Recommended
PPTX
[DL輪読会]Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
PDF
PDF
PDF
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
PDF
PDF
PPTX
PPTX
PDF
PDF
PDF
PPTX
PPTX
How Much Position Information Do Convolutional Neural Networks Encode?
PDF
文献紹介:Temporal Convolutional Networks for Action Segmentation and Detection
PPTX
PDF
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
PPTX
Tensor コアを使った PyTorch の高速化
PDF
【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
PDF
深層学習によるHuman Pose Estimationの基礎
PDF
SSII2022 [OS3-02] Federated Learningの基礎と応用
PDF
[DL輪読会]SOM-VAE: Interpretable Discrete Representation Learning on Time Series
PDF
ガウス過程回帰の導出 ( GPR : Gaussian Process Regression )
PPTX
3Dマップを活用したVisual Localization
PPTX
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
PDF
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
PPTX
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
PDF
PDF
PDF
Bayesian Neural Networks : Survey
PPTX
[DL輪読会]Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-...
More Related Content
PPTX
[DL輪読会]Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
PDF
PDF
PDF
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
PDF
PDF
PPTX
PPTX
What's hot
PDF
PDF
PDF
PPTX
PPTX
How Much Position Information Do Convolutional Neural Networks Encode?
PDF
文献紹介:Temporal Convolutional Networks for Action Segmentation and Detection
PPTX
PDF
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
PPTX
Tensor コアを使った PyTorch の高速化
PDF
【DL輪読会】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
PDF
深層学習によるHuman Pose Estimationの基礎
PDF
SSII2022 [OS3-02] Federated Learningの基礎と応用
PDF
[DL輪読会]SOM-VAE: Interpretable Discrete Representation Learning on Time Series
PDF
ガウス過程回帰の導出 ( GPR : Gaussian Process Regression )
PPTX
3Dマップを活用したVisual Localization
PPTX
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
PDF
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
PPTX
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
PDF
PDF
Similar to Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
PDF
Bayesian Neural Networks : Survey
PPTX
[DL輪読会]Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-...
PPTX
PDF
[DL Hacks] Deterministic Variational Inference for RobustBayesian Neural Netw...
PPTX
Paper reading - Dropout as a Bayesian Approximation: Representing Model Uncer...
PPTX
Active Learning と Bayesian Neural Network
PDF
Layer Normalization@NIPS+読み会・関西
PDF
[DL輪読会]Estimating Predictive Uncertainty via Prior Networks
PPTX
Paper reading - Dropout as a Bayesian Approximation: Representing Model Uncer...
PDF
単一の深層学習モデルによる不確実性の定量化の紹介 ~その予測結果正しいですか?~
PPTX
Icml2019 kyoto ohno_ver20190805
PDF
自然言語処理における深層学習を用いた予測の不確実性 - Predictive Uncertainty in NLP -
PDF
PDF
PDF
第2回nips+読み会: Learning to learn by gradient decent by gradient decent
PPTX
The 53th Computer Vision Study@ kantou by Takamitsu Omasa
PDF
[DL輪読会]Scalable Training of Inference Networks for Gaussian-Process Models
PDF
20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔
PDF
【参考文献追加】20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔
PDF
Journal club dec24 2015 splice site prediction using artificial neural netw...
More from harmonylab
PDF
Collaborative Document Simplification Using Multi-Agent Systems
PDF
Can Large Language Models perform Relation-based Argument Mining?
PDF
UniPAD: A Universal Pre-training Paradigm for Autonomous Driving
PDF
Efficient anomaly detection in tabular cybersecurity data using large languag...
PDF
APT-LLM Embedding-Based Anomaly Detection of Cyber Advanced Persistent Threat...
PDF
CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Us...
PDF
Mixture-of-Personas Language Models for Population Simulation
PDF
QuASAR: A Question-Driven Structure-Aware Approach for Table-to-Text Generation
PDF
Large Language Model based Multi-Agents: A Survey of Progress and Challenges
PDF
Mixture-of-Personas Language Models for Population Simulation
PDF
TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Pass...
PDF
Data Scaling Laws for End-to-End Autonomous Driving
PDF
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Lea...
PDF
Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?
PDF
Encoding and Controlling Global Semantics for Long-form Video Question Answering
PDF
AECR: Automatic attack technique intelligence extraction based on fine-tuned ...
PDF
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models throu...
PDF
Towards Scalable Human-aligned Benchmark for Text-guided Image Editing
PDF
Multiple Object Tracking as ID Prediction
PDF
【卒業論文】LLMを用いたMulti-Agent-Debateにおける反論の効果に関する研究
Recently uploaded
PDF
100年後の知財業界-生成AIスライドアドリブプレゼン イーパテントYouTube配信
PDF
Starlink Direct-to-Cell (D2C) 技術の概要と将来の展望
PDF
自転車ユーザ参加型路面画像センシングによる点字ブロック検出における性能向上方法の模索 (20260123 SeMI研)
PDF
PMBOK 7th Edition_Project Management Process_WF Type Development
PDF
PMBOK 7th Edition_Project Management Context Diagram
PDF
Reiwa 7 IT Strategist Afternoon I Question-1 3C Analysis
PDF
FY2025 IT Strategist Afternoon I Question-1 Balanced Scorecard
PDF
Team Topology Adaptive Organizational Design for Rapid Delivery of Valuable S...
PDF
PMBOK 7th Edition Project Management Process Scrum
PDF
ST2024_PM1_2_Case_study_of_local_newspaper_company.pdf
PDF
第21回 Gen AI 勉強会「NotebookLMで60ページ超の スライドを作成してみた」
PDF
Reiwa 7 IT Strategist Afternoon I Question-1 Ansoff's Growth Vector
PDF
2025→2026宙畑ゆく年くる年レポート_100社を超える企業アンケート総まとめ!!_企業まとめ_1229_3版
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks 1. Bayesian Uncertainty Estimation for
Batch Normalized Deep Networks
Mattias Teye, Hossein Azizpour and Kevin Smith
北海道大学大学院情報科学研究科
調和系工学研究室
修士2年 吉田
2019年5月29日 論文紹介ゼミ
2. 紹介する論文
• タイトル
– Bayesian Uncertainty Estimation for Batch Normalized Deep
Networks
• 著者
– Mattias Teye1,2, Hossein Azizpour1 and Kevin Smith1,3
• 1) School of Electrical Engineering and Computer Science, KTH
Royal Institute of Technology, Stockholm, Sweden
• 2) Electronic Arts, SEED, Stockholm, Sweden
• 3) Science for Life Laboratory
• 学会
– ICML2018
– http://proceedings.mlr.press/v80/teye18a.html
1
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 実験1(回帰)
• 定量的評価指標(正規化)
– 下限
• 入力に関わらず一定の分散を予測するベースラインを定義
• 分散として検証データでCRPSを最適化する固定値を設定
• Constant Uncertainty BN (CUBN)と呼ぶ
– 上限
• 各観測点(𝑦𝑖, 𝑥𝑖)でPPLを最大化(CRPSを最小化)する分散𝑇𝑖を予測する
モデルを定義
– 正規化
13
15. 実験1(回帰)
• 比較
– MCBN(提案手法)
– MCDO
– MNF
• Multiple Normalizing Flows for variational Bayesian networks
• http://proceedings.mlr.press/v70/louizos17a.html
• 新しい可視化手法の提案
– 後述
14
16. 17. 18. 19. 20. 21. 22. 23. 24. 25.