w x P t S t R t T t w x w t dt j T x T z x T z x Q t T t R t S t z x z t dt                           (3.1) When 2   , then   1 4( , ) ( ) ( , ), ( 1,2)j jS x p x u x j     (3.2)   1 4( , ) ( ) ( , ), ( 1,2)j jT x q x v x j     (3.3)   1 2 0 ( ) ( ) x w x p t dt  (3.4)   1 2 0 ( ) ( ) x z x q t dt  (3.5)       2 3 5 2 2 ( )1 ( ) 5 ( ) 4 16 ( ) ( ) p xp x P x p x p x       (3.6)       2 3 5 2 2 ( )1 ( ) 5 ( ) 4 16 ( ) ( ) q xq x Q x q x q x       (3.7)
  • 3. A Convergence Theorem Associated With A Pair Of Second Order Differential Equations www.iosrjournals.org 21 | Page     1 1 4 4 ( ) ( ) ( ) ( ) r x R x p x q x     (3.8) We assume that ( )p x and ( )q x are bounded for all finite x and (0) (0) 0p q  . So for a fixed x and large  , we have from (3.2) – (3.8)   1 4(0) (0), ( 1,2)j jS u j  (3.9)   1 4(0) (0), ( 1,2)j jT v j  (3.10)   31 44(0) (0) , ( 1,2)j jS u j           (3.11)   31 44(0) (0) , ( 1,2)j jT v j           (3.12) 1 1 2 2( )w x            (3.13) 1 1 2 2( )z x            (3.14)     31 1 44 4( )p x             (3.15)     31 1 44 4( )q x             (3.16) 3 4( )P x          (3.17) 3 4( )Q x          (3.18) 1 2( )R x          (3.19) Let , 0s it t    . Therefore, 1 2 ( , ) , ( 1,2) ( , ) t x j j t x j j S x H e j T x H e            (3.20) Therefore, from (3.1), we have   1 ( ) 1 2 0 2 ( ) 0 1 ( , ) (0)cos ( ) (0)sin ( ) [ ( ) ( , ) ( ) ( , )]sin ( ) ( ) 1 ( , ) (0)cos ( ) (0)sin ( ) [ ( ) tx j j j x t x y j j tx j j j x t x y H x S w x S w x e e P y H y R y H y w x w y dy H x T z x T z x e e Q y H                                    2 1 ,( 1,2) ( , ) ( ) ( , )]sin ( ) ( )j j j y R y H y z x z y dy                 (3.21) Let max (0), (0), (0), (0) ( ) max ( ) , ( ) , ( ) j j j jM S T S T N y P y Q y R y            (3.22) Now we have cos ( ) , sin ( ) and sin ( ) , cos ( ) tx tx w x w x e z x z x e       for large  (3.23) Therefore, using (3.22) and (3.23), (3.21) gives
  • 4. A Convergence Theorem Associated With A Pair Of Second Order Differential Equations www.iosrjournals.org 22 | Page  1 2 1 2 0 1 ( , ), ( , ) 1 ( , ) , ( , ) ( ) x j j j jH x H x M H y H y N y dy                for large  . Therefore from Conte and Sangren Lemma of [14], we have 1 2 0 1 ( , ) , ( , ) 1 exp 2 ( ) , ( 1,2) x j jH y H y M N y dy j                     (3.24) Thus, we see that 1jH and 2jH are bounded for all x and large  . It follows from (3.20) that ( , ), ( , ) ( ), ( 1,2)tx j jS x T x o e j    (3.25) for all x and large  . From (3.1), using (3.25) 1 2 1 2 ( , ) (0)cos ( ) , ( 1,2) ( , ) (0)cos ( ) tx j j tx j j S x S w x e j T x T z x e                           (3.26) Using (3.2) and (3.3), we get from (3.26) 3 4 3 4 ( , ) (0)cos ( ) , ( 1,2) ( , ) (0)cos ( ) tx j j tx j j u x u w x e j v x v z x e                           (3.27) Also, we have from [5, Chap.3, §4], for large x .   ( ) 1 1 4 ( ) (1) ( , ) , ( 1,2) ( ) iw x j j e M u x j p x           (3.28)   ( ) 2 1 4 ( ) (1) ( , ) , ( 1,2) ( ) iz x j j e M v x j q x           (3.29) where     1 4 1 1 5 4 4 1 1 ( ) 4 4 0 (0) (0) (0)1 1 ( ) (0) 2 2 4 1 + ( ) ( ) ( , ) ( ) ( ) ( , ) 2 j j j j iw t j j u u p M u i e P t p t u t R t q t v t dt i                               (3.30)     1 4 2 1 5 4 4 1 1 ( ) 4 4 0 (0) (0) (0)1 1 ( ) (0) 2 2 4 1 + ( ) ( ) ( , ) ( ) ( ) ( , ) 2 j j j j iz t j j v v q M v i e Q t q t v t R t p t u t dt i                               (3.31) under the condition ( ( ) ( )) (1)im w x z x   . §4. In this section we obtain a solution of the system (1.2) which is small when imaginary part of  is large and positive and x is large. To find such a solution we consider the system of integral equations
