まとめ・今後の展望
• 古典的Visual Localizationへの3Dマップの導入
•InLoc [Taira et al., 2018]: 3つのステップで段階的に3Dマップを活用
• 3Dマップを利用した仮想視点生成等で頑健な自己位置・姿勢推定を実現
• 深層学習モデル学習時の3Dマップ活用
• End-to-endでのブラックボックス化: [Kendall et al., 2015]
• 追加情報活用による精度向上 [Brahmbhatt et al., 2018]
• 姿勢初期値としての応用?
• 単一ステップのCNNモデル構成: コンパクトな問題設定で高精度な推定を実現
• 古典的姿勢推定手法との結合 [Brachmann et al., 2017]
• 局所3Dマップと姿勢の同時推定・整合性評価 [Ummenhofer et al., 2017]
• 未学習シーンへの一般化、大規模シーンへの対応、頑健性向上 etc.
31
32.
References
[1] Taira, Hajime,et al. "InLoc: Indoor visual localization with dense matching and view synthesis." Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
[2] 田平創, 荻野凌, 岩田健太郎, Torsten Sattler, Josef Sivic, Tomas Pajdla, 鳥居秋彦, 奥富正敏. 大規模visual
localization の実用化に向けた評価用データセットの作成. 第24回画像センシングシンポジウム, 2018.
[3] 田平創, Torsten Sattler, Josef Sivic, Tomas Pajdla, 鳥居秋彦, 奥富正敏. 大規模屋内環境における3Dマップを用い
た自己位置推定. 第25回画像センシングシンポジウム, 2019.
[4] Kendall, Alex, Matthew Grimes, and Roberto Cipolla. "Posenet: A convolutional network for real-time 6-dof
camera relocalization." Proceedings of the IEEE international conference on computer vision. 2015.
[5] Kendall, Alex, and Roberto Cipolla. "Geometric loss functions for camera pose regression with deep
learning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
[6] Brachmann, Eric, et al. "Dsac-differentiable ransac for camera localization." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017.
[7] Brachmann, Eric, and Carsten Rother. "Learning less is more-6d camera localization via 3d surface
regression." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
[8] Brahmbhatt, Samarth, et al. "Geometry-aware learning of maps for camera localization." Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018.
[9] Ummenhofer, Benjamin, et al. "Demon: Depth and motion network for learning monocular
stereo." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
32