SlideShare a Scribd company logo
An RKHS Approach to
Systematic Kernel Selection
in Nonlinear System Identification
Y. Bhujwalla, V. Laurain, M. Gilson
55th IEEE Conference on Decision and Control
yusuf-michael.bhujwalla@univ-lorraine.fr
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 1 / 14
Introduction
Problem Description
Measured data :
DN = {(u1, y1), (u2, y2), . . . , (uN, yN )}
Describing an unknown system :
So :
yo,k = fo(xk), fo : X → R
yk = yo,k + eo,k, eo,k ∼ N(0, σ2
e )
- xk = [ yk−1 · · · yk−na u1,k · · · u1,k−nb u2,k · · · unu,k−nb ]⊤
∈ X = Rna+nu (nb+1)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 2 / 14
Introduction
Modelling Objective
Aim : to choose the simplest model from a candidate set of models that accurately
describes the system :
Mopt : Accuracy (Data) vs Simplicity (Model)
⏐
⏐
⏐
⏐
Vf : V( f ) = N
k=1 ( yk − f (xk))2
+ g( f )
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 3 / 14
Introduction
Modelling Objective
Aim : to choose the simplest model from a candidate set of models that accurately
describes the system :
Mopt : Accuracy (Data) vs Simplicity (Model)
⏐
⏐
⏐
⏐
Vf : V( f ) = N
k=1 ( yk − f (xk))2
+ g( f )
Q1 : How to choose the simplest accurate model?
- Often g( f ) = λ ∥ f ∥2
H - ensure uniqueness of the solution
- λ → controls the bias-variance trade-off
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 3 / 14
Introduction
Modelling Objective
Aim : to choose the simplest model from a candidate set of models that accurately
describes the system :
Mopt : Accuracy (Data) vs Simplicity (Model)
⏐
⏐
⏐
⏐
Vf : V( f ) = N
k=1 ( yk − f (xk))2
+ g( f )
Q1 : How to choose the simplest accurate model?
- Often g( f ) = λ ∥ f ∥2
H - ensure uniqueness of the solution
- λ → controls the bias-variance trade-off
Q2 : How to determine a suitable set of candidate models. . . ?
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 3 / 14
Outline
1. Kernel Methods in Nonlinear Identification
2. Model Selection Using Derivatives
3. Smoothness-Enforcing Regularisation
4. Application : Estimation of Locally Nonsmooth Functions
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 3 / 14
1. Kernel Methods in Nonlinear Identification
Input
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Output
0
0.5
1
1.5
2
ˆf
kx
→ Model :
Ff : f (x) =
N
i=1
αi kxi (x)
→ Nonparametric (nθ ∼ N)
→ Flexible : M defined through choice of K
→ Height : α (model parameters)
→ Width : σ (kernel hyperparameter)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 4 / 14
1. Kernel Methods in Nonlinear Identification
Identification in the RKHS
Reproducing Kernel Hilbert Spaces
Kernel function defines the model class :
K ↔ H
Hence, functions can be represented in terms of kernels :
f (x) = ⟨ f , kx⟩H (1)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 5 / 14
1. Kernel Methods in Nonlinear Identification
The Kernel Selection Problem
Choosing an overly flexible model class (a small kernel) :
FIGURE: Flexible Model Class
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
1. Kernel Methods in Nonlinear Identification
The Kernel Selection Problem
Choosing an overly flexible model class (a small kernel) :
FIGURE: Flexible Model Class
-1 -0.5 0 0.5 1
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
fo
y
ˆf
kx
FIGURE: High Variance
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
1. Kernel Methods in Nonlinear Identification
The Kernel Selection Problem
Choosing an overly constrained model class (a large kernel) :
FIGURE: Constrained Model Class
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
1. Kernel Methods in Nonlinear Identification
The Kernel Selection Problem
Choosing an overly constrained model class (a large kernel) :
FIGURE: Constrained Model Class
-1 -0.5 0 0.5 1
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
fo
y
ˆf
kx
FIGURE: Model Biased
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
1. Kernel Methods in Nonlinear Identification
The Kernel Selection Problem
Why not just choose the ’optimal’ model class ?
FIGURE: Optimal Model Class
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
1. Kernel Methods in Nonlinear Identification
The Kernel Selection Problem
Why not just choose the ’optimal’ model class ?
FIGURE: Optimal Model Class
-1 -0.5 0 0.5 1
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
fo
y
ˆf
kx
FIGURE: Optimal Model
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
1. Kernel Methods in Nonlinear Identification
The Kernel Selection Problem
Why not just choose the ’optimal’ model class ?
• This is, in general, what we try to do.
• However, Hopt is unknown.
• Optimisation over one hyperparameter - not that difficult.
• Optimisation over multiple model structures, kernel functions and
hyperparameters → more difficult.
-1 -0.5 0 0.5 1
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
fo
y
ˆf
kx
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