  • 5. A Convergence Theorem Associated With A Pair Of Second Order Differential Equations www.iosrjournals.org 23 | Page             ( ) ( )( ) 0 ( ) ( ) ( ) ( )( ) 0 ( 1 ( , ) ( ) ( , ) ( ) ( , ) 2 1 ( ) ( , ) ( ) ( , ) 2 1 ( , ) ( ) ( , ) ( ) ( , ) 2 1 2 x i w x w tiw x j j j i w x w t j j x x i z x z tiz x j j j i z X x e e P t X t R t Y t dt i e P t X t R t Y t dt i Y x e e Q t Y t R t X t dt i e i                              ) ( ) , ( 1,2) ( ) ( , ) ( ) ( , )x z t j j x j Q t Y t R t X t dt                   (4.1) Exactly following Titchmarsh [8, §6.2] and using (vii) of §3 it can be verified that the solutions of the system of integral equations (4.1) satisfying (1.2). Also we have ( ) ( ) ( , ) (1 ) , ( 1,2) ( , ) (1 ) iw x j iz x j e X x J j e Y x J              (4.2) where    ( ) ( ) ( ) ( ) 0 0 0 0 max ( ) , ( ) , ( ) , ( )im w y z y im z y w y J P y dy Q y dy R y e dy R y e dy                 Considering (4.1) for a fixed  or  in the bounded part of the region 1 2 1J          , if  is sufficiently large and noting that  ( ) ( ) (1)im w x z x   , it can be shown following [8, §6.2] that ( ) 1 ( ) 2 ( , ) ( ) (1) , ( 1,2) ( , ) ( ) (1) iw x j j iz x j j X x e L j Y x e L                  (4.3) where     ( ) 1 0 ( ) 0 1 ( ) 1 ( ) ( , ) ( ) ( , ) 2 , ( 1,2) 1 ( , ) 1 ( ) ( , ) ( ) ( , ) 2 iw y j j j iz y j j j L e P y X y R y Y y dy i j Y x e Q y Y y R y X y dy i                         (4.4) From (3.2), (3.3) and (3.4), we have ( ) 1 1 4 ( ) 2 1 4 ( ) (1) ( ,) ( ( )) , ( 1,2) ( ) (1) ( , ) ( ( )) iw x j j iz x j j e L u x p x j e L v x q x                       (4.5) §5. From (3.28) and (3,29) we see that ( , ),( 1,2)j x j   are large when the imaginary part of ( )w x and ( )z x are large and positive. Therefore ( , ),( 1,2)j x j   are not  2 0,L  . But from (4.5) we see that ( , ) ( , ) , ( 1,2) ( , ) j j j u x x j v x            are small when the imaginary part of ( )w x and ( )z x are large and positive. Thus ( , )j x  and ( , )j x  , ( 1,2)j  are linearly independent. Then 2 2 1 1 ( , ) ( ) ( , ) ( ) ( , ), ( 1,2)r rs s rs s s s x K x L x r              (5.1) Since ( , ), ( 1,2)r x r   are  2 0,L  but ( , )j x  are not  2 0,L  , therefore ( ) 0, (1 , 2)rsL r s    . Hence
  • 6. A Convergence Theorem Associated With A Pair Of Second Order Differential Equations www.iosrjournals.org 24 | Page 2 1 ( , ) ( ) ( , ), ( 1,2)r rs s s x K x r        (5.2) From asymptotic formulae (3.28), (3.29) and (4.3) we have, as x tend to infinity         1 ( ) 4 1 1 ( ) 4 2 1 ( ) 4 1 1 ( ) 4 1 ( , ) ( ) ( ) ( , ) ( ) ( ) , ( 1,2) ( , ) ( ) ( ) ( , ) ( ) ( ) iw x j j iz x j j iw x j j iz x j j u x i p x e M v x i q x e M j u x i p x e L v x i q x e L                                      (5.3) where dashes denote differentiation with respect to x . Using (3.28), (3.29), (4.5), (5.2) and (5.3) we obtain from (1.5)             21 21 22 22 11 11 22 12 21 12 21 11 22 21 11 22 12 12 11 22 12 21 12 21 11 22 11 21 12 22 21 11 22 12 21 12 21 11 22 11 11 12 12 22 11 22 12 21 12 21 11 22 ( ) 2 ( ) 2 ( ) 2 ( ) 2 M L M L K i M M M M L L L L M L M L K i M M M M L L L L M L M L K i M M M M L L L L M L M L K i M M M M L L L L                                (5.4) §6. Convergence Theorem: If 1 2 ( ) ( ) ( ) f x f x f x        be a real valued continuous vector of bounded variation in 0 x  , and 2 [0, )L  