International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
457
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Some Special Functions of Complex Variable
Dr. T. Ravi
Assistant Professor (Contract Basis) In Mathematics,
University College Of Engineering (K.U.),
Kothagudem-507101, Telangana, India.
Mobile: 9701409620,
E-Mail address: tandraravi@gmail.com & tandraravi@yahoo.in
Abstract: Main aim of this article is the discussion of Univalent complex functions, Cap like complex functions, and star
like complex functions, close-to-cap like complex functions.
Keywords: Univalent function; BEIRBARBACH Conjecture; Cap like function; Star like function; KOEBE’s
function; HADAMARD Product (Convolution). Close-to-Cap like functions.
__________________________________________________*****_________________________________________________
Introduction: We know that a complex valued function is said to be regular or analytic in a domain D (a non-
empty open connected subset of the complex plane£ ) if it has a uniquely determined derivative at each point of D.
Definition 1: A function ( )f z is said to be a univalent in a domain D if f( ) f( )z z1 2 for all { , } Dz z 1 2 with
z z1 2 .
A necessary condition for analytic function f( )z to be univalent in D is f ( )z  0 in D. This condition is not
sufficient since f( ) z
z e is clearly not univalent since f( ) f( )e e 
    0 2
0 1 2 butf ( ) z
z e   0.
By Riemann mapping theorem, one function may map any simply connected domain onto the open unit disc in a
one-one conformal manner. Hence, without loss of generality, we confine our attention to the functions that are
univalent and analytic in the open unit disc | |{ }z z 1 .
Notation: We denote by A the class of functions f( )z that are analytic in the open unit disc | |{ }z z 1 with the
conditions f( ) , f ( ) 0 0 0 1. Then we say that
withf( ) A f( ) ,| | , f( ) ,| | .k k
k kk kz z a z z a a z z a z z 
           0 10 21 0 1 1
We denote by U the class of functions f( ) Az  and are univalent in an open disc | |{ }z z c 1 .
BEIRBARBACH Conjecture: In 1916, BEIRBERBACH proved that | |a 2 2for every f( )z in U whose
Taylor’s expansion about the origin is f( ) k
kkz z a z
   2 .He also showed that | |a 2 2 for the function
f( ) ( ) , | |z z z 
  2
1 1 , which is known as KOEBE’s function. Note that singularity of KOEBE’s function is
z 
 1
which is outside the open unit disc | |{ }z z 1 since| | | || |z   
  1 1
1; thus KOEBE’s function is
analytic in the open unit disc | |{ }z z 1 . And f ( ) ( )( ) ( ) ( )( )z z z z   
       3 2
2 1 1 2 1 implies
f ( ) ( )( ) ( ) ( ) .   
       3 2
0 0 2 1 0 1 1 0 1
Clearly f( ) .0 0 So KOEBE’s function is in U.
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
458
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Motivated by the extremal property of the KOEBE s function BEIRBERBACH conjectured that
for every This is known as BEIRBERBACH conjecture which is a
challenging problem in math
| | ( , , ,
’ ,
.) f( ) Una n n z  2 3 4 
ematics that took almost years to prove it LOUIS BRANZES has
proved the conjecture in full in
is univalent is univalent in
Let
| |
.
.
: f( ) f( ) { }
f( ) f
.
: (
k
k k
k
k k
z a z c z z z c
z z a z c




   
  
Problem
Proof
0
2
70
1985
1
is univalent i
where
with
with
with
n the disc | |
| |
| |
| |
) g( )
f( ) { }
f( ) f( ) , { }
f( ) f( ) , { }
g( ) g( ) , {
.
}
{ }
{ }
{ }
k
k k
k
k k
z cz a cz z c
z z a z z z
z z z z z z z z
c z c z z z z z z z
z z z z z z z z
c




    
  
    
    
    




2
2
1 2 1 2 1 2
1 2 1 2 1 2
1 2 1 2 1 2
0 1
1
1
1
1
is univalent in the disc
where coefficient of in
taylor series of
Let
If
BEI
the
R
n s
B
i
Eby
| |f( ) g( ) { }. / /
f( ) U, | | ( , , , )
f( )
f( ) U | | ( , , , )
:
.
:
k
k k
k
k k
k
z cz a cz z z z
z a k a z
z
z a k k

   
  
   
Theorem 1
Proof
2 1
1 2 3 4
2 3 4


wher
RBACH conjecture
And
Put
Let Then Then But we say that the
inequali y
e
t
f( ) .
( ) f (
.
g
. . ( , , , ).
) [ ]
k
k k
k k k
k k k
k k k k
k
k k
k
k k k
k
z z a z
z z z ka z z ka z z b z bz
z z z z a z a z k
a
z a
k
z


  
  
  
    
  
 

 


1 2 1 2 1
2
2
1 1
2
2
2
1
2 3 4
1

may or may not hold So we can do some work
Since we have
by triangleLet
Con
in
si
equal
der
ity| | | | | |
. .
,
.
g g
| |
( ( f (
| |.
|
| |
|
) ) )
n nk k
k k k
z z z z
z a z
z z z
z z r z z z z
z z z
z
r
z

   
      

 
       


 
1 2 1
22 2 2
1 2 1 2 2
1 2 2 1 1
1 2 1
2
1
0 0 0
1
By triangle inequality
f (
. . ( (
, |
g
g
|
g
g(
)
) )
)
[ ] [ ]
[ ] [ ]
| [ ]| | [ ]|
k k
k kk k
k k k k
k k kk k k
k k k k
k kk k
z z ka z z ka z
i e z z z z ka z ka z z z ka z z
z z ka z z z z ka z
z
z
z
 
 
  
  
 
 
     
        
       


 

2 1 1 2 22 2
1 2 1 2 1 2 1 2 1 22 2 2
1 2 1 2 1 2 22
1
2
12
Again by triangle inequa welity have
( | |
| |
. .
,
)
| | | |
| [ ]| | [ ]|
| [ ]| | [ ]| | | [ ]
| [ ]|
k k k k
k kk k
nk k k k k k k k
k k k kk k k
k k
k k
z z z ka z z r ka z z
ka z z ka z z k a z z kk z z
i e ka z z k
 
 
  
   


        
         
 
2 1 2 1 2 1 22 2
1 2 1 2 1 2 1 22 2 2 2
1 22
. . [ ( ) ]
. . ( )
. . ( )
| | .| |[ ] [ ]
| [ ]|
| [ ]| [ ]
| [ ]| [
k k k k k
k k k
k k k k
k k kk
k k k k
k k kk
k k k k
k k kk
z z k r r k r
i e ka z z k r k k k r
i e ka z z k k r k r
i e ka z z r k k r r k r
  
  
  
  
  
  
   
  
     
      
     
    
2 2 2
1 22 2 2
2
1 22 2 2
1 22 2 2
2
1 22 2
2 1
2
2 2 1
2 1
2 1 ]
 2
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
459
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
. .
. .
. .
| [ ]|
| [ ]|
| [ ]|
k k k k k k
k k
k k k k
k k k k
k k
k k
k k
k k
d d d d
i e ka z z r r r r r r r r
dr drdr dr
d d
i e ka z z r r r r r r
drdr
d
i e ka z z r r
rdr
   


   
 


 


        
                   
       
2 2
2 2
1 22 2 2
2 2 2 2
2
2
1 22 2
0 0
2
2
1 22 2
2 2 2 2
2 1 2 1
1
2 1
1
. .
( ) ( ) ( ) ( )
. .
( ) ( )
| [ ]|
| [ ]|
| [ ]|
k k
k k
k k
k k
k k
k k
d
r r
dr r
r
i e ka z z r r r
r r r r
r r r
i e ka z z r r
r r
ka z z






    
    
     
                      
     
            
    
2
1 22 3 2 3 2
1 22 3 3
1 22
1
2 1
1
2 1 2 1
2 0 2 1 2 1
1 1 1 1
2 1 1
2 1 2 1
1 1
have
aking limit
Th
on both si
us we
By t since either odes r
( ) ( )
( )
( (
( ) ( )
| | | | | |
g g
|
| ) )| | [ ]|k k
k k
r r
r r
r r
rr
z z r ka z z r r r
r r
z z z z
  



    
         
   
                   
    
3 3
1 2 1 22 3 3
1 1 2
1 1
2 1 2 1
1 1
2 11
2 1 3
1 1
0 0 0
Hence for w muse t have
g
| | |,
( ) ( ) ( )
( (
( ) ( ) ( )
, ( ( . . ( ( ,
( ) (
g lim .
g g g g
( .
)
( ) .
| ) )|
| ) )| ) )
z
r r r
z z r r r
r r r
z z i e z z
r r
r r
r r r i e
 

       
                    
  
 
   
 
    
1 2
1 2 3 3 3
1 2 1 2
3 3
0
3
2 1 2 1 2 1
3 3 0 3
1 1 1
0
2 2 2 2
3 0 3
1 1
3 1 2 12 
where since
)
( )
( ) ( ) (
( )
( , )
) ( ) ( ) ( )
[ ]r r r r
r r r r r r r
R r
R R R
R R R R R R R
r
rR
R
R R R
R
     
          
      
         
 

  
           
    
  
3
3 2 2 3
2 3
3 2 3 2 2
2 2
0 1
11 11
3 1 3 1 2 2
3 3 9 9 2 2 1 11 9 3 0
1 1 1
1 11 9 3 0 1 1 1
11 9 3 0 11 9 3 1
4 1 9 11 11 4 1 9
2 2
1 9 3
.
. .
. ,
. .
( )
R R R
R R R
R R R
Either R
or R



              
              
             
 
   

 
 



 

11 121 36 11 121 36
2 2
11 121 36 11 121 36
2 2
11 11
2 2
11
3
3
3
85 85
3 0 85
11
2 2 2
1
9 2195
85 9 2195 2 2195
1 10975
85 9 2195 211
2 2
01 21
.






95
10 10975
2
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
460
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
thatSuppose
. .
. . . . . .
. . . )( . ) .
. .
.
.
.
,
[ ] ] (
] ]
[
[ [
R i e R
R R
R R
R R R
    
  
 
     
     
 
   


85 85
1 10975 10 10975
1 10975 1 10975 0 10975 0 10 10975 10 10975 1 9 10975
1 10975 10 10975 0 10975 9 10975 0 999
11 11
795
1 10975 10 10975
1 1
2 2
0 1
0
10 1
This is contradiction Thus our supposition is wrong Hence
Thus for
we have
. ) .
. . | | | | . .
|
.
| |
.
,
(
( ) ( )
R r
i e z
r
z r
z


  
 
 
    


     
  
1 2
1
2 11 2 1111 1 11 2
2 2 121 85 3611
1
0975 0 999795 1 10952257 3
85 8585 85
85
85
0 0 0989
0
1
1
18
is univalent in
B
we have
EIRBERBACH cby
o
onjecture
r
| |
| ,
( )
. , ( (
( )
. . ( ( . . ( ) .
| |
g g
g g g
( , , , )
| |
| ) )|
) ) { }k
k k
k
k
z r c
r
c z z r
r
i e z z i e z z b z z z c
b k k
k a k



  
              
    
  

 

2
1 2 3
1 2 2
1
2 185
0 0989 1 3 0
1
1
2 3 4
11
18

in is univalent in
is univalent in the open discLet
by
| | | |
| |
: .
:
T
| | ( , , , ) | | ( , , , ). / /
f( )
f( ) {
he
}.
| | ( , , , ) o
{ }
k k
k
k k
k
k k
k
k a k k a k
z z a z z z z
z z a z z z c
a k




    
    
   
  
Theorem 2
Proof
1
2
2
2 3 4 1 2 3 4
1 3 1
1
1 2 3 4
 

Let
by triangle inequLet
Consider
ality
By triangle
| | | | | | | |
f
rem .
.
( f( .
| |
)
|
| |
|
)
.
[ ] [ ] [ ]| | | |k k k k
k k kk k k
z z z z
z z r z z z z
z z z a z z a z z z
z z z z
a
r
z z

  
  
     
       
   
 
   
 


 
1 2 1 2
1 2 2 1 1 2
1 2 1 1 2 2 1 2 1 22
2
2 2
1 1 2
1
0 0 0
1
by triangle
inequali
inequality
ty
Again we have
, | |
f( f( | |
,
) )
[ ] | [ ]|
| [ ]| | [ ]|
| [ ]| | [ ]|
| |k k k k
k kk k
k k k k
k kk k
nk k k k
k kk k
z z a z z z z a z z
z z z z a z z r a z z
a z z a z z

 
 
 
 

 
       
         
   

1 2 1 2 1 2 1 22 2
1 2 1 2 1 2 1 22 2
1 2 1 22 2 | |
. .
( )
. .
. .
| | | |
| | | || | [ ]
| [ ]| [ ] [ ]
| [ ]|
| [
k
k k k k
k kk
k k k k k k k
k k k k kk
k k k
k kk
k
k
a z z z z
i e a z z z z r r r r
r
i e a z z r r r r
r r
i e a z z
 
 
    
    
 
 
    
          
                     

1 2 1 22 2
1 2 1 22 2 2 2 2
1 22 0
1 2
1
2 2
1 11
2 1 2 1 2
1 1
]|k
k
r
r r
r r


              
2
1
2 2 1
1 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
461
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Thus we have
By t since either oraking limit on both sides
( (
| | | | | | | | | |
f f
f f li
,
( ( m
| ) )|
| ) )|
| [ ]|k k
k kz z r a z z r r r
r r
z z z z z
z z r r
r r
  




                      
     
      
   
1 2 1 22
1 1 2 1 2
1 2 0
1 2
2 1 3
1 1
0 0 0
2 2
3 3
1 1
must have
is univa
Hence for we
Therefore lent in the open disc | |
, ( ( . . ( ( ,
( ) ( . . )
.
f f f f
f( )
| ) )| ) )
{k
k k
r
r
z z i e z z
r r i e r
r r
r r r r
z z a z z z



     
      
  
         
 
        
  
1 2 1 2
1
2
2
0 3
1
0
2 2
3 0 3 3 1 2 1 0 1
1 1
3 3 2 1 3 3 1 3

A function is said to be
in the open disc if
A function
in
in
| |
| |
| |
| |
. / /
f( )
{ }
f ( )
Re , .
f ( )
f(
:
: )
}
k
k k
k
k k
z z a z z
z z c
z z
z c
z
cap like fu
z z a z z
nction






  
 
     
  
Definition 2
Definition 3
1
2
2
3 1
1
1
1 0
is said to be in
the open disc if univalent in and
is cap like function in
Let
I nf the
| | | |
| |
| |
{ } f( ) { },
f ( )
Re , .
: .
:
f( )
f( ) U, f( ) { }
f(
z z c z z z c
star like funct
z z
z c
z
z z z
on
z
i

   
     
  Theorem 3
Proof
1
1
1 1
0
6 1
by
And is univalent in by Let us consider
We know tha
Then
t
| |
Theorem ;
Theorem .
Re Re
) U. | | ( , , , )
f( ) { }
f ( ) f ( )
.
f ( ) f ( )
f ( )
f (
Re
)
k
k
k k
z z
z a k
z z a z z z
z z
z z
z
z
z


  
  
 
 
         



 

 
   
1
2
2
1 1
1 2 3 4
3
 1
2
We ha
f ( ) f ( ) f ( ) f ( )
f ( ) f ( ) f ( ) f ( )
f ( ) f ( ) f ( )
f ( ) f ( ) f ( )
f ( ) f ( ) f ( )f ( ) f ( )
f ( ) f ( ) f ( )
Re
Re
f ( )
Re
Re
z z z z
z z z z
z z z
z z z
z z zz z
z z z z
z z z z
z z z
z zz z
   
  
   
  
   
  
    
    
   
 
      
         
2
11 1
1 1 1
ve f ( ) f ( ) ( )
f ( ) ( ) ( )| | ( )| || || |
k k
k kk k
k k k
k k kk k
z a kz z a k k z
z a k k z a k k z k k zz
  
 
    
  
     
     

  
1 2
2 2
1 1 1
2 2 2
1 1
1 1 1 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
462
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
By Triangle inequality
But
Pu ant d
f ( )
| | | | | |
| | f ( ) , f ( )
f ( ) f ( )
,
| |
( )
| | | |
| |
k k
k kk k
k k k k
k k k kk k
k k
k k
k
k
z a k z a k z
a k z a k z k z k z
z r z k k r z k r
z z k r
z
z
  
 
      
   
  
 

  
     
      
   


  1 1
2 2
1 1 1 1
2 2 2 2
2 1 1
2 2
1
1
1
1
1
1
We have
.
( ) ( )
( ) ( .
. .
)
( )
[ ]
k k
k k
k k k k
k k k k
k k k k
k k k k
k k k
k
k k
k k r k r
k r k k k r k k r k r
k k r k r r k k r k r
d d d
k r r r r r
drdr
i e
   
  
      
   
      
   
 
 

 
     
        
        
    
2 1 2 1
2 2 2
2 1 1 1 1
2 2 2 2
1 1 2 1
2 2 2 2
2 2
2 1
2 2
2 2
1
1
1 1
1
Thus we have
( ) ( ) ( )
.
( )
f
.
. .
k k k
k k k
k k
k
k
k
k
d d d
r r r r
dr drdr dr
d d d d
k r r r r r r
dr dr rdr dr
r r r
k r r
r
i e
r r r
i e
  
  

 


 

 
      
                         
  
      
   