Outline
1. Kernel Methods in Nonlinear Identification
2. Model Selection Using Derivatives
3. Smoothness-Enforcing Regularisation
4. Application : Estimation of Locally Nonsmooth Functions
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
2. Model Selection Using Derivatives
But, note that many properties of K are encoded into its derivatives, e.g.
Smoothness f (x) = ax2
+ bx + c =⇒ d3
f(x)
dx3
∀x
= 0
f (x) = g1(x) [ x < x∗
] + g2(x) [ x > x∗
] =⇒ ∃ d f(x)
dx
∀x̸=x∗
Linearity f ( x1, x2 ) = x1 h1(x2) + h2(x2) =⇒ ∂2
f( x1,x2 )
∂x2
1 ∀x1
= 0
Separability f ( x1, x2 ) = g(x1) + h(x2) =⇒ ∂2
f( x1,x2 )
∂x1 ∂x1 ∀x1,x2
= 0
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 7 / 14
2. Model Selection Using Derivatives
But, note that many properties of K are encoded into its derivatives, e.g.
Smoothness f (x) = ax2
+ bx + c =⇒ d3
f(x)
dx3
∀x
= 0
f (x) = g1(x) [ x < x∗
] + g2(x) [ x > x∗
] =⇒ ∃ d f(x)
dx
∀x̸=x∗
Linearity f ( x1, x2 ) = x1 h1(x2) + h2(x2) =⇒ ∂2
f( x1,x2 )
∂x2
1 ∀x1
= 0
Separability f ( x1, x2 ) = g(x1) + h(x2) =⇒ ∂2
f( x1,x2 )
∂x1 ∂x1 ∀x1,x2
= 0
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 7 / 14
2. Model Selection Using Derivatives
But, note that many properties of K are encoded into its derivatives, e.g.
Smoothness f (x) = ax2
+ bx + c =⇒ d3
f(x)
dx3
∀x
= 0
f (x) = g1(x) [ x < x∗
] + g2(x) [ x > x∗
] =⇒ ∃ d f(x)
dx
∀x̸=x∗
Linearity f ( x1, x2 ) = x1 h1(x2) + h2(x2) =⇒ ∂2
f( x1,x2 )
∂x2
1 ∀x1
= 0
Separability f ( x1, x2 ) = g(x1) + h(x2) =⇒ ∂2
f( x1,x2 )
∂x1 ∂x1 ∀x1,x2
= 0
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 7 / 14
2. Model Selection Using Derivatives
Incorporating this information into the problem formulation allows the model selection
can be transferred from an optimisation over K. . .
. . . to an explicit regularisation problem over derivatives, using an a priori flexible
model class definition.
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 8 / 14
Outline
1. Kernel Methods in Nonlinear Identification
2. Model Selection Using Derivatives
3. Smoothness-Enforcing Regularisation
4. Application : Estimation of Locally Nonsmooth Functions
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 8 / 14
3. Smoothness-Enforcing Regularisation
Problem Formulation
Here we consider X = R → where the kernel optimisation is reduced to a
smoothness selection problem.
What would we like to do ?
Replace exisiting functional norm regularisation. . .
Vf : V( f ) =
N
k=1
( yk − f (xk))2
+ λ ∥ f ∥2
H
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 9 / 14
3. Smoothness-Enforcing Regularisation
Problem Formulation
Here we consider X = R → where the kernel optimisation is reduced to a
smoothness selection problem.
What would we like to do ?
Replace exisiting functional norm regularisation. . .
Vf : V( f ) =
N
k=1
( yk − f (xk))2
+ λ ∥ f ∥2
H
With a smoothness-penalty in the cost-function. . .
VD : V( f ) =
N
k=1
( yk − f (xk))2
+ λ ∥Df ∥2
H
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 9 / 14
3. Smoothness-Enforcing Regularisation
Problem Formulation
Here we consider X = R → where the kernel optimisation is reduced to a
smoothness selection problem.
What would we like to do ?
Replace exisiting functional norm regularisation. . .
Vf : V( f ) =
N
k=1
( yk − f (xk))2
+ λ ∥ f ∥2
H
With a smoothness-penalty in the cost-function. . .
VD : V( f ) =
N
k=1
( yk − f (xk))2
+ λ ∥Df ∥2
H
How ?
- ∥Df ∥2
H → known (D. X. Zhou, 2008)
- f (x) for VD → unknown
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 9 / 14
3. Smoothness-Enforcing Regularisation
An Extended Representer of f (x)
A finite representer for VD does not exist.
But, by adding kernels along X , an approximate formulation can be defined :
Input (x/σ)
-6 -4 -2 0 2 4 6
Output
0
0.5
1
1.5
Observations
Obs Kernels
∥ f∥2
FIGURE: N = 2
Input (x/σ)
-6 -4 -2 0 2 4 6
Output
0
0.5
1
1.5
Observations
Obs Kernels
Add Kernels
∥Df∥2
FIGURE: (N, P) = (2, 8)
FD : f (x) =
N
i=1
αi kxi (x) +
P
j=1
α∗
j kx∗
j
(x)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 10 / 14
3. Smoothness-Enforcing Regularisation
Choosing the Kernel Width
Examination of the kernel density allows us to make an a priori choice of kernel width :
Input (x/σ)
-6 -4 -2 0 2 4 6
Output
0
0.5
1
1.5
ˆf
kx
FIGURE: ρk = 0.4
Input (x/σ)
-6 -4 -2 0 2 4 6
Output
0
0.5
1
1.5
ˆf
kx
FIGURE: ρk = 0.5
Input (x/σ)
-6 -4 -2 0 2 4 6
Output
0
0.5
1
1.5
ˆf
kx
FIGURE: ρk = 0.6
Hence, for a given P we can define the maximally flexible model class for a given
problem.
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 11 / 14
Outline
1. Kernel Methods in Nonlinear Identification
2. Model Selection Using Derivatives
3. Smoothness-Enforcing Regularisation
4. Application : Estimation of Locally Nonsmooth Functions
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 11 / 14
4. Application
Estimation of Locally Nonsmooth Functions
In VD, smoothness ∼ regularisation.
