SlideShare a Scribd company logo
1 of 4
Download to read offline
1
Recreated by Heri Sudiana &
Published on http://www.matematika-pariwisata.moodlehub.com/
B. MENENTUKAN NILAI OPTIMUM
DARI SISTEM PERTIDAKSAMAAN LINIER
Nilai Optimum Fungsi Sasaran dari Daerah Sistem Pertidaksamaan Linier
Hal terpenting dalam masalah program linier adalah mengubah persoalan verbal ke dalam
bentuk model matematika (persamaan atau pertidaksamaan) yang merupakan penyajian
dari bahasa sehari-hari ke dalam bahasa matematika yang lebih sederhana dan mudah
dimengerti.
Pada pembahasan dalam buku ini hanya menyajikan model matematika sederhana yang
hanya melibatkan dua variabel dan penentuan nilai optimum ditempuh dengan
menggunakan uji titik pojok. Langkah-langkah yang ditempuh untuk menentukan nilai
optimum adalah sebagai berikut :
a) Ubahlah persoalan verbal ke dalam model matematika (dalam bentuk sistem
pertidaksamaan linier);
b) Tentukan Himpunan Penyelesaian;
c) Tentukan semua titik pojok pada daerah himpunan penyelesaian tersebut;
d) Hitung nilai dari fungsi objektif untuk setiap titik pojok dalam daerah himpunan
penyelesaian;
e) Dari hasil pada langkah di atas, nilai maksimum atau minimum dapat ditetapkan.
Contoh Soal 1
Tentukan nilai maksimum dan minimum dari yxZ 35 += , dengan syarat :
0
;0
;6
;82
≥
≥
≤+
≤+
y
x
yx
yx
Jawab :
Dengan cara seperti pada bagian sebelumnya (bagian A. Grafik Himpunan Penyelesaian
Sistem Pertidaksamaan Linier), sistem pertidaksamaan tersebut mempunyai himpunan
penyelesaian seperti pada grafik di bawah ini (Tanpa arsiran).
2
Recreated by Heri Sudiana &
Published on http://www.matematika-pariwisata.moodlehub.com/
Himpunan penyelesaian sistem pertidaksamaan berupa segi empat dengan titik pojok O, A,
B, dan C). Titik B yaitu titik potong antara 2 buah garis, yang dapat dicari dengan cara
eliminasi/substitusi antara garis 6=+ yx dan 82 =+ yx , diperoleh nilai x = 4 dan y = 2,
sehingga titik B(4, 2).
Kemudian diuji titik-titik pojoknya yang ditunjukkan pada tabel berikut ini.
Titik Pojok x y yx 35 +
O(0, 0) 0 0 0
A(6, 0) 6 0 30
B(4, 2) 4 2 26
C(0, 4) 0 12 12
Dari tabel di atas, nilai maksimum adalah 30, terjadi untuk x = 6 dan y = 0. Sedangkan
nilai minimum sama dengan 0 untuk x = 0 dan y = 0.
Contoh Soal 2
Tentukan nilai maksimum dan minimum yxZ 32 += dari daerah yang ditunjukkan pada
grafik di bawah ini.
Y
0 8
4
6
6
HP
X
6=+ yx
82 =+ yx●
C
●
●
B(4, 2)
A
2 5
3
Y
X0
(3, 5)
(7, 3)HP
3
Recreated by Heri Sudiana &
Published on http://www.matematika-pariwisata.moodlehub.com/
Jawab :
Dengan menggunakan uji titik pojok, nilai maksimum dan minimum dapat dicari seperti
ditunjukkan pada table di bawah ini :
Titik Pojok x y yx 32 +
(2, 0) 2 0 4
(5, 0) 5 0 10
(7, 3) 7 3 23
(3, 5) 3 5 21
(0, 3) 0 3 9
Dari tabel terlihat bahwa nilai maksimum adalah 23, yang terjadi pada titik (7, 3) dan nilai
minimum adalah 4, yang terjadi pada titik (2, 0).
Contoh Soal 3
Sebuah pesawat terbang mempunyai kapasitas tempat duduk tidak lebih dari 48 orang.
Setiap penumpang kelas utama dapat membawa bagasi seberat 60 kg dan kelas ekonomi
20 kg, sedangkan pesawat tersebut mempunyai kapasitas bagasi tidak lebih dari 1.440 kg.
apabila harga tiket untuk kelas utama dan ekonomi masing-masing adalah Rp. 1.000.000,-
dan Rp. 500.000,- per orang, tentukan banyaknya penumpang setiap kelas agar penjualan
tiket maksimum.
Jawab :
Model matematika disusun dengan memisalkan banyak penumpang kelas utama = x orang
dan banyak penumpang kelas ekonomi = y orang.
Variabel Kelas utama (x) Kelas ekonomi (y) Persediaan
Penumpang x y 48
Bagasi 60 20 1.440
Harga tiket 1.000.000 500.000
4
Recreated by Heri Sudiana &
Published on http://www.matematika-pariwisata.moodlehub.com/
Maksimalkan yxZ 000.500000.000.1 += .
Syarat daya tampung : 48≤+ yx
Syarat kapasitas : 14402060 ≤+ yx
0≥x
0≥y
Dari model matematika di atas dapat dibuat grafik himpunan penyelesaian pertidaksamaan
linier seperti terlihat pada gambar di bawah ini.
Dari model matematika di atas dan grafik yang dihasilkan diperoleh titik pojok daerah
Himpunan Penyelesaian yaitu titik O, A,B, dan C dengan titik B adalah titik potong antara
garis 48=+ yx dan 482060 =+ yx . Titik potong B adapat dicari dengan cara
subsitusi/eliminasi, sehingga diperoleh titik potong B(12, 36).
Uji titik pojok O, A, B, dan C seperti terlihat pada tabel dibawah ini.
Titik Pojok x y y000.500000.000.1 +
O(0, 0) 0 0 0
A(24, 0) 24 0 24.000.000
B(12, 36) 12 36 30.000.000
C(0, 48) 0 48 24.000.000
Nilai maksimum Z adalah Rp. 30.000.000,- dipenuhi oleh x = 12 dan y = 36, atau dengan
kata lain penjualan tiket akan maksimum jika banyaknya penumpang kelas utama
sebanyak 12 orang dan kelas ekonomi sebanyak 36 orang.
0 24 48 X
72
48
Y
HP
14402060 =+ yx
48=+ yx
C B(12, 36)
A
●
●
●