2
2 2
2 2 2
2 2
2 1
2 2 2
0
2 1
2 3 2 3 3
1
1 1
1
2 1 2 1 1
1 1 1
1 1 1 1
Hence for we must have
( ) f ( )
( ) ( )
f ( ) f ( ) ,
f ( ) f ( )
,
( )
( ) ( )
( )[ ]
k
k
r r
z z k r
r r
z z
r r
z z r r
r r
r r r r r r r r
z
r
z
z
r r
R
 

        
 
  
           
 
           
       
2 1
2 3 3
3
3 3
3 3 2
2 3
1 1
1 2
1 1
0
1 1
2 0 2 2 1 1
1 1
2 1 3 1 1 2 2 6 6 1
1
1 7 6 2 0 1 7
1 1
for we hav
since
Thus e
( , )
.
| |
| | ,
f ( ) f (f ( )
,
Ref ( ) f ( )
f ( )( )
( )( ) ( )
( )
Rr R r
R R
R R R R R R R R R
R R R R R
r z
r
z
z zzr
z z
zr
zz
z

    
            
      
     
 
           
2 3
3 2 3 2 2
1
3
1 1
6 2 0 1 1 1
7 6 2 0 7 6 2 7 6 2
1 6 2 6 1
1 1 1
6
6 6
6
0
1
1
1
1
2

is cap like function in the open disc
Let is cap like function and is univlent Then is
star like
Hence
wherein | |
)
.
f ( )
f( ) | | . / /
f( ) f ( )
{
.
}
: .k
k k
z
z z
z z a z zz
c
z z c





 
  
 

  
Theorem 4
1
2
0
6 1
1
6 3 6
1
3 3
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
463
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Let is univlent
Put
we hav
where
Let
Let
e
f( ) | | ( , , , )
( ) f ( )
|
:
g
| | | | |
, | .| ||
[ ]
k
k k k
k k k
k k kk k k k kz
z z
z z a z a k
z z z ka z z ka z z b z b ka
z z z z
z z r z
z z
r 


  
  
    
       
      

 
      

Proof 2
2 2
1 2 1 2
2
1 2 1 2
1 2 2
1
0 0 0
0
1 2 3 4
1
1

by triangle inequality
Consider
By
| |
( (
. . ( (
( (
.
g g
g g
g g
|
) )
) )
|
) )
[ ] [ ]
[ ] [ ]
[ ]| |
k k
k kk k
k k k k
k k kk k k
k k
k k
z z z
z z z ka z z ka z
i e z z z z ka z ka z z z ka z z
z z z z ka z z
 
 
  
  


 
   
        
    
 
 

1 1 2
1 2 1 1 2 22 2
1 2 1 2 1 2 1 2 1 22 2 2
1 2 1 2 1 22
by triangle inequ
triangle ine
ality
quality
Again we have
, |
g g
,
|
( ( | |) )
[ ] | [ ]|
| [ ]| | [ ]|
| [ ]| |
| |k k k k
k kk k
k k k k
k kk k
n k k
k k
z z ka z z z z ka z z
z z z z ka z z r ka z z
ka z z k

 
 
 
 

       
         
 

1 2 1 2 1 2 1 22 2
1 2 1 2 1 2 1 22 2
1 22 | | . .
. .
. .
| || |
| | | |[ ]| | | [ ]
| [ ]| [ ] [ ]
| [ ]|
k k k k
n n nk k k k k k
k k kk k
n n nk k k k
k k k k kk
k k k k k
k kk
k k
a z z k a z z k z z
i e ka z z k z z k r r k r k r
d d
i e ka z z r k r r r r r
dr dr
  
 
    
 
  
 
 
      
          
       
1 2 1 2 1 22 2 2
1 2 1 22 2 2 2 2
1 22 2
2 2
1
1
2 2
2 2 2
we haveThus
. .
( ) ( )
(
(g g
)
(| ) )|
| [ ]|
| [ ]|
| [ ]|
k
k
k k
k k
k k
k k
k k
k k
d
r r r
dr
d
i e ka z z r r r r
dr r r r
ka z z r
r
z z r ka z z
r r










    
                       
 
       
    
   
0
1 22 2 2
1 22 2
1 2 1 22
2 1
1 1 1
2 1 2 0 1 2 1
1 1 1
1
2 1
1
2 1
aking limit on both siBy t since eithdes
Henc
er or
e
( ) ( ) ( )
| | | | | | | | | |,
( (g g li
( ) ( ) ( )
m .| ) )|
r
r r r
r r r
z z z z z
z z r r r
r r r

 


   
              
     
     
                    
2 2 2
1 1 2 1 2
1 2 2 2 20
1 2 2
2 3
1 1 1
0 0 0
2 2 2
3 3 0 3
1 1 1
f
for we must have
Th or we hus ave
( ( ,
( )
( ) ( )
. .
, g g
,
g g
| | | | ,
( ( , .
( )
(g
| ) )|
| ) )|
z z
r
r r
r r r
z z r c
z r
z
cz
r


 
      
 
            
     
               

1 2
2
2 2
1 2
1 2 2
0
2 2 2
3 0 3 1
31 1
2 2 2 6
1 1 1 1 0 1835 1
33 3 3
0 1
2 6 3 6
3 0 1 0 1835
3 31
is univalent function infor | |( . . ( ) {g g .}) )z z z i e z z z 
    1
1 2 1 2 1 3 6 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
464
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Since is cap like function we have
will exist since is analyticNow
f( )
f ( ) f ( ) f ( )
Re Re Re f ( ) Re f ( ) ,
f ( ) f ( ) f ( ) f ( )
( ) f ( ) f ( ) f ) ;(
,
g
[ ] [ ]
z
z z z z z d d
z z z
z z z dz z z dz
z z z zz
z z
                               
  
1 1
0 1
and 0
is analytic in the open unit disc
Hence is star like function is in the disc
L
Th
et
us and | |
( ) f ( )
( ) f ( ) f ( ) f ( ) ( ) { }.
( ) f ( ) |
g
g g
g .
:
| / /
f( ) k
k k
z z z
z z z c
z z
z
a z

   
      
 

  
 Problem
1
0 0 0 1 0
0 0 0 0 0 1 1
1 3 6 1
is star like function Then
and is analytic in the open unit disc but is not univalent in the open disc
thus is not star like functi
| |
| |
Re f( )
f( )
f( ) { }, f( )
} f
.
( ),{
[ ]d
z z
z z dz
zz z z z
r zz
z
z z
z


    

 
2
1
0
1
1 on
Let is star like function Then
is univalent in an opeAnd n
f( )
f ( ) f ( ) f ( ) f ( ) f( )
Re Re Re Re Re f( )
f( ) f( ) f( ) f( ) f( )
f
.
(
.
)
:
[ ]
k
k kz z a z
z z z z z z z z z d
z
z z z z z dz
z
z

  
                                     
Proof 2
1
0 1 1
disc
is analytic in open unit discAnd
but
Consider
| |
| |
{ }
( ) f( ) { }
( ) f( ) ( ) f ( ) f( ) ( ) f ( ) f( ) f ( ) .
( ( f
g
g , g g
( fg g () ) )
[ ]k k
k kk k
z z r
z zz
z
z z
z z a z z a z z z
z z z
z z z z
  
 
 
     
            

 

 1 2
2
2 2
1 2 1 2
1
1
1
0 0 0 0 0 0 0 0 0 0 0 10
Let in the open disc thatsuch| |{ }
( (g g
)
) )
[ ] [ ]
[ ]
k k
k kk k
k k k k
k k kk k k
k k
k kk k
z a z z a z
z z a z a z z z a z z
z z z z r z z z z
z z a z a z
  
 
     
  
  
 
   
        
      
  



2 2
1 1 2 22 2
2 2 2 2
1 2 1 2 1 2 1 22 2 2
2 2
1 2 1 2 1 2
1 2 1 22 2
1 1
1 1 1 1
1 1
1
or may not be
not univalent in is not star like function
A function that is analytic in the open
may
Thu
unit disc wit
s is So
h
| |
| |
( ) { }. ( ) f( ) . / /
f( ) { } f( ) ,
f ( )
.
g g
:
z z z r z z
z z z
z

  
 
 
Definition 4
1
1 0 0
0
0
1 is said to be in the open disc if
A function that is analytic in the open unit disc an
| |
| |
| |
( ) {
f ( )
Re ( ), , ( ) .
f ( )
: f( ) { }
cap like function c z z c
z z
c z c c
z
z z z
of order
 
  
        
Definition 5
1
1 1 0 1
1 d univalent
in open disc with is said to be if| |
| |
{ } f( ) , f ( ) ( )
f ( )
Re ( ), , ( ) .
f( )
starz z c c
z
like function of orde
z
c z c c
z
r



   
        
1 0 0 0 1
1 0 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
465
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
If in is star like function of order then
is star like function of order
Let is star like function of order
| |f(: ,
( ) . .
:
)
f( )
f( )
f ( )
Re , f(
f(
.
)
k
k kz z a z z
z
z
z z
z
z





  
  

 

   
Theorem 5
Proof
2
1
1 1
1 0 4
Now is analytic in the open unit disc since is analytic
By since
and
| |
) U
| ( , , , ) f( ) U.
( ) ( f( ) { } f( )
( ) f( ) ,
( ) ( f ( ) f( ) ( ) (
Theorem , |
g ) ,
g
g ) g f ( ) f( ) f ()
k
z
a k z
z z z zz z
zzz z


  
 
   

         
1 2 3 4
1
0 0 1 0 0
0
1
0 0 01 0
1
1
1
Consider
Put
) .
f( ) .
( f( )
(
,
)
) ( )
[ ]k k
k kk k
k k
k kk k
k k
k kk k
k k k
k k kk k k k
k
z
z
z z z a z z a z
z z a z z a z
z z a z a z
z z a z a a z z a z a a z
a b a a
  
 
 
 
  
  
  
   



  
   
     
    
           
 


 2
2 2
2
2 2
2
1 2 21
2 2
2 23 3 31 1
2 2 1
1
1
1 1
1
0 1
1
1
we have
by triangle inequality
Let
Let
Consider
( , , , ) ( ) ( f( ) .
| | | |
g )
,
.
g g )
| | | |
( ( f f ()(
| |
|
) ) ( ) ( )
| |.
|
[
k
kk k kz
z
b k z z z b z
z z z z
z z r z z z z
z z z
z z z
r
z zz
z


     

 
      


       
 



   
1 2
2
1 2 1 2
1 2 2 1 1 2
1 2 11 2
1 2
2
3 4 1
0 0
1
5
0
0
1
1

By triangle inequality
( (
,
g g
g
| |
| ) )|
|
] [ ]
[ ] [ ]
| [ ]|
| [ ]| | [ ]|
k k
k kk k
k k k k
k k kk k k
k k
k k
k k k k
k kk k
b z z b z
z z b z b z z z b z z
z z z z b z z
z z b z z z z b z z
 
 
  
  


 
 
   
         
    
       


1 1 2 22 2
1 2 1 2 1 2 1 22 2 2
1 2 1 2 1 22
1 2 1 2 1 2 1 22 2
Consider
T
( ( | |
| | | | | | | | | | .
| | | | | | , | | | | | | | |
g
.
) )| | [ ]| | [ ]|
| [ ]| [ ] [ ]
k k k k
k kk k
k k k k k k k
k k k kk k k k
k k k k k
z z z z b z z r b z z
b z z b z z b r r b r
b a a b a a a a
 
 
   
   
 
         
        
             
1 2 1 2 1 2 1 22 2
1 2 1 22 2 2 2
2 1 12 2
2
1 1 1 1 2 1 1 2
we have
aking li
hen we have
Thus
By t
| |
g g
g
( ( | |
. . ( (g
| ) )|
| ) )|
[ ]| [ ]|
| [ ]|
k k k k k k
k k k k kk k
k k k
k kk
b z z b r r r r r
z z z z b z z r r
r r
i e z z r r
r r

 
    
    
 
 
          
        
       
   
1 22 2 2 2 0
1 2 1 2 1 22 2
2
1 2
2 2 2 4 4 1
4
4
4 1
1 1
since eithermit on both side ors| | | | | | | | | |,z z z z z      1 1 2 1 20 0 0
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
466
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Hence for we must have
Thus for we hav
g g lim .
, g g
( . .
( (
( ( ,
.
| | | ., ,
)
|
| ) )|
| ) )|
r r r
z z r r r
r r r
z z
r r
r r
r r
r
r i e r
r r
z z r
 


             
            
 
      
 
     
    
   
1 2
1
0
2
1 2
4 4 4
1 1 0 1
1 1 1
0
4 4
1 0 1 1 4
1 1
1 5
0 1
5
0 1
1 0 2
0 0 2

Thus is univalent in the open disc
hav
e
We e
| |
( ( . . ( (
( ) . .
( )f ( ) f( ) ( f ( ) f( ) f ( )
[( )f( )]
( )f( ) ( )f( ) ( f( ) f
g g g g
g
)
) (
| ) )| ) )
[ ]
{ }
r
z z r i e z z
r
z z z
z z z z z z z z z zd
z z z
z z dz z z z z
z
z
      
  
 
    
   

 
1 2 1 2
4
1 0
1
0 2 1
1
1
11
1
1 1
Consider
)
f ( ) f ( )
Re Re Re Re Re
f( ) f( )
. . Re [( )f( )] Re Re
( )f( )
. . Re [( )f
( )f( )
z
z
z z z zz z z z
z z z z z z
z d
i e z z
z z dz z z
d
i e z z
z z dz
 
 


                                      
                      


1
1 1
1 1 1 1
1 1
1 1 1
1 1 1
1
1
1
Let
But
( )] Re Re
( )
. . Re [( )f( )]
( )f( ) ( )
| | | |
( ) (
x y
z
x y x y
d x
i e z z z
z z dz x y
z c z c x y c
x x y c c x c c x c
x

 


                       
        
        
                   
   
2 2
2 2
2 2 2 2 2
2 2 2 2
2
11
1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 1 0 1 1 1 2
0 1 1
we haveThus
)
( ) ( ) ( ) ( )
( )
( )
( )
Re [( )f( )]
( )f( ) ( )
x y
x x
x cx y x x y x
x
cx y
cx c
c c cx y
d x c
z z z
z z dz cx y
  
 



 
     
      

   
 
    
       
   
           
2 2
2 2 2 2 2 2
2 2
2 2
2 2
1 1 1 1 1 1
1 11 1 1 1
1 1
11
1 1 11 1 2
1 1
1 1 11
1 1 2
1 1
1 11
is star like function of ord
for or or
er in the open disc
or since
So
. .
( . ) .
. .
. .
g( ) f(( ) . | / /) . .|
c c c c
c
c
c
zzz z
    
 
 

      
 
        
 
   
0
2 0 2 2 0 5 1 1
2 0 22 2 0 4
0 2 0 5 1 0
5 1 1 0 2 0 8
24 101 0
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
467
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
-th partial sum of the function is
Let in is univalent Then is analytic in
the disc with
| |
| |
f( ) f
f( ) { } . f
{ }
: ( , ) .
: ( , )
( ,f ,)
n
n
n
nk k
k kk k
k
k k
n s zz a z a z
z z a z z z s z
sz z


 

  
  

 
Definition 6
Theorem 6
0 0
2 1
1 00 is univalent function in for all
integers
in is ana
and
Let
L
lytic with
we hav
et
e
| |
( , )
, ,
: ( , ) ( , ) ( , )
f , | |
.
f f , f .
, | |.| |
n
n n n
n k
k k
s
n
s z
z
z a z z
z z z z
s s
z z z z






      
  
   
 
Proof
1
2
1 1 2 12 1 2 2
0
2 3 4
0 0
0 0
0
0
1 3 1
1 1

by triangle inequality
Consider
.
, ,
,
| | | | | | | |
f f
f,f
|
( ) ( )
( ) (
|
)
[ ] [ ]
|
n n
n n n
n n
n n
k k
k kk k
k k k k
k k kk k k
z z r z z z z
z a z z
r
s z s z
s z s z
a z
z z a z a z z z a z z
z

 
  
       
           
         

  

1 2 2 1 1 2
1 1 2 22 2
1 2 1 2 1 2 1 22 2 2
2
2 1
1
1
01
N
By triangle inequality
ote that by
| |
f f | |
f( ) U | (
,
, ,
| , , , )
( ) ( )
[ ]|
| [ ]| | [ ]|
| [ ]| | [ ]|
n
n n
n
k k
k k
nk k k k
k kk k
n nk k k k
k kk k
k
z a z z
z z a z z z z a z z
z z a z z a z z
z
s z s z r
a k


 
 
  
       
         
   
1
2 1 22
1 2 1 2 1 2 1 22 2
1 2 1 2 1 22 22
1 2 3 4 
Again
sinc
by triangle inequality
e
T
,
| |
. .
. .
heorem
| | | | .| | | |
| | | || [ ]| | [ ]| | | [ ]
| [ ]| [ ] [ ]
| [
k k
n n n nk k k k k k k k
k k k
k k
kk k k
n n nk k
k k kk
k
k
a z z a z z a z z z z
i e a z z z z r r z z
i e a z z
r
   
  
         
      

 
1 2 1 2 1 2 1 22 2 2 2
1 2 1 2 1 22 2 2
1 2
1
1.
. .
]| [ ]
| [ ]|
| [ ]|
n
n n n nk k k k
k k k k
n n n
n k k
k k
n
n k k
k k
r
r r r r r
r
r r r r
a z z r r
r r r
r r r r
i e a z z
r r

   
  



 
            
         
                       
   
        