Hence, by introducing weights into the loss-function, importance of the regularisation
can be varied across X :
Vw : V( f ) =
N
i=1
(wk yk − wk f (xk))2
+ λ∥Df ∥2
H,
How to determine the weights ?
Relative to a particular modelling objective, e.g.
• wk ∼ ∥D ˆf(0)(xk)∥2
2 for piecewise constant structures, or
• wk ∼ ∥D2 ˆf(0)(xk)∥2
2 for piecewise linear structures.
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 12 / 14
4. Application
Estimation of Locally Nonsmooth Functions
-0.5 0 0.5
-10
-5
0
5
10
15
20
25
yo
FIGURE: Noise-Free System
-0.5 0 0.5
-10
-5
0
5
10
15
20
25
y
FIGURE: Noisy System
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 13 / 14
4. Application
Estimation of Locally Nonsmooth Functions
-0.5 0 0.5
-10
-5
0
5
10
15
20
25
yo
ˆfMED
BIAS + SDEV
FIGURE: Vf : R( f)
-0.5 0 0.5
-10
-5
0
5
10
15
20
25
yo
ˆfMED
BIAS + SDEV
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 13 / 14
4. Application
Estimation of Locally Nonsmooth Functions
-0.5 0 0.5
-10
-5
0
5
10
15
20
25
yo
ˆfMED
BIAS + SDEV
FIGURE: Vf : R( f)
-0.5 0 0.5
-10
-5
0
5
10
15
20
25
yo
ˆfMED
BIAS + SDEV
FIGURE: Vw : R(Df)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 13 / 14
Conclusions
Objectives :
• To simplify model selection in nonlinear identification.
• By shifting the problem to a regularisation over functional derivatives.
→ Allowing the definition of an a priori flexible model class.
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
Conclusions
Objectives :
• To simplify model selection in nonlinear identification.
• By shifting the problem to a regularisation over functional derivatives.
→ Allowing the definition of an a priori flexible model class.
This presentation :
• First step ⇒ consider a simple example.
→ Model selection ⇔ smoothness detection.
→ Kernel selection ⇔ hyperparameter optimisation.
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
Conclusions
Objectives :
• To simplify model selection in nonlinear identification.
• By shifting the problem to a regularisation over functional derivatives.
→ Allowing the definition of an a priori flexible model class.
This presentation :
• First step ⇒ consider a simple example.
→ Model selection ⇔ smoothness detection.
→ Kernel selection ⇔ hyperparameter optimisation.
Current/Future Research :
• Application to dynamical, control-oriented problems (e.g. linear
parameter-varying identification)
• Investigation of more complex model selection problems (e.g. detection of
linearities, separability. . . ).
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
A. Bibliography
• Sobolev Spaces (Wahba, 1990; Pillonetto et al, 2014)
∥ f ∥Hk
=
m
i=0 X
di
f (x)
dxi
2
dx
• Identification using derivative observations (Zhou, 2008 ; Rosasco et al,
2010)
Vobvs( f ) = ∥y − f (x)∥2
2 + γ1
dy
dx
−
df (x)
dx
2
2
+ · · · γm
dm
y
dxm
−
dm
f (x)
dxm
2
2
+ λ ∥f ∥H
• Regularization Using Derivatives (Rosasco et al, 2010; Lauer, Le and Bloch,
2012; Duijkers et al, 2014)
VD( f ) = ∥y − f (x)∥2
2 + λ∥Dm
f ∥p.
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
B. Choosing the Kernel Width
The Smoothness-Tolerance Parameter
ρk =
σ
∆x∗
, ∆x∗ =
x∗
max − x∗
min
P
, ϵˆf = 100 × 1 −
∥ˆf ∥inf
C
%.
Kernel Density (ρ)
10-2
10-1
100
SmoothnessTolerance(ϵ%)
10
-15
10
-10
10
-5
10
0
ϵ(ρ)
ˆϵ
FIGURE: Selecting an appropriate kernel using ϵ
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
C. Effect of the Regularisation
⇒ Negligible regularisation (very small λf , λD).
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
C. Effect of the Regularisation
⇒ Light regularisation (small λf , λD).
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
C. Effect of the Regularisation
⇒ Moderate regularisation.
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
C. Effect of the Regularisation
⇒ Heavy regularisation (large λf , λD).
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
C. Effect of the Regularisation
⇒ Excessive regularisation (very large λf , λD).
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
D. Further Examples : Detecting Piecewise Structures
So : Noise-free and observed data
-1 -0.5 0 0.5 1
-1
-0.5
0
0.5
1
-0.49039
0
1
1.4358
FIGURE: y(x1, x2)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
D. Further Examples : Detecting Piecewise Structures
Results M1 : (Vf , Ff )
FIGURE: MEDIAN FIGURE: BIAS FIGURE: SDEV
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
D. Further Examples : Detecting Piecewise Structures
Results M2 : (VD, FD)
FIGURE: MEDIAN FIGURE: BIAS FIGURE: SDEV
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
D. Further Examples : Detecting Piecewise Structures
Results M3 : (Vw, FD)
FIGURE: MEDIAN FIGURE: BIAS FIGURE: SDEV
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
E. Further Examples : Enforcing Separability
f ( x1, x2 )
λ
−→ f1(x1) + f2(x2)
FIGURE: VDX : R(∂x1 ∂x2 f)
Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14