More Related Content

What's hot

Penyelesaian program linear dalam matriks
Penyelesaian program linear dalam matriksPenyelesaian program linear dalam matriks
Penyelesaian program linear dalam matriksdimar aji
 
Menentukan Nilai Maksimum dan Minimum
Menentukan Nilai Maksimum dan MinimumMenentukan Nilai Maksimum dan Minimum
Menentukan Nilai Maksimum dan MinimumWina Ariyani
 
Program linear - Model Matematika
Program linear - Model MatematikaProgram linear - Model Matematika
Program linear - Model MatematikaAtikaFaradilla
 
Bahan ajar program linear
Bahan ajar program linearBahan ajar program linear
Bahan ajar program linearLalu Irpahlan
 
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)MuhammadAgusridho
 
Sistem pertidaksamaanlinear dan model matematika
Sistem pertidaksamaanlinear dan model matematikaSistem pertidaksamaanlinear dan model matematika
Sistem pertidaksamaanlinear dan model matematikaWina Ariyani
 
Modul sistem pertidaksamaan linear dan permasalahannya
Modul sistem pertidaksamaan linear dan permasalahannyaModul sistem pertidaksamaan linear dan permasalahannya
Modul sistem pertidaksamaan linear dan permasalahannyaarif_baehaqi
 
Mtk modelmatematika
Mtk modelmatematikaMtk modelmatematika
Mtk modelmatematikaelissofi
 