1
2 2 2 0
1 1 2 1
1 22
2 1 2
1 22
1
2 2 2 1 1
1
1 1 1 1
1 2 1 2
1 1 1
2 2
2
1 1
2
2
weThus have
aking limit on boBy t since eithth sides er or
( , ) ( , )
( ,
f f .
| | | | | | | | | |,
f f) ( , )| |
| [ ]|n n
n n
n
n k k
k k
r r
r r r
r r
r a z z r r
r r
z z z z z
s z s
r
z
s z s z
  



 
  
  
               
     
  
1 2 2
2
1 22
1 1 2 1
1
1 2
2
2
2 2
0
1 1 1
2 2
1
1 1
0 0 0
1
Hence for we must have
lim .
, ( , ) ( , )
)
,
(
f
.
f
.
| |n n
r r r
r r
r r r
r r
r
s z s z
r i er
r
r r
r
r
r
 

          
            
 
      
 
     
   
0
1 2
1
2 2 2
1 0 1
1 1 1
0
2 2
1 0 1 1 2
1 1
1
0 1 0 1
5 3 1 3

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
468
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Thus
Hence is univalent function in the disc for all
If is s
for we have
tar l
| | | | ,
f f . . f
,
( , ) ( , ( , ) ( , )
( , ) . / /
: f(
f
f | |
)
| |n n n n
n
k
k
k
z z r
s z s z s z s z
s
r
r i e
r
z
zz z
z
a
n






    
      
  

  Theorem 7
1
1
1 2
1
2 1 2
2
0 3
2
1 0
1
3
ike function in then are star
like functions in
Let is star like function in
And is univalent
| |
| |
{ }, ( ,f )
: f( )
f ( )
| | .
f( )
| | .
{
f
e ,
(
R
)
}.
| | , , ,
n
k
k
k
k
z z
z
z a z z z
s z
z
z z
z
z
z a k




 
  
    
  
Proof
4
2
1
1 2
1
0 1
1 2 3 4 Theorem
Partial sum of is Consider
by .
f( ) ( ,f )
( ,f )
( ,f )
.
Re Re
h ( )
( ,f )
( ,f )
,
[ ]
n
n
n
k
k k k
k k n
n
n
k
n k
k
n k n nk k
k k k
n nk k
k k
n k
k
z a z
a k z a k z a k z
z
z s z
zz s z
s z z
z s
a z a z
a k
z
zz
s

  
  

 


 
    



  
    
 
 

2
2 2 2
2 2
2
1 1 1
1
1
1 1 1
1
1
 1
h ( )
h ( ) h ( ) h (
Re
. . Re Re
. . Re
)
h ( ) h ( )( ,f )
( ,f ) h ( )
( ,f )
( ,f ) h ( )
Re
| |
| |
[ ]
[ ]
n
n
k
k
n n
n nn
k
n n
n
k
n
n
k
n k
k
n k
k
n n nk k k
k k k
a k z
a k z
i e
i e a z a z a k
z
z z z
z zz s z
s z z
z s z
s z
z
z




  
  

          
   
   
  
   
 
  

 
2
2
2
2
2 2 2
1
1
1 1 1
1
1
1
1
   
   
we havePut Then
We have since
Thu w es e hav
( )
( ,f )
( ) ( )
( ,f ) h ( ) h ( )
(
.
Re Re Re
Re) ( ) ( ) ( ) ( )
(
h ( )
Re
Re
| | | |
| | | | | | .
| |
[ ]
n
n n n
n
n
k k k
n n nk k k
k k kz
zs z
z z
s z z
a z a z a k z
z
z z z z z
z s
z
  
  
  

     
   
 


 

2
2 2
2 2
2 2
2
1 1 1
1
1 1
1 1

 
    
Consider
Re
.
,f )
( ) ( )
( ,f )
( )
| |
| | [ ]
[ ]
k k k
k k k
k k k
k k
n
n n nk k k
k k k
n n nk k k
k k k
n n nk k k
k k k
n nk k
k k
a z a z a k z
a z a z a k z
a z a k
z
z z
z a k z
a z a k z
s z
z   
  
  
  
  
  
 
 
    
 
   
    
     
    

 2 2 2
2 2 2
2 2 2
2 2
1 1 1
1 1 1
1 1 1
1 1
1 1
1
1
1
1
 

| | | | | |
| | | | | |
| | | | | |
| | | | | |
k
k k k
k k k
n k
k
n n nk k k
k k k
n n nk k k
k k k
a k z
a z a z a k z
a z a z a k z


  
  
  
  
 
         
        
 
  
2
2 2 2
2 2 2
1
1 1 1
1 1 1
1
1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
469
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Put Then| |
)
.
( | | | | | || | k k k
n
n n nk k k
k k k
n n nk k k
k k k
n nk k k
k k
k
n nk k
k k
z r
a r a r a k r
r
z
r k r
d
r r r r r
dr
r r r r
r r
  
  
  
  
 
 

 
 
        
       
       
                
  
  
2 2 2
2 2 2
1 1
2 2
2
0 0
1 1 1
1 1 1
1
1
1 1 1 1
1
1 1
1 1 1

( ) ( )
( ) ( ) (
n k
k
n n n
n n n
n n
d
r r
dr
r r d r
r r r
r r r r dr r
r r d r
r r r r r r dr r
r r r
r r r r r

  
  
 
    
        
                       
       
                   
  
   
 
0
1 1 1
1 1 1
1 1
1
1 1 1 1 1
1 1 1 1
1 1 1
1 1 1 1 1
1 1 1 0 1
1 1 1
1 1 1
1
1 1 ) ( )
( )( ( ) ) ( )( )
( ) ( ) ( )
( )( )
( ) ( ) ( )
n
n nn n
n nn n
r d r
r r r dr r
r n r rr r r r
r r r r r
r n r rr r r r
r r r

 
 
      
             
            
           
       
          
2
2 2 2
1
11 1
11 1
1 1
1
1 1 1
1 1 1 11 1 1 1
1 1
1 1 1
1 1 1
1 1
1 1 1
( )( )
. .
( ) ( ) ( ) ( )
( )( )
( ) ( ) ( ) ( )
( )( )
( )
(
(
)
( )
(
|
)
|
[ ]
[ ]
n nn n
n n nn n n
n n n n
r n r rr r r r
i e
r r r r
r r r n r rr r r r r r
r r r r
r r r n r r r r
z
r
 
   
  
     
        
     
   
   
   
  






2 2 2 2
1
2 4 4 2
1
4
11 1
11 1 1
1 1
1 1 1
1 1
1 1 1 1
1 1
1
1 1 1 1
1 1
1
1 1

Thus
Assume
si
t
nce
h
)
( ) )
( ) ( )
( )[( )( ) ]
( ) ( ) ( )
. . ,
)
,
(
.
(
| |
( )[ ]n n n n
n n n n
n n n
r
r r n
r r
r r r n r r r r
r r r
r i e r r r r r r r r
z
r r r r r  
  
 

  

 
    
     
  
               
 
   


 




4
1 1 1
4 4
1 1 1
4 4 4
1 2 1
1 1
1 1
1 1
1 1 1
1 1 2 0
1 1 1
0 1 0 1 0 1 0 1
1


 
 
at
( )
( ) ( )
; . .
; . .
r r
r r
r r
r r
         
 
          
          
4
4 4 4
4 4 4
4 4 4
1 1 1 1
2 0 2 1 1
21 1 2
1 1 1
1 1 1 1 1 0 84 0 1591
2 2 2
1 1 1
1 1 1 1 1 0 84 0 1591
2 2 2
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
470
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
 
 
Thus
are star like functions in
Let
we have
Hence
Re , | |
( )
Re , | | .
| | . /
( ,f )
h ( ) ( )
( ,f )
( ,f )
( ,f )
( ,f )
: L( ) ( )
/
| | | |n
n
n
n
n
n
z s z
z z
s z
z s z
s z
s z
z z z
z r
r
z r
z


    
 

     
 
 
 

     
 
Theorem 8
4
4
2
1
4
4
1 1
1 2 0 1
1
1
1 2
1
0 1 1
2
1 2

Then is cap like function in disc
wewhere The a en h v
. ( , )
: L( ) (
L ( , , , )
| | . .
( , , , )
)
( ,L)
.
n
n
k k k k k
k k k k k k
k
n n
k k k
k k k
s z
z z z z
s z
n
z
z z z z z a z
a k
z z z z
      
     

  


   

      
 
   
Proof 0 0 0 2
1
2 1
1 1 1 1
1 1
2 3 4
0 25
1 2 3 4
1


taking the derivativ oB e ny
( ) ( ) (
( ,L)
( ,L)
)
( )
( ) ( ) ( )
( ) (
log lo
)
log ( ) (g )
[ ] [ ]
[ ]
n
n
n
n
n
n n
k
k
n n
n n n n
n
z
z z z
z
z n z z
z
z n z n z z z n z nz
z z
n z nz z
s z
s z
z



 

  

  

    

   
 
  
     
 
 
    

1
1
1 1 0
1
2
1 1 1
2 2
1
2
1
1
1 1 1 0 1
1
1 1 1 1 1
1 1
1 1 1
both sides we have
( ) ( ) ( ) [ ]
( ) (
,
( ,L)
( ,L)
( ,L)
( ,L)
( ,L
)
( ) [ ] ( )
( )( )
n
n
n
n
n
n n n
n n n n
n
n n
n nz n n z n nz z
z zn z nz n z nz
n nz z N zz z
z
z D z zn z nz
z
s z
s z
s z
s z
s z
 
 

      
  
      
  
 




 
  






 
1 1
1 1
1
0 1 1 1 11 2
2
1 11 1 1 1
1 1 2 2
1 11 1
1
simplify the notationTo puts
( ) [ ] ( ) [ ]
( ) ( )
( )
)
( ,L)
,
( ,L)
(
( ) [ ], ( )
,L)
( ) ,
( )
( )
n
n
n
n n
n n n n
n n n
n nz z n nz zz z
z zn z nz n z nz
z
N z n nz z D z n z nz w u v
z
N
s z
s z
s
w
z
z
z
D z

 

      
  
      

         
 




 




1 1
1
1 1 1 12 1
1 11 1 1 1
1
1 1
1
1
1 1
1
e have
Conside
W
r
( ) ( ) ( )
Re ( )
( )
( ,L)
Re Re Re Re
( , ( ) ( )
(
L
)
)
n
n
N z N z N z
z w u
D z D z D z
z
w w wz z w z wz w
s z
w
z
z
s
w
z
                    

          
     
 

1 1
1
1 1 1 1
1

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
471
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
| | | | | |
| | | | | | | |
) )[( ] [( ] [ ] [ ]
w
z w w
w
u v u v u v u v
u v u v u u v u u v
u u v u u v u u v
u u v u u
   

      

           
           
           
       
 

2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2
2 2 2
1 1 1
4 1 1
4 1 4
4 1 1 16 1 1
16 1 1 16 2 1 2 1
16 32 16 16 2 1 15 34 15 15 0
34 17 17
1 0 2
15 15    
   
     
   
w
Consider
ill
or
Henc
exist a
e
t
i
.
max max . . max
.
v
u v
u v i e v
u u u
u u
   

       
 
     
 
         
      
2 2
2
2 2
2
2 2 2
2
2 2
17
1 0
15 15
17 289 289 225 64 8
1
15 225 225 225 15
17 8 8
0
15 15 15
17 8 17 8 17 8
15 15 15 15 15 15
17 8 25 17 8 9
15 15 15 15 15 15
   
t is clear that the Mobius Bilinear transformation
maps the circle in -plane into the the circle
-plane such that the line segment on -axis is a diametin er
( )
( )
| | xy
uv AB u v
z
w
z
z
u v





 


1
2 2
2
1
1
4
17 8
15 15
0
       and
o
whe
r
Observe
Let Th
re
t
en
hat
, , , , , .
( ).
| ( )| |( ) [ ]| ( ) | | | | ( ) | | | |
| | . | ( )| ( ) | | | | ( )
[ ]
[ ] ( ) [
n n n
n n
u u
N z n nz z n n z z n n z z
z N z n n z z n
A
n
B
 
 
    
         
    
 

1 1
9 3 25 5
0 0 0 0
15 5 15 3
9 25 3 5
2
15 15 5 3
1 1 1 1 1 1
4 1 1 1 4 1

Consider
Let Then
Thus b tran tiy si
. . | ( )| ( ) ( ) [ ]
. . | ( )| ( ) .
( ) ( ) | | ( )| |
| | . | | ( )| | ( )
,
]
( ) [ ]
| | | | | |
n n
n
n n n n n n
n n n n
i e N z n n n n
i e N z n n
nz n z nz n z n z n z
z n z n z n n

  

 


  
  
    
 
       
     



1
1 1
1 1 1
1 1 1
1
1
4
1 4 1 4 1 4 4 1
5 1 4
1 1 1
4 1 4 1 4
ve law ( ) ( )
( ) ( )
( ) ( )
, | |
| |
| |
n n n n
n n n n
n n n n
nz n z n n
nz n z n n
nz n z n n



  
  
  
     
        
         


1 1
1 1
1 1
1 4 1 4 1
1 4 1 4 1
1 1 1 4 1 4 1 1 0
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
472
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
But
for
Thus fowe have r
Obser
| ( )| ( ) ( )
| | .
| ( )| ( )
| | ,
( ) | ( )| ( ) ( )
( ).
( ) | (
,
)| ( ) ( )
| | | |n n n n
n n
n
n n n
D z nz n z nz n z
z
D z n n
z
N z N z n n n n
D z D z n n n n





 
 

  
      
  
 

 
  
   
 

 
1 1
1
1
1
1
1
1
1 1 1 1 0
1 1
4
1 4 1 4
4
5 1 4 5 1
3
1 4 1 4 4 1 4

v that
We know that
e
( ) ( ) ( ) ( )
.
( ) ( )
( ) ( )
( ).
( ) ( ) (
, ,
)
(
( ( )
))
n
n n
n
n n
n n
n n n n
n n n n
n
nn
n
nn
n n n
 


 
   
   
  
 
 
          
 
  
   
 



1 2 1
1
1
5 1 5 2 1 2 10 3
2
1 1 1 1
1 1 1 1
4 1
10 3 3
64 2 12 50 54
4
1 4 4 2 2 1 4
5 1 4 1 43 25 4 1 1
4
5 12 4 1 1 4 14 1
1
4

any
Observe that for all integers
Since for all inte
fo
gers
r
( )
, , ,
.
( ) ( )
( )( ) ( ) ( )( ) ( )
,
n
k k k k
n n
n
n
n n
k
k k k k k k k k k k
k k k
k k

   


    
 

           

    
 
3
1
1 1
1 1
4 1
2 3 4
4 4 64 25
3
1 3 3 1 12 12
4 4 4 4 4 4 1
1 2 1 1 2 1 2
4 2 3 2
3 2 1

we have
Thus we have
Thus from we have
Thus from we have
( ) ( )
.
( )( ) ( ) ( )
( , , , )
( )
,
( )
.
( )
( )
(
( ),
, ( ),
k k
n n
n
n n n n
n n
n n
k k k k
n
n n
N z
D z


   
   
    
 


 
 



31
1
4 4 4 64
1 2 1 3 3 1 12
4 64 64 40 25
3 4 5 2
1 12 12
4 1 1
1 124 1
5 1 3
5
1
4
2
1 4
4
3


We know that
Hence we have
(
|f( )| Ref( ) f( ) Ref( )
Ref( ) |f( )| |f( )| Ref( ) |f
) ( )
.
) ( )
( )| .
( )
[ ] [Im ] [ ]
[ ]
n
z z z z
z z z z
n n N z
D zn n
z


     

   
 

 


2 2 2 2
2 2
1
5 1 3 3
5 54 1 4
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
473
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
from ( and we have
remains
Therefor
to show that is maximal radius This i
e
sIt
Re Re
) ( ),
( ,L
( ) ( ) ( )
.
( ) ( ) ( )
,
()
Re
( ,
)
R
)
e .
)
.
(L
.
n
n
N z N z N z
D z
s z
s z
D z D z
N z
z u
D z
              


   
        
1 2
3 3
5 5
3 3
1 0
5 5
0 25 seen for
has singularity at and thus analytic within
is analytic with
Then
Clearly in and
( ,L)
( ,L)
( ,L)
. , | | . .
( ,L) | | . , ( ,
.
n n
n k
k
s z
s z z
s z z z
z z
s z z
z
z
s
z
z
z z

 

  
 
  
  
  
2
2
2
2
2
0 2 1 4
1 2 1 2
0 25 0 25
0 25
1
0
1
Since have
Hence is cap like function in the open disc
of two
we
analytic fu
L) ,
( ,L) ( ,L)
( ,L) | | . . / /
: ( )
, .n n
n
n nk k
k ks z s
s z z
Hadamard product Convolut
k z
i n
k
o
 
    

  

Definition 7
2 2
1 1
0
0
0 25
1 1 0 1
nctions
in the open disc and in the open disc is denoted by and is
defined as an anlytic function in the open disc
Le
f( )
| | g( ) | | f g
f g)( ( ) | .
:
|
k
k k
k
k k
k
k k k
z a z
z r z b z z r
z a b z z r r






 
   
  
Theorem 9
0
1 20
1 20
t are univalent functions
Then is cap like function in the open disc and is univalent in the open disc
B
and
y
| |
.
(
.
: Theor
f( ) , g( )
f g)( ) | | ,
em (, | |
{ }
k k
k kk k
k
z z a z z z b z
z z
z z
a k


 
     
  
 