More Related Content

What's hot

05210401 P R O B A B I L I T Y T H E O R Y A N D S T O C H A S T I C P R...
05210401  P R O B A B I L I T Y  T H E O R Y  A N D  S T O C H A S T I C  P R...05210401  P R O B A B I L I T Y  T H E O R Y  A N D  S T O C H A S T I C  P R...
05210401 P R O B A B I L I T Y T H E O R Y A N D S T O C H A S T I C P R...
guestd436758
 
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Matthew Leingang
 
2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decisionnozomuhamada
 
Multi objective optimization and Benchmark functions result
Multi objective optimization and Benchmark functions resultMulti objective optimization and Benchmark functions result
Multi objective optimization and Benchmark functions result
Piyush Agarwal
 
2013-1 Machine Learning Lecture 05 - Vasant Honavar - Support Vector Machi…
2013-1 Machine Learning Lecture 05 - Vasant Honavar - Support Vector Machi…2013-1 Machine Learning Lecture 05 - Vasant Honavar - Support Vector Machi…
2013-1 Machine Learning Lecture 05 - Vasant Honavar - Support Vector Machi…Dongseo University
 
Kernels and Support Vector Machines
Kernels and Support Vector  MachinesKernels and Support Vector  Machines
Kernels and Support Vector Machines
Edgar Marca
 
Introduction to Matrix Factorization Methods Collaborative Filtering
Introduction to Matrix Factorization Methods Collaborative FilteringIntroduction to Matrix Factorization Methods Collaborative Filtering
Introduction to Matrix Factorization Methods Collaborative Filtering
DKALab
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
Matthew Leingang
 