Ppt singkat materi "bilangan" Nora cantika
Ppt singkat materi "bilangan" Nora cantikaPpt singkat materi "bilangan" Nora cantika
Ppt singkat materi "bilangan" Nora cantikaMaysy Maysy
 
Rumus cepat-matematika-program-linear(2)
Rumus cepat-matematika-program-linear(2)Rumus cepat-matematika-program-linear(2)
Rumus cepat-matematika-program-linear(2)1724143052
 

What's hot (16)

Penyelesaian program linear dalam matriks
Penyelesaian program linear dalam matriksPenyelesaian program linear dalam matriks
Penyelesaian program linear dalam matriks
 
Menentukan Nilai Maksimum dan Minimum
Menentukan Nilai Maksimum dan MinimumMenentukan Nilai Maksimum dan Minimum
Menentukan Nilai Maksimum dan Minimum
 
Program linear - Model Matematika
Program linear - Model MatematikaProgram linear - Model Matematika
Program linear - Model Matematika
 
Bahan ajar program linear
Bahan ajar program linearBahan ajar program linear
Bahan ajar program linear
 
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)
 
Sistem pertidaksamaanlinear dan model matematika
Sistem pertidaksamaanlinear dan model matematikaSistem pertidaksamaanlinear dan model matematika
Sistem pertidaksamaanlinear dan model matematika
 
Program linier
Program linierProgram linier
Program linier
 
2. linear programming sederhana
2. linear programming sederhana2. linear programming sederhana
2. linear programming sederhana
 
Modul sistem pertidaksamaan linear dan permasalahannya
Modul sistem pertidaksamaan linear dan permasalahannyaModul sistem pertidaksamaan linear dan permasalahannya
Modul sistem pertidaksamaan linear dan permasalahannya
 
Bab 2 fungsi
Bab 2 fungsiBab 2 fungsi
Bab 2 fungsi
 
Mtk modelmatematika
Mtk modelmatematikaMtk modelmatematika
Mtk modelmatematika
 
Ppt singkat materi "bilangan" Nora cantika
Ppt singkat materi "bilangan" Nora cantikaPpt singkat materi "bilangan" Nora cantika
Ppt singkat materi "bilangan" Nora cantika
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
 
Rumus cepat-matematika-program-linear(2)
Rumus cepat-matematika-program-linear(2)Rumus cepat-matematika-program-linear(2)
Rumus cepat-matematika-program-linear(2)
 
Materi program linear
Materi program linearMateri program linear
Materi program linear
 
Program linear
Program linearProgram linear
Program linear
 

Similar to OPTIMASINILAISISTEMPERTIDAKSAMAAN

C. menentukan nilai optimum dari sistem pertidaksamaan linier
C.  menentukan nilai optimum dari sistem pertidaksamaan linierC.  menentukan nilai optimum dari sistem pertidaksamaan linier
C. menentukan nilai optimum dari sistem pertidaksamaan linierSMKN 9 Bandung
 
Program liniear
Program liniearProgram liniear
Program liniearMn Hidayat
 
Perogram linier
Perogram linier Perogram linier
Perogram linier fauz1
 
Kelompok 3 Kapita selekta 4.pptx
Kelompok 3 Kapita selekta 4.pptxKelompok 3 Kapita selekta 4.pptx
Kelompok 3 Kapita selekta 4.pptxILdaPratama
 
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdf
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdfINSTRUMEN PENILAIAN PROGLIN - PPL 1.pdf
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdfayrus riz
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2pitrahdewi
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2arman11111
 
prog-linear-oke1.ppt
prog-linear-oke1.pptprog-linear-oke1.ppt
prog-linear-oke1.pptAisMahulauw
 
PROGRAM LINEAR.ppt
PROGRAM LINEAR.pptPROGRAM LINEAR.ppt
PROGRAM LINEAR.pptBayu Yoga
 
Materi program linear sederhana
Materi program linear sederhanaMateri program linear sederhana
Materi program linear sederhanaEvanAtok
 
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptxSISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptxJourneyBiasa
 