and is such that the integrals 1 0 ( ) ( )p x f x dx   ; 1 0 ( ) ( )p x f x dx   (6.1) are uniformly convergent for large  , then 1 ( ) lim ( , ) R i R R i f x x d i              (6.2) uniformly for 0 1  , where 1 2 0 ( , ) ( , ) ( , ; ) ( ) ( , ) x x G x y f y dy x                 (6.3) We prove convergence theorem for 1( , )x  because similar result holds for 2 ( , )x  . Now we write 1( , )x  as         1 11 1 21 2 0 0 1 1 2 2 ( , ) ( , ) , ( ) ( , ) , ( ) ( , ) , ( ) ( , ) , ( ) . x x T T T T x x x x y f y dy x y f y dy u x y f y dy u x y f y dy                                          1 11 1 1 1 11 1 21 2 1 0 0 2 21 1 11 1 2 21 2 2 0 0 1 12 2 ( , ) ( , ) , ( ) ( , ) , ( ) ( , ) , ( ) + ( , ) , ( ) ( , ) , ( ) ( , ) , ( ) + ( , ) , x x x x x x x x x u y f y dy u x y f y dy x u y f y dy u x y f y dy x v y f y dy x v y f y dy u x y f                                          2 22 2( ) ( , ) , ( ) . x y dy u x y f y dy      A B C D E F      (6.4) where
  • 7. A Convergence Theorem Associated With A Pair Of Second Order Differential Equations www.iosrjournals.org 25 | Page    11 1 1 1 11 1 0 ( , ) , ( ) ( , ) , ( ) x x A x u y f y dy u x y f y dy             21 2 1 2 21 1 0 ( , ) , ( ) + ( , ) , ( ) x x B x u y f y dy u x y f y dy           11 1 2 0 ( , ) , ( ) x C x v y f y dy     21 2 2 0 ( , ) , ( ) x D x v y f y dy     1 12 2( , ) , ( ) x E u x y f y dy       2 22 2( , ) , ( ) . x F u x y f y dy      We evaluate A , the other term can be evaluated in the same way. Now    11 1 1 1 11 1 0 ( , ) , ( ) ( , ) , ( ) x x A x u y f y dy u x y f y dy             11 1 1 1 11 1 0 ( , ) , ( ) ( , ) , ( ) x x x x x x x u y f y dy u x y f y dy                                  1 2 3 4A A A A    , say For 1J  , if  is sufficiently large, we have from (5.2) and (5.4)       ( ) 22 11 1 4 11 22 12 21 1 ( ) 4 22 1 4 11 22 12 21 ( ) ( , ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 ( ) ( ) ( ) ( ) iw x im w x M e x M M M M p x M e p x M M M M                             (6.5) Therefore, using (3.2), (3.25) and (6.5), we have 4 11 2 ( ) tx ty x e A o e f y dy                 For a fixed y , ( )p y is less than  . Therefore, using (6.1), we have 4 1 2 t e A o              (6.6) The integral of (6.6) round the semicircle tends to zero as R tends to infinity for any fixed 0  . A similar argument holds for 1A also. Now, we consider 3A . For fixed x or in a finite interval, from (4.1), we have        ( ) ( ) ( ) ( )( ) 0 1 1 ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) 2 2 x i w x w y i w y w xiw x j j j j j x X x e e P y X y R y Y y dy e P y X y R y Y y dy i i                ( ) ( ) 2 im w x e J        ( ) , ( 1,2) im w x e j     (say) (6.7) Similarly, ( ) ( , ) iz x jY x e   ( ) , ( 1,2) im z x e j     (say) (6.8) Also from (4.4), we have
  • 8. A Convergence Theorem Associated With A Pair Of Second Order Differential Equations www.iosrjournals.org 26 | Page 1 2 1 1 2 2 ( ) 1 , ( 1,2) ( ) 1 j j L j L                        (6.9) Similarly from (3.30) and (3.31), we have 1 1 4 4 1 1 1 4 4 2 1 ( ) (0) 2 , ( 1,2) 1 ( ) (0) 2 j j j j M u j M v                          (6.10) Therefore, by using (6.9), (4.3) can be written as 1 ( ) 2 1 ( ) 2 ( , ) 1 , ( 1,2) ( , ) 1 iw x j iz x j X x e j Y x e                                 (6.11) Now using (4.5), (6.10) and (6.11), (5.2) and (5.4) give      1 ( ) 2 2 11 1 1 4 4 1 2 1 2 (0) 1 ( , ) (0) (0) (0) (0) ( ) iw x v e x i v u u v p x                    1 ( ) 2 1 2 4 1 2 1 2 1 2 (0) 1 ( ) 1 (0) (0) (0) (0) iw x v e p x i v u u v                    (6.12) Thus from the first result of (3.27) and (6.12), we get   1 4 ( )1 2 3 11 2 1 2 1 2 (0) (0)cos ( ) ( ) ( ) 1 (0) (0) (0) (0) x iw y x u v w x P y A e f y dy i v u u v               1 4( ) 1 ( ) +o ( ) 1 xtx im w y x e P y e f y dy                   (6.13)    ( )( )1 2 1 11 2 1 2 1 2 (0) (0)cos ( ) ( ) o ( ) (0) (0) (0) (0) x xtx im w yiw y x x u v w x e e f y dy e f y dy i v u u v                   ( ) 13 2 +o ( ) ( ) xtx im w y x e e p y f y dy                (6.14) The last two terms of 3A are 1 1 o ( ) x x f y dy             and 3 2 1 o ( ) ( ) x x f y p y dy              . (6.15) The integral of these round the semicircle are 1o ( ) x x f y dy           and 1 2 1 o ( ) ( ) x x f y p y dy              respectively. These integrals can be made as small as we please by properly choosing  and using (6.1). The first term in 3A can be written as   ( ) ( ) 1 2 ( ) 11 2 1 2 1 2 (0) (0) ( ) 2 (0) (0) (0) (0) iw x iw x x iw y x u v e e e f y dy i v u u v         (6.16)
  • 9. A Convergence Theorem Associated With A Pair Of Second Order Differential Equations www.iosrjournals.org 27 | Page Using (3.13), we have from (6.13), the first term of 3A is   ( ) ( ) 1 2 ( ) 1 1 2 1 2 (0) (0) ( ) 2 (0) (0) (0) (0) i x i x x i y x u v e e e f y dy i v u u v            . The term involving i x e  also gives a zero limit. The other term is the same as in the case of an ordinary Fourier series, and similarly for 2A . Hence we conclude that in the case of continuous function of bounded variation 1 2 1 1 2 1 2 (0) (0) ( ) lim (0) (0) (0) (0) R i R R i iu v f x A d v u u v            Similarly 1 2 1 1 2 1 2 (0) (0) ( ) lim (0) (0) (0) (0) R i R R i iv u f x B d v u u v             2 1 2 1 2 1 2 (0) (0) ( )1 lim 2 (0) (0) (0) (0) R i R R i iv v f x C d v u u v            2 1 2 1 2 1 2 (0) (0) ( )1 lim 2 (0) (0) (0) (0) R i R R i iv v f x D d v u u v             1 2 2 1 2 1 2 (0) (0) ( )1 lim 2 (0) (0) (0) (0) R i R R i iu u f x E d v u u v             1 2 2 1 2 1 2 (0) (0) ( )1 lim 2 (0) (0) (0) (0) R i R R i iu u f x F d v u u v            Thus we have 1 1 1 ( ) lim ( , ) R i R R i f x x d i              (6.17) Similarly 2 2 1 ( ) lim ( , ) R i R R i f x x d i              (6.18) The above results are true, uniformly for 0 1  . References [1]. Bhagat, B.‘Eigen function expansions associated with a pair of second order differential equations.’Proc. National Inst. Sciences of India. Vol. 35,A, No. 1 (1969) [2]. Bhagat, B.‘Some problems on a pair of singular second order differential equations’ Ibid. 35A (1969), 232-244. [3]. Bhagat, B.‘A spectral theorem for a pair of second order singular differential equations’ Quart. J. Math. Oxford 21, (1970), 487-495. [4]. Conte, S. D.andSangren, W.C.‘On asymptotic solution for a pair of singular first order equations’ Proc. Amer. Math. Soc. 4, (1953) 696-702 [5]. Pandey, Y.P.‘Some problems on eigenfunction expansion associated with a pair of second order differential equations.’ Thesis, Bhag. Univ. Bihar [6]. Pandey, Y. P.and Kumar, A. ‘Spectral theorem and eigenfunction expansion associated with a pair of second order differential equations.’ Thesis, T. M. Bhag. Univ. , Bihar [7]. Rose, B. W.andSangren, W. C.‘Expansions associated with a pair of a singular first order differential equations’ J. Math. Physics 4 (1963) 999-1008. [8]. Titchmarsh, E.C.‘Eigenfunction expansions associated with second order differential equation’ Part I, Oxford 1962