Proof
2 2
1
1
6 1
3 1
11 since
are univalent in the unit open di
a
sc
Let us consider
We kno
nd
N
w
ow
t
, , , ), | | ( , , , )
f( ), g( )
f g)( )
| |
f g) ( ) f g) ( )
.
f
.
(
( (
Re Re
( (g) ( ) f g) ( )
k
k
k k k
b k
z z
z z a b z
z z
z z
z
z z


  
   
  
 

          
2
1
1
2 3 4 1 2 3
1
4 
hat
f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( )
f g) ( ) f g) ( ) f g) ( ) f g
( ( ( ( (
R
) ( ) f g) ( )
f g) ( ) f g) ( ) f g)
f g) (
e Re
( ( ( ( (
( (
) f g) (
(
Re Re
( )(
z z z z zz z z z z
z z z z z
z z
z
z z
z
z
                     

 
    
   

         
     
2 2
1 11
We have
( )
f g) ( )
f g) ( ) f g) ( ) f g) ( )f g) ( ) f g) ( )
f g) ( ) f g) ( ) f g) ( ) f g) ( )
f g)
(
(
( )
f g) ( ) ( ) f g) (
( (( (
Re
( ( ( (
(
( (
k
k k k
k
k k k
z
z
z z zz z
z z z z
z a b kz
z a b k k
zz
z
z
z
z
 

 


       
 
  
     
   
      
   
     
1
2
2
2
1 1
1
1
1
) ( )
f g) ( ) ( ) ( )| | ( )| |( | || || |
k
k k k
k k k
k k kk k k k
z a b k k z
z a b k k z a b k k z k k zz
 

    
  
 
       
1
2
1 1 1
2 2 2
1
1 1 1 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
474
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Put
By Triangle inequality
But
| | f g) ( ) .
f g) ( )
f g) ( )
| | | |
(
, (
(
( )
| || |
| | | |
| |
| |
k
k
k k
k kk k k k
k
k k k
k k k k
k k k kk k k k
z r z k k r
a b k z a b k z z
z a b k z
a b k z a b k z k z k r
z  

  
 
 

      
   
   
  
   
   



 
2 1
2
1 1
2 2
1
2
1 1 1 1
2 2 2 2
1
1
1
1
We have
(
( (
f g) ( )
f g) ( ) f g) ( ) .
( ) ( )
( )
( )
[ ]
| |k k
k kk k
k k k
k k k
k k k k
k k k k
k k
k k
z a b k z k r
z z k r k k r k r
k r k k k r k k r k r
k k
z
k r r
  
 
    
  
      
   
  
 

     
           
       



  
1 1
2 2
1 2 1 2 1
2 2 2
2 1 1 1 1
2 2 2 2
1 1
2 2
1 1
1 1
1 1
1
.
( ) .
.
. .
k k
k k
k k k k k k
k
k k k k k
k k
k
k
r k k r k r
d d d d d d
k r r r r r r r r r
dr dr drdr dr dr
d d d d
k r r r r r r
dr dr rd
i e
i e
r d
i
r
  
 
    
 

    

 


    
 
            
                         
2 1
2 2
2 2 2
2 1
2 2 2 2
2 2 2 2 2
2 2
2 1
2 2 2
0
1
1
1 1
1
we have
We a
Thus
h ve
( ) ( ) ( ) ( )
f g) ( ) f g) ( )
(
. .
) ( )
( )
( ) ( )
(
( (
)[ ]
k
k
k
k
r r r
k r r
r r r r
r r
z z k r
r r
r r
r r
r r
r r
e
z
r r
 

 

  
      
   
           
 
 
       
 
       
2 1
2 3 2 3 3
2 1
2 3 3
3
3 3
3
2 1 2 1 1
1 1 1
1 1 1 1
1 1
1 2
1 1
1 1
2 0 2 2 1 1
1 1
2 1
1
1 1
1
3 2
since
for we haveThus
( , )
| | .
| | ,
f g) (
,
( ) )(f g ( )
( )( ) ( )
( )
r r r r
r r r Rr R r
R R R
R R R R R R R R R
R R R R R
r z
r
z
r
z zz

   
            
            
      
      
 
     
3 2
2 3
2 3
3 2 3 2 2
1
2 6 6 1
1 1 1
1 7 6 2 0 1 7 6 2 0 1 1 1
7 6 2 0 7 6 2 7 6 2
1 6 2 6 1
1 1 1
6 1
6 6
6 1
2

is cap like function in the open disc
we
Hence
Le ht
e
ve
L t
a
( )
f g) ( ) f g) ( )f g) ( )
.
f g) ( ) f g) (
( ((
Re
( ( )
f g)( ) | | .
| | |
(
,
|
| |.||
r
z zz zz
z z
z z
z z
z z z z
z z r
z z


     
  



   

  
  
    
    
3
1
1 2 1 21
2
2 1 2
1
1
0 0 0
1
0
1
0
6 1
1 0 by triangle inequality| | | | .| |r z z z z     2 1 1 2
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
475
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Consider
By triangle inequality
f g)( f g)(
f g)(
( (
( (f g)(
,
) )
) )
[ ] [ ]
[ ] [ ]
| [ ]|
|
k k
k kk k k k
k k k k
k k kk k k k k k
k k
k k k
z z z a b kz z ka b z
z z a b z a b z z z a b z z
z z z z a b z z
z
 
 
  
  


     
        
      

 


1 2 1 1 2 22 2
1 2 1 2 1 2 1 22 2 2
1 2 1 2 1 22
1
by triangle inequality and haAgain since we ve
( (
;
| |
f g)( f g)( | |
| , || | ;
) )
[ ]| | [ ]|
| [ ]| | [ ]|
| [ ]|
k k k k
k kk k k k
k k k k
k kk k k k
k k
k k
k k k
z a b z z z z a b z z
z z z z a b z z r a b z z
a b
a b z z

 
 
 
 
      
           
 


2 1 2 1 2 1 22 2
1 2 1 2 1 2 1 22 2
1 2
1 1
| || |
( )
. .
f g)( f g( ( )(
|
)
.|| |
)
| | | |
| [ ]| | |
[ ]
[ ] [ ]
| [ ]| | [ ]|
|
k k k k
n n nk k k k
k kk k k k
n k k
k
n n
k k
k k k k k
k k kk k
k
a b z z a b z z
z z
z z r r
r r
i e ka z z r ka z z
r r
z z r a
  

 
  
  
     
 
    
         
 
     
1 2 1 22 2 2
1 22
1 22 2
2 2
1 2 1 22 2 2
1 2
1 1
2
2 2
1 1
aking limit on bothBy t since either osides
Hence
r| | | | |
( ( lim .
,
| | | | |,
f g)( f g)(| ) )|
[ ]|k k
k k
r r
b z z r r
r r
z z z z z
r r r
z z r r r
r r r
 




           
     
              
            

2
1 22
1 1 2 1 2
01 2
2 2
1
1 1
0 0 0
2 2 2
1 1 0 1
1 1 1
for we must have
Thu for we has
Th
ve
f g)( f g)( ,
| | | | ,
f g)( f g)( . . f g)(
( (
( . . )
f g)
,
( ( ( ( ( .
| ) )|
) ) ) )
z z
r r
r r
r r
r r r
z z r
r
z z r i e z
r i r
z
e
r




  
      
 
     
    
        
 
   
 

 
1 2
1
1
1 2
1 2 1 2
0 1
0
2 2
1 0 1 1 2
1 1
1 5 3 1 3
0
1
1
3
2
1 0
0
us is univalent in the open disc
Let is univalent function Then is star like function in
the open disc where
Let
| |
| |
f g)( ) . / /
f( ) f( )
{ }
:
.
(
.
g
(
:
{ }
k
k
k
z z z
z z a z z
z c cz 



  
  
   
Theorem10
Proof
1
1
2
3 6
3
1 1
1
Then cl and
n
a
A
e r
d
ly.
g ( ) ( )
, ( ).
g ( ) ( )
) g( ) , g ( ) .
g ( ) ( ) g ( ) ( )
( )
. .
k k
k k
k k k
k k k
z z z z z z z
z x y
z z z z x yz
z z k z k z
z z z z z z
i e
z


  
    


 
  
   
     
     
   
         
   
    



1 1
2 1
1
2
2
1 0
1
1
1 1 1
1
0 0 0 1
1
1 1 1 1
1 1 1
1 1
1
1 11
1

For we have
g ( ) ( ) g ( ) ( )
Re .
g ( ) ( ) g ( )( ) ( )
| | , | |
z z x y z z x
z x y zx y x y
z x x y z x x


                 
           
2 2 2 2
2 2 2 2
1 11
1
1 1 1
1 1 1 1 0 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
476
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Thus we have
is cap like function
Let
by trianglLe e inequality
Consider
t
g ( ) ( )
Re .
g ( ) ( )
g( ) .
| | | | |
g
| | | .
g
| |.
|
( ) )
|
(
| |z z
z z x
z x y
z
z z z z z z
z z r r
z z
z z z z
 

        

      
  

    
 
2 2
1 2 1 21 2 1 2
1
1 2 2 1 1
2
2
1
1 0
1
0 0 0
1
By triangle inequality | |,
g g |( ) ( )
[ ] [ ]
| [ ]| | [ ]|
k k
k kk k
k k k k
k k kk k k
k k k k
k kk k
z a k z z a k z
z z a k z a k z z z a k z z
z z a k z z z z a k z
z zz
z
  
    
  
 
  
 
         
         
       
  
1 1
1 1 2 22 2
1 1 1
1 2 1 2 1 2 1 22 2 2
1 1
1 2 1 2
1
22
2
1 2 12
since
Agai
BEIRBERBACH conjecture
by triangle ineqn weuality aveh
By |
,
|
| f( ) U.
| |
| [ ]| | [ ]|
| [ ]| | [ ]| | |
k k k k
k kk k
k
k k k k k k
k k kk k k
z a k z z a k z z
a k z
a k z z a k z z a z
r
k z
  
    
 
  
      
 
   

    
1 1
1 2 1 2 1 22 2
1 1 1
1 2 1 2 1 22 2 2
Thu
since
we haves
. .
. .
g g
| || | | | | .
( ) (
|
)
| | | |[ ]
| [ ]| [ ] [ ]
| [ ]|
| [ ]|
k k k k
k k
k
k k
k k kk
k k k k
k k kk
k k
k k
k k z z
i e a k z z z z r r
z z
z z
r
i e a k z z r r
r
r a k z z r
r
 
 
  
  
 

  
  

 
      
     

      
 
1
1 22
1
1 2 1 2 1 22 2 2
2
1
1 22 2
1
21 122
22 2 2
1
aking limit on both sides
Hence for we must hav
By t since either or
.
| | | | | | | | | |,
,
g g lim .
, g g
( ) ( )
( ) ( )
r r
r
r r
z z z z z
r r r
r r r
r
z
z z
r
z
r



    
   
     
             
            
 
1
2
1 1 2 1 2
2 0
1 2
2 2
1
1 1
0 0 0
2 2 2
1 1 0 1
1 1 1
0 e
Thus
Hence is univalent function in th
for we hav
e
e
.
| | | | ,
. . .
( . . )
,
g( ) g( ) g( ) g( ) g( ) g( ) .
g( )
.
r i e
r r
r r
r r
r r r
z z r
r
r i e i e
r
z z z z
z
r
z z




      
 
     
    
        

   


 
1 2
1
1
1 2 2
2
1
1
2 2
1 0 1 1 2
1 1
1 5 3 1 3
0 3
0 1
2
1
1
0
0
00
1

disc
Convolution of and is
By we say that is cap like function in the open disc and
is unival
.
(f g)( )
Theorem (
| |
f( ) , g( ) .
f g)( ) | | ,
f g)( )(
k k
k k k
k k kz
z
z z a z z z k z a k z
zz
z
z

   

   
 
    
 



1
1 1
2 2 2
1
3 1
6 19,
ent in the open disc | | .{ }z z 
 1
3 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
477
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
By is star like function in //
An analytic function in with
| |
| |
f( ).
f( ) { .
(f g) ( ) (f g) ( )
Theore }
f( ) { } f
m (f g) ( ) .
: ( ) ,
k k
k k
k kz za k k z z a z z
z z
z
z zz
z
z
z
 


   
  
      
 




Definition 8
1
2 2
1
1
1 3 6 0 1
1
835 1
1 0 0
4,
is said to be
close-to-cap like function if there is a univalnt cap like function in such that
Let is close-to-cap like funct
| |
| |
g( )
f ( )
R
f (
e ,
g ( )
)
{ }
g ): (
.
k
k k
z
z
z z
z
z z b
z
z





    
 Theorem11 2
0 1
10
1
ion Then is univalnt
Let is close-to-cap like function Then there is a univalnt cap like function
in such that
Let
| |
| |
. .
: .
h( )
g ( )
Re , .
h ( )
g
Re
h
g( )
g( )
{ }
| |
( )
( )
z
z
z
z
z
z
z
zz
z
z


    


    



Proof
0
0
0
1
1
1
0
0
g( ) g g( ) g
lim
Re Re lim
h( ) h h( ) h
lim
g( ) g g( ) g
Re lim , lim Re ,
h( ) h h( ) h
g
Re
( ) ( )
( ) ( )
( ) ( )
( ) ( )
z z
z z
z z
z z z z
z z z z
z z z z
z z z z
z z z z
z z z z
z z z z
z z z z



 
    
    
         
      
               

0
0
0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
But since is a univalnt function
Thus is a univalnt function
Let is cl
for
for for
( ) g
, .
h( ) h
h( ) h h( ) .
g( ) g g( ) g .
g
g
( ) . / /
: ( )
( )
( )
( )
( ) ( )
k
k k
z z
z z
z z
z z z z z
z z z z z z z z
z
z z b z

     
 

 
    


Theorem12
0
0
0
0 0
0 0 0 0
2
0
0
ose-to-cap like function and
Then is close-to-cap like function provided
Let is close-to-cap like function Then and there is
.
( (f g) ( ) g ( ) .
: .
, f( )
f g)( )
g( ) g( ) ;
| |
k
k k
k
k k
z z a z
z z
z
z b
zz
z




  
  





Proof
2
2
1 1
a
cap like function in such that
Now
| |
| |
. { }h( )
g ( )
h ( ) .
Re
h ( )
.
k
k k
k
k k
z
z
z
z c z z z
z
z c k z


 

  
    

   
2
2
1
1
1
0 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
478
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Convolution of and is
Consider
loss of generaliWithout Pt uty
(f g)( )
(f g) ( ) g ( )
,
f( ) , g( ) .
( )
k k k k
k k k k k k
k k k
k k k
k k k
k k k
k k k
z z
z z
z z a z z z b z a b z
a b kz b kz a b b kz
c a b
  
  
  
  
  
  
 
     
          
 
   
2 2 2
2 2 2
1 1 1
1 1
for
(f g) ( ) g ( ) h ( )
(f g) ( ) g ( ) h ( ) (f g) ( ) g ( )
.
h ( ) h ( ) h ( ) h ( ) h ( ) h ( ) h ( )
(f g) ( ) g ( )
Re
h ( ) h
, , ,
( )
( ) h
e
(
R
k
k k k k
k k
k kz z z
z z z z z
i e
z z z z z z z
z z
b k
a b b kz c kz
z z z
  
     
      
      
      
      

     

   

2 2
1 1
1
1 1 1
1 1
1
1
2 3 4 
Let
g ( )
Re Re Re
) h ( ) h ( ) h ( )
(f g) ( ) h ( ) h ( ) Re h ( )
Re Re Re
h ( ) h ( ) h ( ) h ( )h ( ) h ( )
h ( ) ( ,
. . R
) ( , ) h
e
| | | |
z
z z z
z z z z
z z z zz z
z u x y x
i
v y
e

                         
              


  
            
  
  

 
2 2
1 0
1
1
1
1
1
1 1
1
and
Thus we have
since
( ) ( , ) ( , )
h ( ) , Re h ( ) .
(f g) ( )
Re h ( )
h ( ) h ( )
h ( ) (f g) ( ) ( )
Re .
.
g
| |
| |
| | | |
z u x y v x y
z u v z u
z u v
z
z z u v u v
u v
u v u v z z z
u v
u u
u
u i
u
u
 
   
         
 
       

  
  
 

 
  


2 2 2
2 2
2 2 2 2 2
2 2
2 2 2 2 2
2 2
1
1
1 1
0
0
0
0 1 1
Thus we have
If is close-to-cap like function in then
are close-to
| |
.
Re . /
. .
. .
(f g) ( )
h ( )
: f( ) , ( ,f )
/
{ } nk
k
k
e u v
u u
u
u u u
u
z a z
v u v u i e u v
z u v
z u v
z s zz z

 
   


  

       
   

  
Theorem13
2 2
2 2 2 2 2 2 2
2 2
2 2
2
1 0
0
0
0
1
-cap like functions in
Let is close-to-cap like function in Then there is a
cap like and univalent function such that
Clearly
| |: f(
|
)
h(
| .
{ }.
)
f ( )
| | .
h (
Re
)
,
|
k
k
k
z
zz
z
z
z
z
a z z z



  
 

  
 Proof
4
2
1 2
1
10
are univalent
Partial sum of i
C
s
onsider
since f( ),h( ) .
f( ) ( , .f )
| , | | | |k k k
n k
n k
k
a c c
z a z
z z
z s z   
  