Kumpulan soal matematika wajib
Kumpulan soal matematika wajibKumpulan soal matematika wajib
Kumpulan soal matematika wajibwulLansieGokilL
 
Fungsi Kuadrat dan Aplikasinya
Fungsi Kuadrat dan AplikasinyaFungsi Kuadrat dan Aplikasinya
Fungsi Kuadrat dan AplikasinyaNurJuniarAfifi
 
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]arditasukma
 

Similar to OPTIMASINILAISISTEMPERTIDAKSAMAAN (20)

C. menentukan nilai optimum dari sistem pertidaksamaan linier
C.  menentukan nilai optimum dari sistem pertidaksamaan linierC.  menentukan nilai optimum dari sistem pertidaksamaan linier
C. menentukan nilai optimum dari sistem pertidaksamaan linier
 
Program liniear
Program liniearProgram liniear
Program liniear
 
Perogram linier
Perogram linier Perogram linier
Perogram linier
 
Kelompok 3 Kapita selekta 4.pptx
Kelompok 3 Kapita selekta 4.pptxKelompok 3 Kapita selekta 4.pptx
Kelompok 3 Kapita selekta 4.pptx
 
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdf
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdfINSTRUMEN PENILAIAN PROGLIN - PPL 1.pdf
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdf
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
 
prog-linear-oke1.ppt
prog-linear-oke1.pptprog-linear-oke1.ppt
prog-linear-oke1.ppt
 
Program linear
Program linearProgram linear
Program linear
 
Program linear
Program linearProgram linear
Program linear
 
PROGRAM_LINEAR.ppt
PROGRAM_LINEAR.pptPROGRAM_LINEAR.ppt
PROGRAM_LINEAR.ppt
 
PROGRAM LINEAR.ppt
PROGRAM LINEAR.pptPROGRAM LINEAR.ppt
PROGRAM LINEAR.ppt
 
P rogram linier
P rogram linierP rogram linier
P rogram linier
 
Materi program linear sederhana
Materi program linear sederhanaMateri program linear sederhana
Materi program linear sederhana
 
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptxSISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
 
Kumpulan soal matematika wajib
Kumpulan soal matematika wajibKumpulan soal matematika wajib
Kumpulan soal matematika wajib
 
Fungsi Kuadrat dan Aplikasinya
Fungsi Kuadrat dan AplikasinyaFungsi Kuadrat dan Aplikasinya
Fungsi Kuadrat dan Aplikasinya
 
03 bab 2
03 bab 203 bab 2
03 bab 2
 
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]
 

More from SMKN 9 Bandung

C.1. menurunkan dan menerapkan aturan sinus
C.1. menurunkan dan menerapkan aturan sinusC.1. menurunkan dan menerapkan aturan sinus
C.1. menurunkan dan menerapkan aturan sinusSMKN 9 Bandung
 
B. koordinat kartesius dan kutub
B.  koordinat kartesius dan kutubB.  koordinat kartesius dan kutub
B. koordinat kartesius dan kutubSMKN 9 Bandung
 
A.4. perbandingan trigonometri sudut di berbagai kuadran
A.4.  perbandingan trigonometri sudut di berbagai kuadranA.4.  perbandingan trigonometri sudut di berbagai kuadran
A.4. perbandingan trigonometri sudut di berbagai kuadranSMKN 9 Bandung
 
A.3. panjang sisi dan besar sudut segitiga siku siku
A.3.  panjang sisi dan besar sudut segitiga siku sikuA.3.  panjang sisi dan besar sudut segitiga siku siku
A.3. panjang sisi dan besar sudut segitiga siku sikuSMKN 9 Bandung
 
A.2. perbandingan trigonometri sudut istimewa
A.2.   perbandingan trigonometri sudut istimewaA.2.   perbandingan trigonometri sudut istimewa
A.2. perbandingan trigonometri sudut istimewaSMKN 9 Bandung
 
A.1. perbandingan trigonometri
A.1.   perbandingan trigonometriA.1.   perbandingan trigonometri
A.1. perbandingan trigonometriSMKN 9 Bandung
 
