This document evaluates and compares the performance of various segmentation algorithms for detecting brain tumors in MRI images, including hierarchical self-organizing mapping (HSOM), region growing, Otsu, K-means, and fuzzy C-means. It finds that HSOM performs best according to evaluation metrics like segmentation accuracy, Rand index, global consistency error, and variation of information. HSOM is able to segment brain tumor images with higher accuracy and consistency compared to other algorithms like region growing, Otsu, K-means and fuzzy C-means.