The Kernel Trick
The Kernel TrickThe Kernel Trick
The Kernel Trick
Edgar Marca
 
Afsar ml applied_svm
Afsar ml applied_svmAfsar ml applied_svm
Afsar ml applied_svm
UmmeHaniAsif
 
Rabbit challenge 3 DNN Day1
Rabbit challenge 3 DNN Day1Rabbit challenge 3 DNN Day1
Rabbit challenge 3 DNN Day1
TOMMYLINK1
 
Lecture 8 (Stereo imaging) (Digital Image Processing)
Lecture 8 (Stereo imaging) (Digital Image Processing)Lecture 8 (Stereo imaging) (Digital Image Processing)
Lecture 8 (Stereo imaging) (Digital Image Processing)
VARUN KUMAR
 
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
Masahiro Suzuki
 
Detailed Description on Cross Entropy Loss Function
Detailed Description on Cross Entropy Loss FunctionDetailed Description on Cross Entropy Loss Function
Detailed Description on Cross Entropy Loss Function
범준 김
 
Lecture 9 (Digital Image Processing)
Lecture 9 (Digital Image Processing)Lecture 9 (Digital Image Processing)
Lecture 9 (Digital Image Processing)
VARUN KUMAR
 
Linked CP Tensor Decomposition (presented by ICONIP2012)
Linked CP Tensor Decomposition (presented by ICONIP2012)Linked CP Tensor Decomposition (presented by ICONIP2012)
Linked CP Tensor Decomposition (presented by ICONIP2012)Tatsuya Yokota
 
PosterPresentations.com-3 6x48-Template-V5 - 副本
PosterPresentations.com-3 6x48-Template-V5 - 副本PosterPresentations.com-3 6x48-Template-V5 - 副本
PosterPresentations.com-3 6x48-Template-V5 - 副本Yijun Zhou
 
Introduction to Neural Netwoks
Introduction to Neural Netwoks Introduction to Neural Netwoks
Introduction to Neural Netwoks
Abdallah Bashir
 

What's hot (20)

05210401 P R O B A B I L I T Y T H E O R Y A N D S T O C H A S T I C P R...
05210401  P R O B A B I L I T Y  T H E O R Y  A N D  S T O C H A S T I C  P R...05210401  P R O B A B I L I T Y  T H E O R Y  A N D  S T O C H A S T I C  P R...
05210401 P R O B A B I L I T Y T H E O R Y A N D S T O C H A S T I C P R...
 
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
 
2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision
 
Multi objective optimization and Benchmark functions result
Multi objective optimization and Benchmark functions resultMulti objective optimization and Benchmark functions result
Multi objective optimization and Benchmark functions result
 
2013-1 Machine Learning Lecture 05 - Vasant Honavar - Support Vector Machi…
2013-1 Machine Learning Lecture 05 - Vasant Honavar - Support Vector Machi…2013-1 Machine Learning Lecture 05 - Vasant Honavar - Support Vector Machi…
2013-1 Machine Learning Lecture 05 - Vasant Honavar - Support Vector Machi…
 
Kernels and Support Vector Machines
Kernels and Support Vector  MachinesKernels and Support Vector  Machines
Kernels and Support Vector Machines
 
Introduction to Matrix Factorization Methods Collaborative Filtering
Introduction to Matrix Factorization Methods Collaborative FilteringIntroduction to Matrix Factorization Methods Collaborative Filtering
Introduction to Matrix Factorization Methods Collaborative Filtering
 
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
 
The Kernel Trick
The Kernel TrickThe Kernel Trick
The Kernel Trick
 
Afsar ml applied_svm
Afsar ml applied_svmAfsar ml applied_svm
Afsar ml applied_svm
 
Rabbit challenge 3 DNN Day1
Rabbit challenge 3 DNN Day1Rabbit challenge 3 DNN Day1
Rabbit challenge 3 DNN Day1
 
Lecture 8 (Stereo imaging) (Digital Image Processing)
Lecture 8 (Stereo imaging) (Digital Image Processing)Lecture 8 (Stereo imaging) (Digital Image Processing)
Lecture 8 (Stereo imaging) (Digital Image Processing)
 
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
 
Detailed Description on Cross Entropy Loss Function
Detailed Description on Cross Entropy Loss FunctionDetailed Description on Cross Entropy Loss Function
Detailed Description on Cross Entropy Loss Function
 
Lec3
Lec3Lec3
Lec3
 
Lecture 9 (Digital Image Processing)
Lecture 9 (Digital Image Processing)Lecture 9 (Digital Image Processing)
Lecture 9 (Digital Image Processing)
 