C. menentukan nilai optimum dari sistem pertidaksamaan linier
C.  menentukan nilai optimum dari sistem pertidaksamaan linierC.  menentukan nilai optimum dari sistem pertidaksamaan linier
C. menentukan nilai optimum dari sistem pertidaksamaan linierSMKN 9 Bandung
 
C. 4. deret geometri tak hingga
C. 4. deret geometri tak hinggaC. 4. deret geometri tak hingga
C. 4. deret geometri tak hinggaSMKN 9 Bandung
 
C. 2. suku tengah pada barisan geometri
C. 2. suku tengah pada barisan geometriC. 2. suku tengah pada barisan geometri
C. 2. suku tengah pada barisan geometriSMKN 9 Bandung
 
C. 1. barisan geometri
C. 1. barisan geometriC. 1. barisan geometri
C. 1. barisan geometriSMKN 9 Bandung
 
C. 1. barisan geometri
C. 1. barisan geometriC. 1. barisan geometri
C. 1. barisan geometriSMKN 9 Bandung
 
B. 4. deret aritmetika
B. 4.  deret aritmetikaB. 4.  deret aritmetika
B. 4. deret aritmetikaSMKN 9 Bandung
 
B. 3. barisan aritmetika tingkat banyak
B. 3.  barisan aritmetika tingkat banyakB. 3.  barisan aritmetika tingkat banyak
B. 3. barisan aritmetika tingkat banyakSMKN 9 Bandung
 
B. 2. suku tengah pada barisan aritmetika
B. 2.  suku tengah pada barisan aritmetikaB. 2.  suku tengah pada barisan aritmetika
B. 2. suku tengah pada barisan aritmetikaSMKN 9 Bandung
 
B. 1. rumus umum suku ke n pada barisan aritmetika
B. 1.  rumus umum suku ke n pada barisan aritmetikaB. 1.  rumus umum suku ke n pada barisan aritmetika
B. 1. rumus umum suku ke n pada barisan aritmetikaSMKN 9 Bandung
 
1. pola barisan bilangan
1.  pola barisan bilangan1.  pola barisan bilangan
1. pola barisan bilanganSMKN 9 Bandung
 
1. pola barisan bilangan
1.  pola barisan bilangan1.  pola barisan bilangan
1. pola barisan bilanganSMKN 9 Bandung
 

More from SMKN 9 Bandung (20)

C.1. menurunkan dan menerapkan aturan sinus
C.1. menurunkan dan menerapkan aturan sinusC.1. menurunkan dan menerapkan aturan sinus
C.1. menurunkan dan menerapkan aturan sinus
 
B. koordinat kartesius dan kutub
B.  koordinat kartesius dan kutubB.  koordinat kartesius dan kutub
B. koordinat kartesius dan kutub
 
A.4. perbandingan trigonometri sudut di berbagai kuadran
A.4.  perbandingan trigonometri sudut di berbagai kuadranA.4.  perbandingan trigonometri sudut di berbagai kuadran
A.4. perbandingan trigonometri sudut di berbagai kuadran
 
A.3. panjang sisi dan besar sudut segitiga siku siku
A.3.  panjang sisi dan besar sudut segitiga siku sikuA.3.  panjang sisi dan besar sudut segitiga siku siku
A.3. panjang sisi dan besar sudut segitiga siku siku
 
A.2. perbandingan trigonometri sudut istimewa
A.2.   perbandingan trigonometri sudut istimewaA.2.   perbandingan trigonometri sudut istimewa
A.2. perbandingan trigonometri sudut istimewa
 
A.1. perbandingan trigonometri
A.1.   perbandingan trigonometriA.1.   perbandingan trigonometri
A.1. perbandingan trigonometri
 
C. menentukan nilai optimum dari sistem pertidaksamaan linier
C.  menentukan nilai optimum dari sistem pertidaksamaan linierC.  menentukan nilai optimum dari sistem pertidaksamaan linier
C. menentukan nilai optimum dari sistem pertidaksamaan linier
 