2
1 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
479
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
Re Re Re
. . Re
h ( )( ,f ) h ( ) ( ,f )
h ( ) h ( )h ( ) h ( )
( ,f )
h ( ) h ( )
h ( ) h ( )
( ,f )
h ( ) h ( )
Re
. . Re Re
| |
| |
| |
n n
n
k
n
k
k
n k
k
n k
k
zs z z s z
z zz z
s z
a
z z
z
k z
i e a k z
i e c
z
s z
z z




     
           
        
   
  
 

 
 

2
2 2
2
2
1
11
1
1
1
   
   
Put
We have since
( .
Re Re Re
)
( ,f )
( ) ( )
h ( ) h ( ) h ( )
( ) ( ) ( ) ( ) ( )Re Re
| | | |
| | | | | |
[ ]
[ ]
k k
k
n
k k
nk k k
k k k
nk k k
k k kz
s z
k z c k z a k z
c k z c k z
z z
z z
a k
z
z
z
z z z z
   
  
   
  
  

  
       


   

  
 
2 2 2
2
2 2 2
2
2 2
1 1 1
1 1 1
1
1
1
1 1
1

 
    
we have
Consider
Thus
( ,f )
h ( ) ( ) ( )
h ( )
( )
Re Re
.
| | | |
| | [ ]
[ ]
k k k
k k k
k k
n
k
nk k k
k k k
nk k k
k k k
nk k k
k k k
s z
z z z
z
z c k z c k z a k z
c k z c k z a k z
c k z c k z a k z
   
  
   
  
   
  
 
   
    
 
     
   

 2 2 2
2 2
2
2
2
2 2
1 1 1
1 1 1
1 1 1
1 1
1
1
1
 

| | | | | |
| | | | | |
| | | | | |
| | | |
| | | | | |
k k k
k k k
k k k
k k
nk k k
k k k
nk k k
k k k
nk k k
k k k
k k
k
c k z c k z a k z
c k z c k z a k z
c k z c k z a k z
c k r c k r
   
  
   
  
   
  
  

      
          
          
    
  
  
 
2 2 2
2 2 2
2 2 2
2
1 1 1
1 1 1
1 1 1
1
1
1
1
1 | |k
n n
n
n k
k k
nk k k
k k k
k k k k k k
k k k k k k
k
k
a k r
k r k r k r
d d d d d d
r r r r r r
dr dr dr dr dr dr
d r d r d
r r
dr r dr r dr
   
 
 
   
  
     

    
         
                     
            

  
2 2
2 2 2
2 2 2 2 2 2
2 2
0
1 1
1 1 1
1 1 1 1
1 1
1 1
1 1
( ) ( ) ( ) ( )
( ) ( )
( )( ( ) ) ( )( )
( ) ( ) ( )
( )( )
( ) ( )
( ) ( )
n
n n
n
r r r r r r d r
r
dr rr r
r n r rr r r r
r r r
r r r r r n rr r
r r




        
            
        
            
      
 
 
2 2
2 2
2 2
2 2 2
2 22
2 2
1
1
1 2 1 2 1
1 1
11 1
1 1 1 12 2
1 0 1
1 1 1
1 2 2 1 12
1 1 ( )
( )( )
( ) ( ) ( ) ( )
n
n n
r
r
r n r rr r
r r r r


  
  
    
         
2
2
2 2 2 2
1
1
1
1
1
1 12 1 1
1
1 1 1 1
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
480
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
( )( )
. . , | | .
( ) ( ) ( ) ( )
( )( )
.
(
( )
( )
) (
( )
) ( ) (
| |
| |
| |
( )( )
( ) ( ) ( ) ( )
n n
n n
n n
r n r rr r
i e z r
r r r r
r n r rr r
i e
r
z
z
r r
z
r n r rr r
r r r r



  
  


   

   
    
  
  
  
   
 
    

2
2 4 4 2
12
2 4 4 2
12
2 4 4
1
1 12 1 1
1 1 1 1
1
1 12 1 1
1 1
1 1 1
1 12 1 1
1 1
1
1 1



Assume th
s ce
at
in
)
( )( )
( ) ( ) ( )
( )( )
( ) ( ) ( ) ( )
. . .
( )
( ) ( )
;
n n
n n
r
r n r rr r
r r r
r n r r
r r r r
r i e r
r r
r r
r r



   
   
  
  
        
   
   
         
 
      
2
12
2 4 4
1
4 4 4 4
4
4 4 4
4 4
1
1 11 2 1
1
1 1 1
1 1 1 1 1
1 1 2 0 2
1 1 1 1
0 1 0 1
1 1 1 1
2 0 2 1 1
21 1 2
1 1
1 1 1
2 2  
 
 
Thus
are close-to-cap like f
we have
He unctionnc s ine
( ,f )
h ( ) ( )
h
. .
Re , | |
( )
Re , | | .
| |
( )
( ,f )
h ( )
( ,f ) . / /
| | | |n
n
n
s z
z z
z
z r
r
z r
z
s z
z
s z 
   
 
    
 
     

     
 
  
Conclu
4
4 4
4
2
4
1
1 1 0 84 0 1591
2
1 1
1 2 0 1 1
1 2
1
0 1 1
2
1 2

conclusion of the theorems discussed is presented in the following
Any univalent function in the open disc by
the
Let
Entire
is
i as
Theorem
| |
.
f( )
f( )
{ }
.
k
k k
k
k k
z z a z z z
z z a z




   
  
isio
]
n
1
2]
1
2
2
1
3 1
3
2
ny univalent function in the disc Then
has the property by
is cap like function in the disc by
is
Theorem
Theorem
| |
| |
f( ) | | ( , , , )
f( ) { }
)
)
) )f( ,
{ }.}
;
n
n
k
k
k k
i
i
z z
z a k
z z z
z a z
i
iii s z



 
 
  
1
2
1
1 2 3 4
6 1
 1
3.
univalent in by
is star like function in the open disc by
Theorem
Theorem
| |
| |f( ) {) }
{ }{ },z z
zi z
n
v z


 


 
1
1
1
1 3 6
3
1
6.
10.
¥ -
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 457 – 481
_______________________________________________________________________________________________
481
IJRITCC | July 2017, Available @ http://www.ijritcc.org
_______________________________________________________________________________________
If is univlent and cap like function then is star like function
in the disc by
If is star like function of order then
Theorem| |
f( ) f ( )
f
,
.
,) ((
{ }
k
k k
k
k k
z z a z z
z z
z z
z
za z 





  
 
  
3]
4]
2
2
1
1 1
11 3 6 4
is star like
function of order by Theorem
If is star like function in then ( are
star like functions in by
Let
Theorem
| |
)
. .
f( ) , ( ,f ) , , , )
f( )
{ }
| |
)
.
L(
k n
k
k
z
z a z z z
z
z s z n
z z







 
 
5]
6]
2
4
1
1 2
0 4
2 3 4 
5
7
Then is cap like function in disc
by Theorem
Convolution of any two univalent functions
defined
an
s i
d
a s
L ( , , , ) | | .
f( )
( ) . (
, g( )
f g)( )
, )
(
n
k k
k kk k
k
k k k
n z
z z a z z z b z
z z a b
z s z
z

 
 


 
    
  


7] 2 2
2
1
2 3 4 0 251 
8.
univlent function in the open disc
and is cap like functionin the open disc by
Let is any close-to-cap like function in Then
is un
Theorem
| |
| |
| |
,
.
f( )
f( )
.
)
{ }
{ }
{ }
k
k k
z z
z z
z z a z z z
zi






  8]
1
2
1
3
1
6 9
ivalnt function by
are close-to-cap like functions in by
Let is close-to-cap like function Then
is close-to-ca
Theorem
Theorem| |
g( ) , f( ) f g
.
) ( ,f ) .
. ( )( )
n
k k
k kk k
z
z z b z z
ii
z a z z
s z 
 
 
 
     9]
4
2 2
1 2
11
13
p like function provided by Theorem(f g) ( ) g ( ) .
,
| |z z    
REFERENCES
1 1 12
Beirberbach L Uber disKoeffiizientenPotenzerihn Welche cine Shlichta
Abbildung desEinheit skreises Vermittetn.
S.B.Preuiss Akad.
( ) .138 1916 940 955
WissL. Sitzungsb, Berlin,