Linked CP Tensor Decomposition (presented by ICONIP2012)
Linked CP Tensor Decomposition (presented by ICONIP2012)Linked CP Tensor Decomposition (presented by ICONIP2012)
Linked CP Tensor Decomposition (presented by ICONIP2012)
 
PosterPresentations.com-3 6x48-Template-V5 - 副本
PosterPresentations.com-3 6x48-Template-V5 - 副本PosterPresentations.com-3 6x48-Template-V5 - 副本
PosterPresentations.com-3 6x48-Template-V5 - 副本
 
Decision theory
Decision theoryDecision theory
Decision theory
 
Introduction to Neural Netwoks
Introduction to Neural Netwoks Introduction to Neural Netwoks
Introduction to Neural Netwoks
 

Viewers also liked

The Impact of Smoothness on Model Class Selection in Nonlinear System Identif...
The Impact of Smoothness on Model Class Selection in Nonlinear System Identif...The Impact of Smoothness on Model Class Selection in Nonlinear System Identif...
The Impact of Smoothness on Model Class Selection in Nonlinear System Identif...
Yusuf Bhujwalla
 
Internet Traffic Forecasting using Time Series Methods
Internet Traffic Forecasting using Time Series MethodsInternet Traffic Forecasting using Time Series Methods
Internet Traffic Forecasting using Time Series MethodsAjay Ohri
 
Tener razon
Tener razonTener razon
Diagramación y composición
Diagramación y composiciónDiagramación y composición
Diagramación y composición
georgeostro
 
Bristol post ppt
Bristol post pptBristol post ppt
Bristol post ppt
anna barton
 
Bristol post ppt
Bristol post pptBristol post ppt
Bristol post ppt
anna barton
 
Bristol post ppt
Bristol post pptBristol post ppt
Bristol post ppt
anna barton
 
Falacia de justicia
Falacia de justiciaFalacia de justicia
Falacia de justicia
Juan Rodrigo Tuesta-Nole
 
Статья "Госрегулирование фармпромышленности"
Статья "Госрегулирование фармпромышленности"Статья "Госрегулирование фармпромышленности"
Статья "Госрегулирование фармпромышленности"
Natalia Kolosova
 
GEORGIA DARSAS LATEST UPDATED RESUME 2017
GEORGIA DARSAS LATEST UPDATED RESUME 2017GEORGIA DARSAS LATEST UPDATED RESUME 2017
GEORGIA DARSAS LATEST UPDATED RESUME 2017Georgia Darsas
 
Allan Baitcher - Bid on It Magazine Article
Allan Baitcher - Bid on It Magazine ArticleAllan Baitcher - Bid on It Magazine Article
Allan Baitcher - Bid on It Magazine Article
Allan Baitcher
 
My dream community
My dream communityMy dream community
My dream community
Jason Cumpas
 
20160303 Artist Talk @ Kyoto Art Center
20160303 Artist Talk @ Kyoto Art Center20160303 Artist Talk @ Kyoto Art Center
20160303 Artist Talk @ Kyoto Art Center
Soichiro Mihara
 

Viewers also liked (14)

The Impact of Smoothness on Model Class Selection in Nonlinear System Identif...
The Impact of Smoothness on Model Class Selection in Nonlinear System Identif...The Impact of Smoothness on Model Class Selection in Nonlinear System Identif...
The Impact of Smoothness on Model Class Selection in Nonlinear System Identif...
 
Internet Traffic Forecasting using Time Series Methods
Internet Traffic Forecasting using Time Series MethodsInternet Traffic Forecasting using Time Series Methods
Internet Traffic Forecasting using Time Series Methods
 
Tener razon
Tener razonTener razon
Tener razon
 
Diagramación y composición
Diagramación y composiciónDiagramación y composición
Diagramación y composición
 
Week 5 paper
Week 5 paperWeek 5 paper
Week 5 paper
 
Bristol post ppt
Bristol post pptBristol post ppt
Bristol post ppt
 
Bristol post ppt
Bristol post pptBristol post ppt
Bristol post ppt
 
Bristol post ppt
Bristol post pptBristol post ppt
Bristol post ppt
 
Falacia de justicia
Falacia de justiciaFalacia de justicia
Falacia de justicia
 
Статья "Госрегулирование фармпромышленности"
Статья "Госрегулирование фармпромышленности"Статья "Госрегулирование фармпромышленности"
Статья "Госрегулирование фармпромышленности"
 