C. 4. deret geometri tak hingga
C. 4. deret geometri tak hinggaC. 4. deret geometri tak hingga
C. 4. deret geometri tak hingga
 
C. 3. deret geomteri
C. 3.  deret geomteriC. 3.  deret geomteri
C. 3. deret geomteri
 
C. 2. suku tengah pada barisan geometri
C. 2. suku tengah pada barisan geometriC. 2. suku tengah pada barisan geometri
C. 2. suku tengah pada barisan geometri
 
C. 1. barisan geometri
C. 1. barisan geometriC. 1. barisan geometri
C. 1. barisan geometri
 
C. 1. barisan geometri
C. 1. barisan geometriC. 1. barisan geometri
C. 1. barisan geometri
 
B. 4. deret aritmetika
B. 4.  deret aritmetikaB. 4.  deret aritmetika
B. 4. deret aritmetika
 
B. 3. barisan aritmetika tingkat banyak
B. 3.  barisan aritmetika tingkat banyakB. 3.  barisan aritmetika tingkat banyak
B. 3. barisan aritmetika tingkat banyak
 
B. 2. suku tengah pada barisan aritmetika
B. 2.  suku tengah pada barisan aritmetikaB. 2.  suku tengah pada barisan aritmetika
B. 2. suku tengah pada barisan aritmetika
 
B. 1. rumus umum suku ke n pada barisan aritmetika
B. 1.  rumus umum suku ke n pada barisan aritmetikaB. 1.  rumus umum suku ke n pada barisan aritmetika
B. 1. rumus umum suku ke n pada barisan aritmetika
 
3. notasi sigma
3. notasi sigma3. notasi sigma
3. notasi sigma
 
2. deret bilangan
2. deret bilangan2. deret bilangan
2. deret bilangan
 
1. pola barisan bilangan
1.  pola barisan bilangan1.  pola barisan bilangan
1. pola barisan bilangan
 
1. pola barisan bilangan
1.  pola barisan bilangan1.  pola barisan bilangan
1. pola barisan bilangan
 