Some Special Functions of Complex Variable

  • 1.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 457 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Some Special Functions of Complex Variable Dr. T. Ravi Assistant Professor (Contract Basis) In Mathematics, University College Of Engineering (K.U.), Kothagudem-507101, Telangana, India. Mobile: 9701409620, E-Mail address: tandraravi@gmail.com & tandraravi@yahoo.in Abstract: Main aim of this article is the discussion of Univalent complex functions, Cap like complex functions, and star like complex functions, close-to-cap like complex functions. Keywords: Univalent function; BEIRBARBACH Conjecture; Cap like function; Star like function; KOEBE’s function; HADAMARD Product (Convolution). Close-to-Cap like functions. __________________________________________________*****_________________________________________________ Introduction: We know that a complex valued function is said to be regular or analytic in a domain D (a non- empty open connected subset of the complex plane£ ) if it has a uniquely determined derivative at each point of D. Definition 1: A function ( )f z is said to be a univalent in a domain D if f( ) f( )z z1 2 for all { , } Dz z 1 2 with z z1 2 . A necessary condition for analytic function f( )z to be univalent in D is f ( )z  0 in D. This condition is not sufficient since f( ) z z e is clearly not univalent since f( ) f( )e e      0 2 0 1 2 butf ( ) z z e   0. By Riemann mapping theorem, one function may map any simply connected domain onto the open unit disc in a one-one conformal manner. Hence, without loss of generality, we confine our attention to the functions that are univalent and analytic in the open unit disc | |{ }z z 1 . Notation: We denote by A the class of functions f( )z that are analytic in the open unit disc | |{ }z z 1 with the conditions f( ) , f ( ) 0 0 0 1. Then we say that withf( ) A f( ) ,| | , f( ) ,| | .k k k kk kz z a z z a a z z a z z             0 10 21 0 1 1 We denote by U the class of functions f( ) Az  and are univalent in an open disc | |{ }z z c 1 . BEIRBARBACH Conjecture: In 1916, BEIRBERBACH proved that | |a 2 2for every f( )z in U whose Taylor’s expansion about the origin is f( ) k kkz z a z    2 .He also showed that | |a 2 2 for the function f( ) ( ) , | |z z z    2 1 1 , which is known as KOEBE’s function. Note that singularity of KOEBE’s function is z   1 which is outside the open unit disc | |{ }z z 1 since| | | || |z      1 1 1; thus KOEBE’s function is analytic in the open unit disc | |{ }z z 1 . And f ( ) ( )( ) ( ) ( )( )z z z z           3 2 2 1 1 2 1 implies f ( ) ( )( ) ( ) ( ) .           3 2 0 0 2 1 0 1 1 0 1 Clearly f( ) .0 0 So KOEBE’s function is in U.
  • 2.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 458 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Motivated by the extremal property of the KOEBE s function BEIRBERBACH conjectured that for every This is known as BEIRBERBACH conjecture which is a challenging problem in math | | ( , , , ’ , .) f( ) Una n n z  2 3 4  ematics that took almost years to prove it LOUIS BRANZES has proved the conjecture in full in is univalent is univalent in Let | | . . : f( ) f( ) { } f( ) f . : ( k k k k k k z a z c z z z c z z a z c            Problem Proof 0 2 70 1985 1 is univalent i where with with with n the disc | | | | | | | | ) g( ) f( ) { } f( ) f( ) , { } f( ) f( ) , { } g( ) g( ) , { . } { } { } { } k k k k k k z cz a cz z c z z a z z z z z z z z z z z c z c z z z z z z z z z z z z z z z c                                2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 1 1 1 1 1 is univalent in the disc where coefficient of in taylor series of Let If BEI the R n s B i Eby | |f( ) g( ) { }. / / f( ) U, | | ( , , , ) f( ) f( ) U | | ( , , , ) : . : k k k k k k k z cz a cz z z z z a k a z z z a k k             Theorem 1 Proof 2 1 1 2 3 4 2 3 4   wher RBACH conjecture And Put Let Then Then But we say that the inequali y e t f( ) . ( ) f ( . g . . ( , , , ). ) [ ] k k k k k k k k k k k k k k k k k k k k k z z a z z z z ka z z ka z z b z bz z z z z a z a z k a z a k z                           1 2 1 2 1 2 2 1 1 2 2 2 1 2 3 4 1  may or may not hold So we can do some work Since we have by triangleLet Con in si equal der ity| | | | | | . . , . g g | | ( ( f ( | |. | | | | ) ) ) n nk k k k k z z z z z a z z z z z z r z z z z z z z z r z                            1 2 1 22 2 2 1 2 1 2 2 1 2 2 1 1 1 2 1 2 1 0 0 0 1 By triangle inequality f ( . . ( ( , | g g | g g( ) ) ) ) [ ] [ ] [ ] [ ] | [ ]| | [ ]| k k k kk k k k k k k k kk k k k k k k k kk k z z ka z z ka z i e z z z z ka z ka z z z ka z z z z ka z z z z ka z z z z                                           2 1 1 2 22 2 1 2 1 2 1 2 1 2 1 22 2 2 1 2 1 2 1 2 22 1 2 12 Again by triangle inequa welity have ( | | | | . . , ) | | | | | [ ]| | [ ]| | [ ]| | [ ]| | | [ ] | [ ]| k k k k k kk k nk k k k k k k k k k k kk k k k k k k z z z ka z z r ka z z ka z z ka z z k a z z kk z z i e ka z z k                                   2 1 2 1 2 1 22 2 1 2 1 2 1 2 1 22 2 2 2 1 22 . . [ ( ) ] . . ( ) . . ( ) | | .| |[ ] [ ] | [ ]| | [ ]| [ ] | [ ]| [ k k k k k k k k k k k k k k kk k k k k k k kk k k k k k k kk z z k r r k r i e ka z z k r k k k r i e ka z z k k r k r i e ka z z r k k r r k r                                                  2 2 2 1 22 2 2 2 1 22 2 2 1 22 2 2 2 1 22 2 2 1 2 2 2 1 2 1 2 1 ]  2
  • 3.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 459 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ . . . . . . | [ ]| | [ ]| | [ ]| k k k k k k k k k k k k k k k k k k k k k k k k d d d d i e ka z z r r r r r r r r dr drdr dr d d i e ka z z r r r r r r drdr d i e ka z z r r rdr                                                        2 2 2 2 1 22 2 2 2 2 2 2 2 2 1 22 2 0 0 2 2 1 22 2 2 2 2 2 2 1 2 1 1 2 1 1 . . ( ) ( ) ( ) ( ) . . ( ) ( ) | [ ]| | [ ]| | [ ]| k k k k k k k k k k k k d r r dr r r i e ka z z r r r r r r r r r r i e ka z z r r r r ka z z                                                                      2 1 22 3 2 3 2 1 22 3 3 1 22 1 2 1 1 2 1 2 1 2 0 2 1 2 1 1 1 1 1 2 1 1 2 1 2 1 1 1 have aking limit Th on both si us we By t since either odes r ( ) ( ) ( ) ( ( ( ) ( ) | | | | | | g g | | ) )| | [ ]|k k k k r r r r r r rr z z r ka z z r r r r r z z z z                                                   3 3 1 2 1 22 3 3 1 1 2 1 1 2 1 2 1 1 1 2 11 2 1 3 1 1 0 0 0 Hence for w muse t have g | | |, ( ) ( ) ( ) ( ( ( ) ( ) ( ) , ( ( . . ( ( , ( ) ( g lim . g g g g ( . ) ( ) . | ) )| | ) )| ) ) z r r r z z r r r r r r z z i e z z r r r r r r r i e                                                 1 2 1 2 3 3 3 1 2 1 2 3 3 0 3 2 1 2 1 2 1 3 3 0 3 1 1 1 0 2 2 2 2 3 0 3 1 1 3 1 2 12  where since ) ( ) ( ) ( ) ( ( ) ( , ) ) ( ) ( ) ( ) [ ]r r r r r r r r r r r R r R R R R R R R R R R r rR R R R R R                                                             3 3 2 2 3 2 3 3 2 3 2 2 2 2 0 1 11 11 3 1 3 1 2 2 3 3 9 9 2 2 1 11 9 3 0 1 1 1 1 11 9 3 0 1 1 1 11 9 3 0 11 9 3 1 4 1 9 11 11 4 1 9 2 2 1 9 3 . . . . , . . ( ) R R R R R R R R R Either R or R                                                                 11 121 36 11 121 36 2 2 11 121 36 11 121 36 2 2 11 11 2 2 11 3 3 3 85 85 3 0 85 11 2 2 2 1 9 2195 85 9 2195 2 2195 1 10975 85 9 2195 211 2 2 01 21 .       95 10 10975 2
  • 4.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 460 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ thatSuppose . . . . . . . . . . . )( . ) . . . . . . , [ ] ] ( ] ] [ [ [ R i e R R R R R R R R                               85 85 1 10975 10 10975 1 10975 1 10975 0 10975 0 10 10975 10 10975 1 9 10975 1 10975 10 10975 0 10975 9 10975 0 999 11 11 795 1 10975 10 10975 1 1 2 2 0 1 0 10 1 This is contradiction Thus our supposition is wrong Hence Thus for we have . ) . . . | | | | . . | . | | . , ( ( ) ( ) R r i e z r z r z                          1 2 1 2 11 2 1111 1 11 2 2 2 121 85 3611 1 0975 0 999795 1 10952257 3 85 8585 85 85 85 0 0 0989 0 1 1 18 is univalent in B we have EIRBERBACH cby o onjecture r | | | , ( ) . , ( ( ( ) . . ( ( . . ( ) . | | g g g g g ( , , , ) | | | ) )| ) ) { }k k k k k z r c r c z z r r i e z z i e z z b z z z c b k k k a k                                  2 1 2 3 1 2 2 1 2 185 0 0989 1 3 0 1 1 2 3 4 11 18  in is univalent in is univalent in the open discLet by | | | | | | : . : T | | ( , , , ) | | ( , , , ). / / f( ) f( ) { he }. | | ( , , , ) o { } k k k k k k k k k k a k k a k z z a z z z z z z a z z z c a k                      Theorem 2 Proof 1 2 2 2 3 4 1 2 3 4 1 3 1 1 1 2 3 4    Let by triangle inequLet Consider ality By triangle | | | | | | | | f rem . . ( f( . | | ) | | | | ) . [ ] [ ] [ ]| | | |k k k k k k kk k k z z z z z z r z z z z z z z a z z a z z z z z z z a r z z                                      1 2 1 2 1 2 2 1 1 2 1 2 1 1 2 2 1 2 1 22 2 2 2 1 1 2 1 0 0 0 1 by triangle inequali inequality ty Again we have , | | f( f( | | , ) ) [ ] | [ ]| | [ ]| | [ ]| | [ ]| | [ ]| | |k k k k k kk k k k k k k kk k nk k k k k kk k z z a z z z z a z z z z z z a z z r a z z a z z a z z                                    1 2 1 2 1 2 1 22 2 1 2 1 2 1 2 1 22 2 1 2 1 22 2 | | . . ( ) . . . . | | | | | | | || | [ ] | [ ]| [ ] [ ] | [ ]| | [ k k k k k k kk k k k k k k k k k k k kk k k k k kk k k a z z z z i e a z z z z r r r r r i e a z z r r r r r r i e a z z                                                          1 2 1 22 2 1 2 1 22 2 2 2 2 1 22 0 1 2 1 2 2 1 11 2 1 2 1 2 1 1 ]|k k r r r r r                  2 1 2 2 1 1 1
  • 5.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 461 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Thus we have By t since either oraking limit on both sides ( ( | | | | | | | | | | f f f f li , ( ( m | ) )| | ) )| | [ ]|k k k kz z r a z z r r r r r z z z z z z z r r r r                                                1 2 1 22 1 1 2 1 2 1 2 0 1 2 2 1 3 1 1 0 0 0 2 2 3 3 1 1 must have is univa Hence for we Therefore lent in the open disc | | , ( ( . . ( ( , ( ) ( . . ) . f f f f f( ) | ) )| ) ) {k k k r r z z i e z z r r i e r r r r r r r z z a z z z                                            1 2 1 2 1 2 2 0 3 1 0 2 2 3 0 3 3 1 2 1 0 1 1 1 3 3 2 1 3 3 1 3  A function is said to be in the open disc if A function in in | | | | | | | | . / / f( ) { } f ( ) Re , . f ( ) f( : : ) } k k k k k k z z a z z z z c z z z c z cap like fu z z a z z nction                     Definition 2 Definition 3 1 2 2 3 1 1 1 1 0 is said to be in the open disc if univalent in and is cap like function in Let I nf the | | | | | | | | { } f( ) { }, f ( ) Re , . : . : f( ) f( ) U, f( ) { } f( z z c z z z c star like funct z z z c z z z z on z i              Theorem 3 Proof 1 1 1 1 0 6 1 by And is univalent in by Let us consider We know tha Then t | | Theorem ; Theorem . Re Re ) U. | | ( , , , ) f( ) { } f ( ) f ( ) . f ( ) f ( ) f ( ) f ( Re ) k k k k z z z a k z z a z z z z z z z z z z                                   1 2 2 1 1 1 2 3 4 3  1 2 We ha f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( )f ( ) f ( ) f ( ) f ( ) f ( ) Re Re f ( ) Re Re z z z z z z z z z z z z z z z z zz z z z z z z z z z z z z z zz z                                                       2 11 1 1 1 1 ve f ( ) f ( ) ( ) f ( ) ( ) ( )| | ( )| || || | k k k kk k k k k k k kk k z a kz z a k k z z a k k z a k k z k k zz                              1 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1
  • 6.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 462 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ By Triangle inequality But Pu ant d f ( ) | | | | | | | | f ( ) , f ( ) f ( ) f ( ) , | | ( ) | | | | | | k k k kk k k k k k k k k kk k k k k k k k z a k z a k z a k z a k z k z k z z r z k k r z k r z z k r z z                                               1 1 2 2 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 1 1 1 1 We have . ( ) ( ) ( ) ( . . . ) ( ) [ ] k k k k k k k k k k k k k k k k k k k k k k k k k k k k r k r k r k k k r k k r k r k k r k r r k k r k r d d d k r r r r r drdr i e                                                                  2 1 2 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1 1 1 Thus we have ( ) ( ) ( ) . ( ) f . . . k k k k k k k k k k k k d d d r r r r dr drdr dr d d d d k r r r r r r dr dr rdr dr r r r k r r r i e r r r i e                                                                 2 2 2 2 2 2 2 2 2 1 2 2 2 0 2 1 2 3 2 3 3 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 Hence for we must have ( ) f ( ) ( ) ( ) f ( ) f ( ) , f ( ) f ( ) , ( ) ( ) ( ) ( )[ ] k k r r z z k r r r z z r r z z r r r r r r r r r r r r z r z z r r R                                                    2 1 2 3 3 3 3 3 3 3 2 2 3 1 1 1 2 1 1 0 1 1 2 0 2 2 1 1 1 1 2 1 3 1 1 2 2 6 6 1 1 1 7 6 2 0 1 7 1 1 for we hav since Thus e ( , ) . | | | | , f ( ) f (f ( ) , Ref ( ) f ( ) f ( )( ) ( )( ) ( ) ( ) Rr R r R R R R R R R R R R R R R R R R r z r z z zzr z z zr zz z                                               2 3 3 2 3 2 2 1 3 1 1 6 2 0 1 1 1 7 6 2 0 7 6 2 7 6 2 1 6 2 6 1 1 1 1 6 6 6 6 0 1 1 1 1 2  is cap like function in the open disc Let is cap like function and is univlent Then is star like Hence wherein | | ) . f ( ) f( ) | | . / / f( ) f ( ) { . } : .k k k z z z z z a z zz c z z c                 Theorem 4 1 2 0 6 1 1 6 3 6 1 3 3
  • 7.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 463 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Let is univlent Put we hav where Let Let e f( ) | | ( , , , ) ( ) f ( ) | : g | | | | | , | .| || [ ] k k k k k k k k k kk k k k kz z z z z a z a k z z z ka z z ka z z b z b ka z z z z z z r z z z r                                         Proof 2 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 0 0 0 0 1 2 3 4 1 1  by triangle inequality Consider By | | ( ( . . ( ( ( ( . g g g g g g | ) ) ) ) | ) ) [ ] [ ] [ ] [ ] [ ]| | k k k kk k k k k k k k kk k k k k k k z z z z z z ka z z ka z i e z z z z ka z ka z z z ka z z z z z z ka z z                                      1 1 2 1 2 1 1 2 22 2 1 2 1 2 1 2 1 2 1 22 2 2 1 2 1 2 1 22 by triangle inequ triangle ine ality quality Again we have , | g g , | ( ( | |) ) [ ] | [ ]| | [ ]| | [ ]| | [ ]| | | |k k k k k kk k k k k k k kk k n k k k k z z ka z z z z ka z z z z z z ka z z r ka z z ka z z k                                1 2 1 2 1 2 1 22 2 1 2 1 2 1 2 1 22 2 1 22 | | . . . . . . | || | | | | |[ ]| | | [ ] | [ ]| [ ] [ ] | [ ]| k k k k n n nk k k k k k k k kk k n n nk k k k k k k k kk k k k k k k kk k k a z z k a z z k z z i e ka z z k z z k r r k r k r d d i e ka z z r k r r r r r dr dr                                              1 2 1 2 1 22 2 2 1 2 1 22 2 2 2 2 1 22 2 2 2 1 1 2 2 2 2 2 we haveThus . . ( ) ( ) ( (g g ) (| ) )| | [ ]| | [ ]| | [ ]| k k k k k k k k k k k k k k d r r r dr d i e ka z z r r r r dr r r r ka z z r r z z r ka z z r r                                                           0 1 22 2 2 1 22 2 1 2 1 22 2 1 1 1 1 2 1 2 0 1 2 1 1 1 1 1 2 1 1 2 1 aking limit on both siBy t since eithdes Henc er or e ( ) ( ) ( ) | | | | | | | | | |, ( (g g li ( ) ( ) ( ) m .| ) )| r r r r r r r z z z z z z z r r r r r r                                                          2 2 2 1 1 2 1 2 1 2 2 2 20 1 2 2 2 3 1 1 1 0 0 0 2 2 2 3 3 0 3 1 1 1 f for we must have Th or we hus ave ( ( , ( ) ( ) ( ) . . , g g , g g | | | | , ( ( , . ( ) (g | ) )| | ) )| z z r r r r r r z z r c z r z cz r                                                  1 2 2 2 2 1 2 1 2 2 0 2 2 2 3 0 3 1 31 1 2 2 2 6 1 1 1 1 0 1835 1 33 3 3 0 1 2 6 3 6 3 0 1 0 1835 3 31 is univalent function infor | |( . . ( ) {g g .}) )z z z i e z z z      1 1 2 1 2 1 3 6 1
  • 8.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 464 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Since is cap like function we have will exist since is analyticNow f( ) f ( ) f ( ) f ( ) Re Re Re f ( ) Re f ( ) , f ( ) f ( ) f ( ) f ( ) ( ) f ( ) f ( ) f ) ;( , g [ ] [ ] z z z z z z d d z z z z z z dz z z dz z z z zz z z                                    1 1 0 1 and 0 is analytic in the open unit disc Hence is star like function is in the disc L Th et us and | | ( ) f ( ) ( ) f ( ) f ( ) f ( ) ( ) { }. ( ) f ( ) | g g g g . : | / / f( ) k k k z z z z z z c z z z a z                    Problem 1 0 0 0 1 0 0 0 0 0 0 1 1 1 3 6 1 is star like function Then and is analytic in the open unit disc but is not univalent in the open disc thus is not star like functi | | | | Re f( ) f( ) f( ) { }, f( ) } f . ( ),{ [ ]d z z z z dz zz z z z r zz z z z z           2 1 0 1 1 on Let is star like function Then is univalent in an opeAnd n f( ) f ( ) f ( ) f ( ) f ( ) f( ) Re Re Re Re Re f( ) f( ) f( ) f( ) f( ) f( ) f . ( . ) : [ ] k k kz z a z z z z z z z z z z d z z z z z z dz z z                                           Proof 2 1 0 1 1 disc is analytic in open unit discAnd but Consider | | | | { } ( ) f( ) { } ( ) f( ) ( ) f ( ) f( ) ( ) f ( ) f( ) f ( ) . ( ( f g g , g g ( fg g () ) ) [ ]k k k kk k z z r z zz z z z z z a z z a z z z z z z z z z z                                1 2 2 2 2 1 2 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 10 Let in the open disc thatsuch| |{ } ( (g g ) ) ) [ ] [ ] [ ] k k k kk k k k k k k k kk k k k k k kk k z a z z a z z z a z a z z z a z z z z z z r z z z z z z a z a z                                              2 2 1 1 2 22 2 2 2 2 2 1 2 1 2 1 2 1 22 2 2 2 2 1 2 1 2 1 2 1 2 1 22 2 1 1 1 1 1 1 1 1 1 or may not be not univalent in is not star like function A function that is analytic in the open may Thu unit disc wit s is So h | | | | ( ) { }. ( ) f( ) . / / f( ) { } f( ) , f ( ) . g g : z z z r z z z z z z         Definition 4 1 1 0 0 0 0 1 is said to be in the open disc if A function that is analytic in the open unit disc an | | | | | | ( ) { f ( ) Re ( ), , ( ) . f ( ) : f( ) { } cap like function c z z c z z c z c c z z z z of order               Definition 5 1 1 1 0 1 1 d univalent in open disc with is said to be if| | | | { } f( ) , f ( ) ( ) f ( ) Re ( ), , ( ) . f( ) starz z c c z like function of orde z c z c c z r                 1 0 0 0 1 1 0 1