GEORGIA DARSAS LATEST UPDATED RESUME 2017
GEORGIA DARSAS LATEST UPDATED RESUME 2017GEORGIA DARSAS LATEST UPDATED RESUME 2017
GEORGIA DARSAS LATEST UPDATED RESUME 2017
 
Allan Baitcher - Bid on It Magazine Article
Allan Baitcher - Bid on It Magazine ArticleAllan Baitcher - Bid on It Magazine Article
Allan Baitcher - Bid on It Magazine Article
 
My dream community
My dream communityMy dream community
My dream community
 
20160303 Artist Talk @ Kyoto Art Center
20160303 Artist Talk @ Kyoto Art Center20160303 Artist Talk @ Kyoto Art Center
20160303 Artist Talk @ Kyoto Art Center
 

Similar to An RKHS Approach to Systematic Kernel Selection in Nonlinear System Identification

ICPR 2016
ICPR 2016ICPR 2016
Neural Networks: Support Vector machines
Neural Networks: Support Vector machinesNeural Networks: Support Vector machines
Neural Networks: Support Vector machines
Mostafa G. M. Mostafa
 
From RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphsFrom RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphs
tuxette
 
Lesson 19: The Mean Value Theorem (Section 041 handout)
Lesson 19: The Mean Value Theorem (Section 041 handout)Lesson 19: The Mean Value Theorem (Section 041 handout)
Lesson 19: The Mean Value Theorem (Section 041 handout)
Matthew Leingang
 
Lesson 19: The Mean Value Theorem (Section 021 handout)
Lesson 19: The Mean Value Theorem (Section 021 handout)Lesson 19: The Mean Value Theorem (Section 021 handout)
Lesson 19: The Mean Value Theorem (Section 021 handout)
Matthew Leingang
 
Implementing Minimum Error Rate Classifier
Implementing Minimum Error Rate ClassifierImplementing Minimum Error Rate Classifier
Implementing Minimum Error Rate Classifier
Dipesh Shome
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
Neural Processes Family
Neural Processes FamilyNeural Processes Family
Neural Processes Family
Kota Matsui
 
Be naive. not idiot.
Be naive. not idiot. Be naive. not idiot.
Be naive. not idiot.
PredicSis
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningzukun
 
Information-theoretic clustering with applications
Information-theoretic clustering  with applicationsInformation-theoretic clustering  with applications
Information-theoretic clustering with applications
Frank Nielsen
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
University of Glasgow
 
02 basics i-handout
02 basics i-handout02 basics i-handout
02 basics i-handout
sheetslibrary
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
anandsimple
 
Linear Smoothing, Median, and Sharpening Filter
Linear Smoothing, Median, and Sharpening FilterLinear Smoothing, Median, and Sharpening Filter
Linear Smoothing, Median, and Sharpening Filter
VARUN KUMAR
 
Lecture6.handout
Lecture6.handoutLecture6.handout
Lecture6.handout
sheetslibrary
 
Lecture9 multi kernel_svm
Lecture9 multi kernel_svmLecture9 multi kernel_svm
Lecture9 multi kernel_svmStéphane Canu
 
Introduction
IntroductionIntroduction
Introductionbutest
 
Comparison of the optimal design
Comparison of the optimal designComparison of the optimal design
Comparison of the optimal design
Alexander Decker
 
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 

Similar to An RKHS Approach to Systematic Kernel Selection in Nonlinear System Identification (20)

ICPR 2016
ICPR 2016ICPR 2016
ICPR 2016
 
Neural Networks: Support Vector machines
Neural Networks: Support Vector machinesNeural Networks: Support Vector machines
Neural Networks: Support Vector machines
 
From RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphsFrom RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphs
 
Lesson 19: The Mean Value Theorem (Section 041 handout)
Lesson 19: The Mean Value Theorem (Section 041 handout)Lesson 19: The Mean Value Theorem (Section 041 handout)
Lesson 19: The Mean Value Theorem (Section 041 handout)
 
Lesson 19: The Mean Value Theorem (Section 021 handout)
Lesson 19: The Mean Value Theorem (Section 021 handout)Lesson 19: The Mean Value Theorem (Section 021 handout)
Lesson 19: The Mean Value Theorem (Section 021 handout)
 
Implementing Minimum Error Rate Classifier
Implementing Minimum Error Rate ClassifierImplementing Minimum Error Rate Classifier
Implementing Minimum Error Rate Classifier
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Neural Processes Family
Neural Processes FamilyNeural Processes Family
Neural Processes Family
 