OPTIMASINILAISISTEMPERTIDAKSAMAAN

  • 1. 1 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ B. MENENTUKAN NILAI OPTIMUM DARI SISTEM PERTIDAKSAMAAN LINIER Nilai Optimum Fungsi Sasaran dari Daerah Sistem Pertidaksamaan Linier Hal terpenting dalam masalah program linier adalah mengubah persoalan verbal ke dalam bentuk model matematika (persamaan atau pertidaksamaan) yang merupakan penyajian dari bahasa sehari-hari ke dalam bahasa matematika yang lebih sederhana dan mudah dimengerti. Pada pembahasan dalam buku ini hanya menyajikan model matematika sederhana yang hanya melibatkan dua variabel dan penentuan nilai optimum ditempuh dengan menggunakan uji titik pojok. Langkah-langkah yang ditempuh untuk menentukan nilai optimum adalah sebagai berikut : a) Ubahlah persoalan verbal ke dalam model matematika (dalam bentuk sistem pertidaksamaan linier); b) Tentukan Himpunan Penyelesaian; c) Tentukan semua titik pojok pada daerah himpunan penyelesaian tersebut; d) Hitung nilai dari fungsi objektif untuk setiap titik pojok dalam daerah himpunan penyelesaian; e) Dari hasil pada langkah di atas, nilai maksimum atau minimum dapat ditetapkan. Contoh Soal 1 Tentukan nilai maksimum dan minimum dari yxZ 35 += , dengan syarat : 0 ;0 ;6 ;82 ≥ ≥ ≤+ ≤+ y x yx yx Jawab : Dengan cara seperti pada bagian sebelumnya (bagian A. Grafik Himpunan Penyelesaian Sistem Pertidaksamaan Linier), sistem pertidaksamaan tersebut mempunyai himpunan penyelesaian seperti pada grafik di bawah ini (Tanpa arsiran).
  • 2. 2 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Himpunan penyelesaian sistem pertidaksamaan berupa segi empat dengan titik pojok O, A, B, dan C). Titik B yaitu titik potong antara 2 buah garis, yang dapat dicari dengan cara eliminasi/substitusi antara garis 6=+ yx dan 82 =+ yx , diperoleh nilai x = 4 dan y = 2, sehingga titik B(4, 2). Kemudian diuji titik-titik pojoknya yang ditunjukkan pada tabel berikut ini. Titik Pojok x y yx 35 + O(0, 0) 0 0 0 A(6, 0) 6 0 30 B(4, 2) 4 2 26 C(0, 4) 0 12 12 Dari tabel di atas, nilai maksimum adalah 30, terjadi untuk x = 6 dan y = 0. Sedangkan nilai minimum sama dengan 0 untuk x = 0 dan y = 0. Contoh Soal 2 Tentukan nilai maksimum dan minimum yxZ 32 += dari daerah yang ditunjukkan pada grafik di bawah ini. Y 0 8 4 6 6 HP X 6=+ yx 82 =+ yx● C ● ● B(4, 2) A 2 5 3 Y X0 (3, 5) (7, 3)HP
  • 3. 3 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Jawab : Dengan menggunakan uji titik pojok, nilai maksimum dan minimum dapat dicari seperti ditunjukkan pada table di bawah ini : Titik Pojok x y yx 32 + (2, 0) 2 0 4 (5, 0) 5 0 10 (7, 3) 7 3 23 (3, 5) 3 5 21 (0, 3) 0 3 9 Dari tabel terlihat bahwa nilai maksimum adalah 23, yang terjadi pada titik (7, 3) dan nilai minimum adalah 4, yang terjadi pada titik (2, 0). Contoh Soal 3 Sebuah pesawat terbang mempunyai kapasitas tempat duduk tidak lebih dari 48 orang. Setiap penumpang kelas utama dapat membawa bagasi seberat 60 kg dan kelas ekonomi 20 kg, sedangkan pesawat tersebut mempunyai kapasitas bagasi tidak lebih dari 1.440 kg. apabila harga tiket untuk kelas utama dan ekonomi masing-masing adalah Rp. 1.000.000,- dan Rp. 500.000,- per orang, tentukan banyaknya penumpang setiap kelas agar penjualan tiket maksimum. Jawab : Model matematika disusun dengan memisalkan banyak penumpang kelas utama = x orang dan banyak penumpang kelas ekonomi = y orang. Variabel Kelas utama (x) Kelas ekonomi (y) Persediaan Penumpang x y 48 Bagasi 60 20 1.440 Harga tiket 1.000.000 500.000
  • 4. 4 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Maksimalkan yxZ 000.500000.000.1 += . Syarat daya tampung : 48≤+ yx Syarat kapasitas : 14402060 ≤+ yx 0≥x 0≥y Dari model matematika di atas dapat dibuat grafik himpunan penyelesaian pertidaksamaan linier seperti terlihat pada gambar di bawah ini. Dari model matematika di atas dan grafik yang dihasilkan diperoleh titik pojok daerah Himpunan Penyelesaian yaitu titik O, A,B, dan C dengan titik B adalah titik potong antara garis 48=+ yx dan 482060 =+ yx . Titik potong B adapat dicari dengan cara subsitusi/eliminasi, sehingga diperoleh titik potong B(12, 36). Uji titik pojok O, A, B, dan C seperti terlihat pada tabel dibawah ini. Titik Pojok x y y000.500000.000.1 + O(0, 0) 0 0 0 A(24, 0) 24 0 24.000.000 B(12, 36) 12 36 30.000.000 C(0, 48) 0 48 24.000.000 Nilai maksimum Z adalah Rp. 30.000.000,- dipenuhi oleh x = 12 dan y = 36, atau dengan kata lain penjualan tiket akan maksimum jika banyaknya penumpang kelas utama sebanyak 12 orang dan kelas ekonomi sebanyak 36 orang. 0 24 48 X 72 48 Y HP 14402060 =+ yx 48=+ yx C B(12, 36) A ● ● ●