  • 9.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 465 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ If in is star like function of order then is star like function of order Let is star like function of order | |f(: , ( ) . . : ) f( ) f( ) f ( ) Re , f( f( . ) k k kz z a z z z z z z z z                    Theorem 5 Proof 2 1 1 1 1 0 4 Now is analytic in the open unit disc since is analytic By since and | | ) U | ( , , , ) f( ) U. ( ) ( f( ) { } f( ) ( ) f( ) , ( ) ( f ( ) f( ) ( ) ( Theorem , | g ) , g g ) g f ( ) f( ) f () k z a k z z z z zz z zzz z                       1 2 3 4 1 0 0 1 0 0 0 1 0 0 01 0 1 1 1 Consider Put ) . f( ) . ( f( ) ( , ) ) ( ) [ ]k k k kk k k k k kk k k k k kk k k k k k k kk k k k k z z z z z a z z a z z z a z z a z z z a z a z z z a z a a z z a z a a z a b a a                                                             2 2 2 2 2 2 2 1 2 21 2 2 2 23 3 31 1 2 2 1 1 1 1 1 1 0 1 1 1 we have by triangle inequality Let Let Consider ( , , , ) ( ) ( f( ) . | | | | g ) , . g g ) | | | | ( ( f f ()( | | | ) ) ( ) ( ) | |. | [ k kk k kz z b k z z z b z z z z z z z r z z z z z z z z z z r z zz z                                      1 2 2 1 2 1 2 1 2 2 1 1 2 1 2 11 2 1 2 2 3 4 1 0 0 1 5 0 0 1 1  By triangle inequality ( ( , g g g | | | ) )| | ] [ ] [ ] [ ] | [ ]| | [ ]| | [ ]| k k k kk k k k k k k k kk k k k k k k k k k k k kk k b z z b z z z b z b z z z b z z z z z z b z z z z b z z z z b z z                                              1 1 2 22 2 1 2 1 2 1 2 1 22 2 2 1 2 1 2 1 22 1 2 1 2 1 2 1 22 2 Consider T ( ( | | | | | | | | | | | | . | | | | | | , | | | | | | | | g . ) )| | [ ]| | [ ]| | [ ]| [ ] [ ] k k k k k kk k k k k k k k k k k k kk k k k k k k k k z z z z b z z r b z z b z z b z z b r r b r b a a b a a a a                                                1 2 1 2 1 2 1 22 2 1 2 1 22 2 2 2 2 1 12 2 2 1 1 1 1 2 1 1 2 we have aking li hen we have Thus By t | | g g g ( ( | | . . ( (g | ) )| | ) )| [ ]| [ ]| | [ ]| k k k k k k k k k k kk k k k k k kk b z z b r r r r r z z z z b z z r r r r i e z z r r r r                                                  1 22 2 2 2 0 1 2 1 2 1 22 2 2 1 2 2 2 2 4 4 1 4 4 4 1 1 1 since eithermit on both side ors| | | | | | | | | |,z z z z z      1 1 2 1 20 0 0
  • 10.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 466 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Hence for we must have Thus for we hav g g lim . , g g ( . . ( ( ( ( , . | | | ., , ) | | ) )| | ) )| r r r z z r r r r r r z z r r r r r r r r i e r r r z z r                                                          1 2 1 0 2 1 2 4 4 4 1 1 0 1 1 1 1 0 4 4 1 0 1 1 4 1 1 1 5 0 1 5 0 1 1 0 2 0 0 2  Thus is univalent in the open disc hav e We e | | ( ( . . ( ( ( ) . . ( )f ( ) f( ) ( f ( ) f( ) f ( ) [( )f( )] ( )f( ) ( )f( ) ( f( ) f g g g g g ) ) ( | ) )| ) ) [ ] { } r z z r i e z z r z z z z z z z z z z z z zd z z z z z dz z z z z z z                         1 2 1 2 4 1 0 1 0 2 1 1 1 11 1 1 1 Consider ) f ( ) f ( ) Re Re Re Re Re f( ) f( ) . . Re [( )f( )] Re Re ( )f( ) . . Re [( )f ( )f( ) z z z z z zz z z z z z z z z z z d i e z z z z dz z z d i e z z z z dz                                                                       1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Let But ( )] Re Re ( ) . . Re [( )f( )] ( )f( ) ( ) | | | | ( ) ( x y z x y x y d x i e z z z z z dz x y z c z c x y c x x y c c x c c x c x                                                                        2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 2 0 1 1 we haveThus ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Re [( )f( )] ( )f( ) ( ) x y x x x cx y x x y x x cx y cx c c c cx y d x c z z z z z dz cx y                                                            2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1 1 11 1 2 1 1 1 1 11 1 1 2 1 1 1 11 is star like function of ord for or or er in the open disc or since So . . ( . ) . . . . . g( ) f(( ) . | / /) . .| c c c c c c c zzz z                                   0 2 0 2 2 0 5 1 1 2 0 22 2 0 4 0 2 0 5 1 0 5 1 1 0 2 0 8 24 101 0
  • 11.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 467 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ -th partial sum of the function is Let in is univalent Then is analytic in the disc with | | | | f( ) f f( ) { } . f { } : ( , ) . : ( , ) ( ,f ,) n n n nk k k kk k k k k n s zz a z a z z z a z z z s z sz z               Definition 6 Theorem 6 0 0 2 1 1 00 is univalent function in for all integers in is ana and Let L lytic with we hav et e | | ( , ) , , : ( , ) ( , ) ( , ) f , | | . f f , f . , | |.| | n n n n n k k k s n s z z z a z z z z z z s s z z z z                       Proof 1 2 1 1 2 12 1 2 2 0 2 3 4 0 0 0 0 0 0 1 3 1 1 1  by triangle inequality Consider . , , , | | | | | | | | f f f,f | ( ) ( ) ( ) ( | ) [ ] [ ] | n n n n n n n n n k k k kk k k k k k k k kk k k z z r z z z z z a z z r s z s z s z s z a z z z a z a z z z a z z z                                          1 2 2 1 1 2 1 1 2 22 2 1 2 1 2 1 2 1 22 2 2 2 2 1 1 1 01 N By triangle inequality ote that by | | f f | | f( ) U | ( , , , | , , , ) ( ) ( ) [ ]| | [ ]| | [ ]| | [ ]| | [ ]| n n n n k k k k nk k k k k kk k n nk k k k k kk k k z a z z z z a z z z z a z z z z a z z a z z z s z s z r a k                                1 2 1 22 1 2 1 2 1 2 1 22 2 1 2 1 2 1 22 22 1 2 3 4  Again sinc by triangle inequality e T , | | . . . . heorem | | | | .| | | | | | | || [ ]| | [ ]| | | [ ] | [ ]| [ ] [ ] | [ k k n n n nk k k k k k k k k k k k k kk k k n n nk k k k kk k k a z z a z z a z z z z i e a z z z z r r z z i e a z z r                            1 2 1 2 1 2 1 22 2 2 2 1 2 1 2 1 22 2 2 1 2 1 1. . . ]| [ ] | [ ]| | [ ]| n n n n nk k k k k k k k n n n n k k k k n n k k k k r r r r r r r r r r r a z z r r r r r r r r r i e a z z r r                                                                           1 2 2 2 0 1 1 2 1 1 22 2 1 2 1 22 1 2 2 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 2 2 1 1 2 2 weThus have aking limit on boBy t since eithth sides er or ( , ) ( , ) ( , f f . | | | | | | | | | |, f f) ( , )| | | [ ]|n n n n n n k k k k r r r r r r r r a z z r r r r z z z z z s z s r z s z s z                                        1 2 2 2 1 22 1 1 2 1 1 1 2 2 2 2 2 0 1 1 1 2 2 1 1 1 0 0 0 1 Hence for we must have lim . , ( , ) ( , ) ) , ( f . f . | |n n r r r r r r r r r r r s z s z r i er r r r r r r                                                 0 1 2 1 2 2 2 1 0 1 1 1 1 0 2 2 1 0 1 1 2 1 1 1 0 1 0 1 5 3 1 3 
  • 12.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 468 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Thus Hence is univalent function in the disc for all If is s for we have tar l | | | | , f f . . f , ( , ) ( , ( , ) ( , ) ( , ) . / / : f( f f | | ) | |n n n n n k k k z z r s z s z s z s z s r r i e r z zz z z a n                         Theorem 7 1 1 1 2 1 2 1 2 2 0 3 2 1 0 1 3 ike function in then are star like functions in Let is star like function in And is univalent | | | | { }, ( ,f ) : f( ) f ( ) | | . f( ) | | . { f e , ( R ) }. | | , , , n k k k k z z z z a z z z s z z z z z z z a k                  Proof 4 2 1 1 2 1 0 1 1 2 3 4 Theorem Partial sum of is Consider by . f( ) ( ,f ) ( ,f ) ( ,f ) . Re Re h ( ) ( ,f ) ( ,f ) , [ ] n n n k k k k k k n n n k n k k n k n nk k k k k n nk k k k n k k z a z a k z a k z a k z z z s z zz s z s z z z s a z a z a k z zz s                                    2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1  1 h ( ) h ( ) h ( ) h ( Re . . Re Re . . Re ) h ( ) h ( )( ,f ) ( ,f ) h ( ) ( ,f ) ( ,f ) h ( ) Re | | | | [ ] [ ] n n k k n n n nn k n n n k n n k n k k n k k n n nk k k k k k a k z a k z i e i e a z a z a k z z z z z zz s z s z z z s z s z z z                                              2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1         we havePut Then We have since Thu w es e hav ( ) ( ,f ) ( ) ( ) ( ,f ) h ( ) h ( ) ( . Re Re Re Re) ( ) ( ) ( ) ( ) ( h ( ) Re Re | | | | | | | | | | . | | [ ] n n n n n n k k k n n nk k k k k kz zs z z z s z z a z a z a k z z z z z z z z s z                            2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1         Consider Re . ,f ) ( ) ( ) ( ,f ) ( ) | | | | [ ] [ ] k k k k k k k k k k k n n n nk k k k k k n n nk k k k k k n n nk k k k k k n nk k k k a z a z a k z a z a z a k z a z a k z z z z a k z a z a k z s z z                                                    2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | | | | | | | | | | | | | | | | | | | | | | | | k k k k k k k n k k n n nk k k k k k n n nk k k k k k a k z a z a z a k z a z a z a k z                                         2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
  • 13.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 469 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Put Then| | ) . ( | | | | | || | k k k n n n nk k k k k k n n nk k k k k k n nk k k k k k n nk k k k z r a r a r a k r r z r k r d r r r r r dr r r r r r r                                                                      2 2 2 2 2 2 1 1 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  ( ) ( ) ( ) ( ) ( n k k n n n n n n n n d r r dr r r d r r r r r r r r dr r r r d r r r r r r r dr r r r r r r r r r                                                                                     0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 ) ( ) ( )( ( ) ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) n n nn n n nn n r d r r r r dr r r n r rr r r r r r r r r r n r rr r r r r r r                                                                       2 2 2 2 1 11 1 11 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( )( ) . . ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ( ) ( ) ( | ) | [ ] [ ] n nn n n n nn n n n n n n r n r rr r r r i e r r r r r r r n r rr r r r r r r r r r r r r n r r r r z r                                                    2 2 2 2 1 2 4 4 2 1 4 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  Thus Assume si t nce h ) ( ) ) ( ) ( ) ( )[( )( ) ] ( ) ( ) ( ) . . , ) , ( . ( | | ( )[ ]n n n n n n n n n n n r r r n r r r r r n r r r r r r r r i e r r r r r r r r z r r r r r                                                           4 1 1 1 4 4 1 1 1 4 4 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 0 1 1 1 0 1 0 1 0 1 0 1 1       at ( ) ( ) ( ) ; . . ; . . r r r r r r r r                                   4 4 4 4 4 4 4 4 4 4 1 1 1 1 2 0 2 1 1 21 1 2 1 1 1 1 1 1 1 1 0 84 0 1591 2 2 2 1 1 1 1 1 1 1 1 0 84 0 1591 2 2 2
  • 14.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 470 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________     Thus are star like functions in Let we have Hence Re , | | ( ) Re , | | . | | . / ( ,f ) h ( ) ( ) ( ,f ) ( ,f ) ( ,f ) ( ,f ) : L( ) ( ) / | | | |n n n n n n z s z z z s z z s z s z s z z z z z r r z r z                                Theorem 8 4 4 2 1 4 4 1 1 1 2 0 1 1 1 1 2 1 0 1 1 2 1 2  Then is cap like function in disc wewhere The a en h v . ( , ) : L( ) ( L ( , , , ) | | . . ( , , , ) ) ( ,L) . n n k k k k k k k k k k k k n n k k k k k k s z z z z z s z n z z z z z z a z a k z z z z                                      Proof 0 0 0 2 1 2 1 1 1 1 1 1 1 2 3 4 0 25 1 2 3 4 1   taking the derivativ oB e ny ( ) ( ) ( ( ,L) ( ,L) ) ( ) ( ) ( ) ( ) ( ) ( log lo ) log ( ) (g ) [ ] [ ] [ ] n n n n n n n k k n n n n n n n z z z z z z n z z z z n z n z z z n z nz z z n z nz z s z s z z                                              1 1 1 1 0 1 2 1 1 1 2 2 1 2 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 both sides we have ( ) ( ) ( ) [ ] ( ) ( , ( ,L) ( ,L) ( ,L) ( ,L) ( ,L ) ( ) [ ] ( ) ( )( ) n n n n n n n n n n n n n n n n nz n n z n nz z z zn z nz n z nz n nz z N zz z z z D z zn z nz z s z s z s z s z s z                                             1 1 1 1 1 0 1 1 1 11 2 2 1 11 1 1 1 1 1 2 2 1 11 1 1 simplify the notationTo puts ( ) [ ] ( ) [ ] ( ) ( ) ( ) ) ( ,L) , ( ,L) ( ( ) [ ], ( ) ,L) ( ) , ( ) ( ) n n n n n n n n n n n n n nz z n nz zz z z zn z nz n z nz z N z n nz z D z n z nz w u v z N s z s z s w z z z D z                                             1 1 1 1 1 1 12 1 1 11 1 1 1 1 1 1 1 1 1 1 1 e have Conside W r ( ) ( ) ( ) Re ( ) ( ) ( ,L) Re Re Re Re ( , ( ) ( ) ( L ) ) n n N z N z N z z w u D z D z D z z w w wz z w z wz w s z w z z s w z                                           1 1 1 1 1 1 1 1 
  • 15.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 471 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ | | | | | | | | | | | | | | ) )[( ] [( ] [ ] [ ] w z w w w u v u v u v u v u v u v u u v u u v u u v u u v u u v u u v u u                                                             2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 4 1 1 4 1 4 4 1 1 16 1 1 16 1 1 16 2 1 2 1 16 32 16 16 2 1 15 34 15 15 0 34 17 17 1 0 2 15 15                   w Consider ill or Henc exist a e t i . max max . . max . v u v u v i e v u u u u u                                         2 2 2 2 2 2 2 2 2 2 2 2 17 1 0 15 15 17 289 289 225 64 8 1 15 225 225 225 15 17 8 8 0 15 15 15 17 8 17 8 17 8 15 15 15 15 15 15 17 8 25 17 8 9 15 15 15 15 15 15     t is clear that the Mobius Bilinear transformation maps the circle in -plane into the the circle -plane such that the line segment on -axis is a diametin er ( ) ( ) | | xy uv AB u v z w z z u v          1 2 2 2 1 1 4 17 8 15 15 0        and o whe r Observe Let Th re t en hat , , , , , . ( ). | ( )| |( ) [ ]| ( ) | | | | ( ) | | | | | | . | ( )| ( ) | | | | ( ) [ ] [ ] ( ) [ n n n n n u u N z n nz z n n z z n n z z z N z n n z z n A n B                            1 1 9 3 25 5 0 0 0 0 15 5 15 3 9 25 3 5 2 15 15 5 3 1 1 1 1 1 1 4 1 1 1 4 1  Consider Let Then Thus b tran tiy si . . | ( )| ( ) ( ) [ ] . . | ( )| ( ) . ( ) ( ) | | ( )| | | | . | | ( )| | ( ) , ] ( ) [ ] | | | | | | n n n n n n n n n n n n n i e N z n n n n i e N z n n nz n z nz n z n z n z z n z n z n n                                        1 1 1 1 1 1 1 1 1 1 1 4 1 4 1 4 1 4 4 1 5 1 4 1 1 1 4 1 4 1 4 ve law ( ) ( ) ( ) ( ) ( ) ( ) , | | | | | | n n n n n n n n n n n n nz n z n n nz n z n n nz n z n n                                        1 1 1 1 1 1 1 4 1 4 1 1 4 1 4 1 1 1 1 4 1 4 1 1 0
  • 16.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 472 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ But for Thus fowe have r Obser | ( )| ( ) ( ) | | . | ( )| ( ) | | , ( ) | ( )| ( ) ( ) ( ). ( ) | ( , )| ( ) ( ) | | | |n n n n n n n n n n D z nz n z nz n z z D z n n z N z N z n n n n D z D z n n n n                                         1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 4 1 4 1 4 4 5 1 4 5 1 3 1 4 1 4 4 1 4  v that We know that e ( ) ( ) ( ) ( ) . ( ) ( ) ( ) ( ) ( ). ( ) ( ) ( , , ) ( ( ( ) )) n n n n n n n n n n n n n n n n n nn n nn n n n                                               1 2 1 1 1 5 1 5 2 1 2 10 3 2 1 1 1 1 1 1 1 1 4 1 10 3 3 64 2 12 50 54 4 1 4 4 2 2 1 4 5 1 4 1 43 25 4 1 1 4 5 12 4 1 1 4 14 1 1 4  any Observe that for all integers Since for all inte fo gers r ( ) , , , . ( ) ( ) ( )( ) ( ) ( )( ) ( ) , n k k k k n n n n n n k k k k k k k k k k k k k k k k                                    3 1 1 1 1 1 4 1 2 3 4 4 4 64 25 3 1 3 3 1 12 12 4 4 4 4 4 4 1 1 2 1 1 2 1 2 4 2 3 2 3 2 1  we have Thus we have Thus from we have Thus from we have ( ) ( ) . ( )( ) ( ) ( ) ( , , , ) ( ) , ( ) . ( ) ( ) ( ( ), , ( ), k k n n n n n n n n n n n k k k k n n n N z D z                           31 1 4 4 4 64 1 2 1 3 3 1 12 4 64 64 40 25 3 4 5 2 1 12 12 4 1 1 1 124 1 5 1 3 5 1 4 2 1 4 4 3   We know that Hence we have ( |f( )| Ref( ) f( ) Ref( ) Ref( ) |f( )| |f( )| Ref( ) |f ) ( ) . ) ( ) ( )| . ( ) [ ] [Im ] [ ] [ ] n z z z z z z z z n n N z D zn n z                     2 2 2 2 2 2 1 5 1 3 3 5 54 1 4
  • 17.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 473 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ from ( and we have remains Therefor to show that is maximal radius This i e sIt Re Re ) ( ), ( ,L ( ) ( ) ( ) . ( ) ( ) ( ) , () Re ( , ) R ) e . ) . (L . n n N z N z N z D z s z s z D z D z N z z u D z                               1 2 3 3 5 5 3 3 1 0 5 5 0 25 seen for has singularity at and thus analytic within is analytic with Then Clearly in and ( ,L) ( ,L) ( ,L) . , | | . . ( ,L) | | . , ( , . n n n k k s z s z z s z z z z z s z z z z s z z z z                   2 2 2 2 2 0 2 1 4 1 2 1 2 0 25 0 25 0 25 1 0 1 Since have Hence is cap like function in the open disc of two we analytic fu L) , ( ,L) ( ,L) ( ,L) | | . . / / : ( ) , .n n n n nk k k ks z s s z z Hadamard product Convolut k z i n k o             Definition 7 2 2 1 1 0 0 0 25 1 1 0 1 nctions in the open disc and in the open disc is denoted by and is defined as an anlytic function in the open disc Le f( ) | | g( ) | | f g f g)( ( ) | . : | k k k k k k k k k k z a z z r z b z z r z a b z z r r                Theorem 9 0 1 20 1 20 t are univalent functions Then is cap like function in the open disc and is univalent in the open disc B and y | | . ( . : Theor f( ) , g( ) f g)( ) | | , em (, | | { } k k k kk k k z z a z z z b z z z z z a k                Proof 2 2 1 1 6 1 3 1 11 since are univalent in the unit open di a sc Let us consider We kno nd N w ow t , , , ), | | ( , , , ) f( ), g( ) f g)( ) | | f g) ( ) f g) ( ) . f . ( ( ( Re Re ( (g) ( ) f g) ( ) k k k k k b k z z z z a b z z z z z z z z                           2 1 1 2 3 4 1 2 3 1 4  hat f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g ( ( ( ( ( R ) ( ) f g) ( ) f g) ( ) f g) ( ) f g) f g) ( e Re ( ( ( ( ( ( ( ) f g) ( ( Re Re ( )( z z z z zz z z z z z z z z z z z z z z z z                                                    2 2 1 11 We have ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( )f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( ) f g) ( ( ( ) f g) ( ) ( ) f g) ( ( (( ( Re ( ( ( ( ( ( ( k k k k k k k k z z z z zz z z z z z z a b kz z a b k k zz z z z z                                                1 2 2 2 1 1 1 1 1 ) ( ) f g) ( ) ( ) ( )| | ( )| |( | || || | k k k k k k k k k kk k k k z a b k k z z a b k k z a b k k z k k zz                      1 2 1 1 1 2 2 2 1 1 1 1 1
  • 18.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 474 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Put By Triangle inequality But | | f g) ( ) . f g) ( ) f g) ( ) | | | | ( , ( ( ( ) | || | | | | | | | | | k k k k k kk k k k k k k k k k k k k k k kk k k k z r z k k r a b k z a b k z z z a b k z a b k z a b k z k z k r z                                           2 1 2 1 1 2 2 1 2 1 1 1 1 2 2 2 2 1 1 1 1 We have ( ( ( f g) ( ) f g) ( ) f g) ( ) . ( ) ( ) ( ) ( ) [ ] | |k k k kk k k k k k k k k k k k k k k k k k k k z a b k z k r z z k r k k r k r k r k k k r k k r k r k k z k r r                                                               1 1 2 2 1 2 1 2 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 . ( ) . . . . k k k k k k k k k k k k k k k k k k k k r k k r k r d d d d d d k r r r r r r r r r dr dr drdr dr dr d d d d k r r r r r r dr dr rd i e i e r d i r                                                                      2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 0 1 1 1 1 1 we have We a Thus h ve ( ) ( ) ( ) ( ) f g) ( ) f g) ( ) ( . . ) ( ) ( ) ( ) ( ) ( ( ( )[ ] k k k k r r r k r r r r r r r r z z k r r r r r r r r r r r e z r r                                                       2 1 2 3 2 3 3 2 1 2 3 3 3 3 3 3 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 0 2 2 1 1 1 1 2 1 1 1 1 1 3 2 since for we haveThus ( , ) | | . | | , f g) ( , ( ) )(f g ( ) ( )( ) ( ) ( ) r r r r r r r Rr R r R R R R R R R R R R R R R R R R R r z r z r z zz                                                      3 2 2 3 2 3 3 2 3 2 2 1 2 6 6 1 1 1 1 1 7 6 2 0 1 7 6 2 0 1 1 1 7 6 2 0 7 6 2 7 6 2 1 6 2 6 1 1 1 1 6 1 6 6 6 1 2  is cap like function in the open disc we Hence Le ht e ve L t a ( ) f g) ( ) f g) ( )f g) ( ) . f g) ( ) f g) ( ( (( Re ( ( ) f g)( ) | | . | | | ( , | | |.|| r z zz zz z z z z z z z z z z z z r z z                                    3 1 1 2 1 21 2 2 1 2 1 1 0 0 0 1 0 1 0 6 1 1 0 by triangle inequality| | | | .| |r z z z z     2 1 1 2
  • 19.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 475 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Consider By triangle inequality f g)( f g)( f g)( ( ( ( (f g)( , ) ) ) ) [ ] [ ] [ ] [ ] | [ ]| | k k k kk k k k k k k k k k kk k k k k k k k k k k z z z a b kz z ka b z z z a b z a b z z z a b z z z z z z a b z z z                                        1 2 1 1 2 22 2 1 2 1 2 1 2 1 22 2 2 1 2 1 2 1 22 1 by triangle inequality and haAgain since we ve ( ( ; | | f g)( f g)( | | | , || | ; ) ) [ ]| | [ ]| | [ ]| | [ ]| | [ ]| k k k k k kk k k k k k k k k kk k k k k k k k k k k z a b z z z z a b z z z z z z a b z z r a b z z a b a b z z                                 2 1 2 1 2 1 22 2 1 2 1 2 1 2 1 22 2 1 2 1 1 | || | ( ) . . f g)( f g( ( )( | ) .|| | ) | | | | | [ ]| | | [ ] [ ] [ ] | [ ]| | [ ]| | k k k k n n nk k k k k kk k k k n k k k n n k k k k k k k k k kk k k a b z z a b z z z z z z r r r r i e ka z z r ka z z r r z z r a                                            1 2 1 22 2 2 1 22 1 22 2 2 2 1 2 1 22 2 2 1 2 1 1 2 2 2 1 1 aking limit on bothBy t since either osides Hence r| | | | | ( ( lim . , | | | | |, f g)( f g)(| ) )| [ ]|k k k k r r b z z r r r r z z z z z r r r z z r r r r r r                                                      2 1 22 1 1 2 1 2 01 2 2 2 1 1 1 0 0 0 2 2 2 1 1 0 1 1 1 1 for we must have Thu for we has Th ve f g)( f g)( , | | | | , f g)( f g)( . . f g)( ( ( ( . . ) f g) , ( ( ( ( ( . | ) )| ) ) ) ) z z r r r r r r r r r z z r r z z r i e z r i r z e r                                                1 2 1 1 1 2 1 2 1 2 0 1 0 2 2 1 0 1 1 2 1 1 1 5 3 1 3 0 1 1 3 2 1 0 0 us is univalent in the open disc Let is univalent function Then is star like function in the open disc where Let | | | | f g)( ) . / / f( ) f( ) { } : . ( . g ( : { } k k k z z z z z a z z z c cz               Theorem10 Proof 1 1 2 3 6 3 1 1 1 Then cl and n a A e r d ly. g ( ) ( ) , ( ). g ( ) ( ) ) g( ) , g ( ) . g ( ) ( ) g ( ) ( ) ( ) . . k k k k k k k k k k z z z z z z z z x y z z z z x yz z z k z k z z z z z z z i e z                                                            1 1 2 1 1 2 2 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1  For we have g ( ) ( ) g ( ) ( ) Re . g ( ) ( ) g ( )( ) ( ) | | , | | z z x y z z x z x y zx y x y z x x y z x x                                 2 2 2 2 2 2 2 2 1 11 1 1 1 1 1 1 1 1 0 1
  • 20.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 476 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Thus we have is cap like function Let by trianglLe e inequality Consider t g ( ) ( ) Re . g ( ) ( ) g( ) . | | | | | g | | | . g | |. | ( ) ) | ( | |z z z z x z x y z z z z z z z z z r r z z z z z z                                2 2 1 2 1 21 2 1 2 1 1 2 2 1 1 2 2 1 1 0 1 0 0 0 1 By triangle inequality | |, g g |( ) ( ) [ ] [ ] | [ ]| | [ ]| k k k kk k k k k k k k kk k k k k k k k kk k z a k z z a k z z z a k z a k z z z a k z z z z a k z z z z a k z z zz z                                                  1 1 1 1 2 22 2 1 1 1 1 2 1 2 1 2 1 22 2 2 1 1 1 2 1 2 1 22 2 1 2 12 since Agai BEIRBERBACH conjecture by triangle ineqn weuality aveh By | , | | f( ) U. | | | [ ]| | [ ]| | [ ]| | [ ]| | | k k k k k kk k k k k k k k k k k kk k k z a k z z a k z z a k z a k z z a k z z a z r k z                                 1 1 1 2 1 2 1 22 2 1 1 1 1 2 1 2 1 22 2 2 Thu since we haves . . . . g g | || | | | | . ( ) ( | ) | | | |[ ] | [ ]| [ ] [ ] | [ ]| | [ ]| k k k k k k k k k k k kk k k k k k k kk k k k k k k z z i e a k z z z z r r z z z z r i e a k z z r r r r a k z z r r                                              1 1 22 1 1 2 1 2 1 22 2 2 2 1 1 22 2 1 21 122 22 2 2 1 aking limit on both sides Hence for we must hav By t since either or . | | | | | | | | | |, , g g lim . , g g ( ) ( ) ( ) ( ) r r r r r z z z z z r r r r r r r z z z r z r                                                1 2 1 1 2 1 2 2 0 1 2 2 2 1 1 1 0 0 0 2 2 2 1 1 0 1 1 1 1 0 e Thus Hence is univalent function in th for we hav e e . | | | | , . . . ( . . ) , g( ) g( ) g( ) g( ) g( ) g( ) . g( ) . r i e r r r r r r r r r z z r r r i e i e r z z z z z r z z                                           1 2 1 1 1 2 2 2 1 1 2 2 1 0 1 1 2 1 1 1 5 3 1 3 0 3 0 1 2 1 1 0 0 00 1  disc Convolution of and is By we say that is cap like function in the open disc and is unival . (f g)( ) Theorem ( | | f( ) , g( ) . f g)( ) | | , f g)( )( k k k k k k k kz z z z a z z z k z a k z zz z z                       1 1 1 2 2 2 1 3 1 6 19, ent in the open disc | | .{ }z z   1 3 1
  • 21.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 477 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ By is star like function in // An analytic function in with | | | | f( ). f( ) { . (f g) ( ) (f g) ( ) Theore } f( ) { } f m (f g) ( ) . : ( ) , k k k k k kz za k k z z a z z z z z z zz z z z                         Definition 8 1 2 2 1 1 1 3 6 0 1 1 835 1 1 0 0 4, is said to be close-to-cap like function if there is a univalnt cap like function in such that Let is close-to-cap like funct | | | | g( ) f ( ) R f ( e , g ( ) ) { } g ): ( . k k k z z z z z z z b z z            Theorem11 2 0 1 10 1 ion Then is univalnt Let is close-to-cap like function Then there is a univalnt cap like function in such that Let | | | | . . : . h( ) g ( ) Re , . h ( ) g Re h g( ) g( ) { } | | ( ) ( ) z z z z z z z zz z z                  Proof 0 0 0 1 1 1 0 0 g( ) g g( ) g lim Re Re lim h( ) h h( ) h lim g( ) g g( ) g Re lim , lim Re , h( ) h h( ) h g Re ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z                                                  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 But since is a univalnt function Thus is a univalnt function Let is cl for for for ( ) g , . h( ) h h( ) h h( ) . g( ) g g( ) g . g g ( ) . / / : ( ) ( ) ( ) ( ) ( ) ( ) k k k z z z z z z z z z z z z z z z z z z z z z z b z                    Theorem12 0 0 0 0 0 0 0 0 0 2 0 0 ose-to-cap like function and Then is close-to-cap like function provided Let is close-to-cap like function Then and there is . ( (f g) ( ) g ( ) . : . , f( ) f g)( ) g( ) g( ) ; | | k k k k k k z z a z z z z z b zz z                Proof 2 2 1 1 a cap like function in such that Now | | | | . { }h( ) g ( ) h ( ) . Re h ( ) . k k k k k k z z z z c z z z z z c k z                   2 2 1 1 1 0 1
  • 22.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 478 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Convolution of and is Consider loss of generaliWithout Pt uty (f g)( ) (f g) ( ) g ( ) , f( ) , g( ) . ( ) k k k k k k k k k k k k k k k k k k k k k k k k k z z z z z z a z z z b z a b z a b kz b kz a b b kz c a b                                            2 2 2 2 2 2 1 1 1 1 1 for (f g) ( ) g ( ) h ( ) (f g) ( ) g ( ) h ( ) (f g) ( ) g ( ) . h ( ) h ( ) h ( ) h ( ) h ( ) h ( ) h ( ) (f g) ( ) g ( ) Re h ( ) h , , , ( ) ( ) h e ( R k k k k k k k k kz z z z z z z z i e z z z z z z z z z b k a b b kz c kz z z z                                                   2 2 1 1 1 1 1 1 1 1 1 1 2 3 4  Let g ( ) Re Re Re ) h ( ) h ( ) h ( ) (f g) ( ) h ( ) h ( ) Re h ( ) Re Re Re h ( ) h ( ) h ( ) h ( )h ( ) h ( ) h ( ) ( , . . R ) ( , ) h e | | | | z z z z z z z z z z z zz z z u x y x i v y e                                                                      2 2 1 0 1 1 1 1 1 1 1 1 and Thus we have since ( ) ( , ) ( , ) h ( ) , Re h ( ) . (f g) ( ) Re h ( ) h ( ) h ( ) h ( ) (f g) ( ) ( ) Re . . g | | | | | | | | z u x y v x y z u v z u z u v z z z u v u v u v u v u v z z z u v u u u u i u u                                            2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 0 0 0 0 1 1 Thus we have If is close-to-cap like function in then are close-to | | . Re . / . . . . (f g) ( ) h ( ) : f( ) , ( ,f ) / { } nk k k e u v u u u u u u u z a z v u v u i e u v z u v z u v z s zz z                              Theorem13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 1 -cap like functions in Let is close-to-cap like function in Then there is a cap like and univalent function such that Clearly | |: f( | ) h( | . { }. ) f ( ) | | . h ( Re ) , | k k k z zz z z z z a z z z              Proof 4 2 1 2 1 10 are univalent Partial sum of i C s onsider since f( ),h( ) . f( ) ( , .f ) | , | | | |k k k n k n k k a c c z a z z z z s z       2 1 1
  • 23.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 479 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Re Re Re . . Re h ( )( ,f ) h ( ) ( ,f ) h ( ) h ( )h ( ) h ( ) ( ,f ) h ( ) h ( ) h ( ) h ( ) ( ,f ) h ( ) h ( ) Re . . Re Re | | | | | | n n n k n k k n k k n k k zs z z s z z zz z s z a z z z k z i e a k z i e c z s z z z                                               2 2 2 2 2 1 11 1 1 1         Put We have since ( . Re Re Re ) ( ,f ) ( ) ( ) h ( ) h ( ) h ( ) ( ) ( ) ( ) ( ) ( )Re Re | | | | | | | | | | [ ] [ ] k k k n k k nk k k k k k nk k k k k kz s z k z c k z a k z c k z c k z z z z z a k z z z z z z z                                          2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1         we have Consider Thus ( ,f ) h ( ) ( ) ( ) h ( ) ( ) Re Re . | | | | | | [ ] [ ] k k k k k k k k n k nk k k k k k nk k k k k k nk k k k k k s z z z z z z c k z c k z a k z c k z c k z a k z c k z c k z a k z                                               2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | | | | | | | | | | | | | | | | | | | | | | | | | | | | k k k k k k k k k k k nk k k k k k nk k k k k k nk k k k k k k k k c k z c k z a k z c k z c k z a k z c k z c k z a k z c k r c k r                                                                    2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | |k n n n n k k k nk k k k k k k k k k k k k k k k k k k k a k r k r k r k r d d d d d d r r r r r r dr dr dr dr dr dr d r d r d r r dr r dr r dr                                                                             2 2 2 2 2 2 2 2 2 2 2 2 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( ) ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) n n n n r r r r r r d r r dr rr r r n r rr r r r r r r r r r r r n rr r r r                                                            2 2 2 2 2 2 2 2 2 2 22 2 2 1 1 1 2 1 2 1 1 1 11 1 1 1 1 12 2 1 0 1 1 1 1 1 2 2 1 12 1 1 ( ) ( )( ) ( ) ( ) ( ) ( ) n n n r r r n r rr r r r r r                        2 2 2 2 2 2 1 1 1 1 1 1 12 1 1 1 1 1 1 1
  • 24.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 480 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ ( )( ) . . , | | . ( ) ( ) ( ) ( ) ( )( ) . ( ( ) ( ) ) ( ( ) ) ( ) ( | | | | | | ( )( ) ( ) ( ) ( ) ( ) n n n n n n r n r rr r i e z r r r r r r n r rr r i e r z z r r z r n r rr r r r r r                                               2 2 4 4 2 12 2 4 4 2 12 2 4 4 1 1 12 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1    Assume th s ce at in ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) . . . ( ) ( ) ( ) ; n n n n r r n r rr r r r r r n r r r r r r r i e r r r r r r r                                                      2 12 2 4 4 1 4 4 4 4 4 4 4 4 4 4 1 1 11 2 1 1 1 1 1 1 1 1 1 1 1 1 2 0 2 1 1 1 1 0 1 0 1 1 1 1 1 2 0 2 1 1 21 1 2 1 1 1 1 1 2 2       Thus are close-to-cap like f we have He unctionnc s ine ( ,f ) h ( ) ( ) h . . Re , | | ( ) Re , | | . | | ( ) ( ,f ) h ( ) ( ,f ) . / / | | | |n n n s z z z z z r r z r z s z z s z                                 Conclu 4 4 4 4 2 4 1 1 1 0 84 0 1591 2 1 1 1 2 0 1 1 1 2 1 0 1 1 2 1 2  conclusion of the theorems discussed is presented in the following Any univalent function in the open disc by the Let Entire is i as Theorem | | . f( ) f( ) { } . k k k k k k z z a z z z z z a z            isio ] n 1 2] 1 2 2 1 3 1 3 2 ny univalent function in the disc Then has the property by is cap like function in the disc by is Theorem Theorem | | | | f( ) | | ( , , , ) f( ) { } ) ) ) )f( , { }.} ; n n k k k k i i z z z a k z z z z a z i iii s z           1 2 1 1 2 3 4 6 1  1 3. univalent in by is star like function in the open disc by Theorem Theorem | | | |f( ) {) } { }{ },z z zi z n v z         1 1 1 1 3 6 3 1 6. 10. ¥ -
  • 25.
    International Journal onRecent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 7 457 – 481 _______________________________________________________________________________________________ 481 IJRITCC | July 2017, Available @ http://www.ijritcc.org _______________________________________________________________________________________ If is univlent and cap like function then is star like function in the disc by If is star like function of order then Theorem| | f( ) f ( ) f , . ,) (( { } k k k k k k z z a z z z z z z z za z               3] 4] 2 2 1 1 1 11 3 6 4 is star like function of order by Theorem If is star like function in then ( are star like functions in by Let Theorem | | ) . . f( ) , ( ,f ) , , , ) f( ) { } | | ) . L( k n k k z z a z z z z z s z n z z            5] 6] 2 4 1 1 2 0 4 2 3 4  5 7 Then is cap like function in disc by Theorem Convolution of any two univalent functions defined an s i d a s L ( , , , ) | | . f( ) ( ) . ( , g( ) f g)( ) , ) ( n k k k kk k k k k k n z z z a z z z b z z z a b z s z z                    7] 2 2 2 1 2 3 4 0 251  8. univlent function in the open disc and is cap like functionin the open disc by Let is any close-to-cap like function in Then is un Theorem | | | | | | , . f( ) f( ) . ) { } { } { } k k k z z z z z z a z z z zi         8] 1 2 1 3 1 6 9 ivalnt function by are close-to-cap like functions in by Let is close-to-cap like function Then is close-to-ca Theorem Theorem| | g( ) , f( ) f g . ) ( ,f ) . . ( )( ) n k k k kk k z z z b z z ii z a z z s z             9] 4 2 2 1 2 11 13 p like function provided by Theorem(f g) ( ) g ( ) . , | |z z     REFERENCES 1 1 12 Beirberbach L Uber disKoeffiizientenPotenzerihn Welche cine Shlichta Abbildung desEinheit skreises Vermittetn. S.B.Preuiss Akad. ( ) .138 1916 940 955 WissL. Sitzungsb, Berlin,