Be naive. not idiot.
Be naive. not idiot. Be naive. not idiot.
Be naive. not idiot.
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
 
Information-theoretic clustering with applications
Information-theoretic clustering  with applicationsInformation-theoretic clustering  with applications
Information-theoretic clustering with applications
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
 
02 basics i-handout
02 basics i-handout02 basics i-handout
02 basics i-handout
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
 
Linear Smoothing, Median, and Sharpening Filter
Linear Smoothing, Median, and Sharpening FilterLinear Smoothing, Median, and Sharpening Filter
Linear Smoothing, Median, and Sharpening Filter
 
Lecture6.handout
Lecture6.handoutLecture6.handout
Lecture6.handout
 
Lecture9 multi kernel_svm
Lecture9 multi kernel_svmLecture9 multi kernel_svm
Lecture9 multi kernel_svm
 
Introduction
IntroductionIntroduction
Introduction
 
Comparison of the optimal design
Comparison of the optimal designComparison of the optimal design
Comparison of the optimal design
 
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
The Perceptron - Xavier Giro-i-Nieto - UPC Barcelona 2018
 

Recently uploaded

一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
zwunae
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
An Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering TechniquesAn Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering Techniques
ambekarshweta25
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
ssuser7dcef0
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
dxobcob
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
itech2017
 

Recently uploaded (20)

一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
An Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering TechniquesAn Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering Techniques
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
 

An RKHS Approach to Systematic Kernel Selection in Nonlinear System Identification

  • 1. An RKHS Approach to Systematic Kernel Selection in Nonlinear System Identification Y. Bhujwalla, V. Laurain, M. Gilson 55th IEEE Conference on Decision and Control yusuf-michael.bhujwalla@univ-lorraine.fr Yusuf Bhujwalla (Université de Lorraine) CDC 2016 1 / 14
  • 2. Introduction Problem Description Measured data : DN = {(u1, y1), (u2, y2), . . . , (uN, yN )} Describing an unknown system : So : yo,k = fo(xk), fo : X → R yk = yo,k + eo,k, eo,k ∼ N(0, σ2 e ) - xk = [ yk−1 · · · yk−na u1,k · · · u1,k−nb u2,k · · · unu,k−nb ]⊤ ∈ X = Rna+nu (nb+1) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 2 / 14
  • 3. Introduction Modelling Objective Aim : to choose the simplest model from a candidate set of models that accurately describes the system : Mopt : Accuracy (Data) vs Simplicity (Model) ⏐ ⏐ ⏐ ⏐ Vf : V( f ) = N k=1 ( yk − f (xk))2 + g( f ) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 3 / 14
  • 4. Introduction Modelling Objective Aim : to choose the simplest model from a candidate set of models that accurately describes the system : Mopt : Accuracy (Data) vs Simplicity (Model) ⏐ ⏐ ⏐ ⏐ Vf : V( f ) = N k=1 ( yk − f (xk))2 + g( f ) Q1 : How to choose the simplest accurate model? - Often g( f ) = λ ∥ f ∥2 H - ensure uniqueness of the solution - λ → controls the bias-variance trade-off Yusuf Bhujwalla (Université de Lorraine) CDC 2016 3 / 14
  • 5. Introduction Modelling Objective Aim : to choose the simplest model from a candidate set of models that accurately describes the system : Mopt : Accuracy (Data) vs Simplicity (Model) ⏐ ⏐ ⏐ ⏐ Vf : V( f ) = N k=1 ( yk − f (xk))2 + g( f ) Q1 : How to choose the simplest accurate model? - Often g( f ) = λ ∥ f ∥2 H - ensure uniqueness of the solution - λ → controls the bias-variance trade-off Q2 : How to determine a suitable set of candidate models. . . ? Yusuf Bhujwalla (Université de Lorraine) CDC 2016 3 / 14
  • 6. Outline 1. Kernel Methods in Nonlinear Identification 2. Model Selection Using Derivatives 3. Smoothness-Enforcing Regularisation 4. Application : Estimation of Locally Nonsmooth Functions Yusuf Bhujwalla (Université de Lorraine) CDC 2016 3 / 14
  • 7. 1. Kernel Methods in Nonlinear Identification Input 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Output 0 0.5 1 1.5 2 ˆf kx → Model : Ff : f (x) = N i=1 αi kxi (x) → Nonparametric (nθ ∼ N) → Flexible : M defined through choice of K → Height : α (model parameters) → Width : σ (kernel hyperparameter) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 4 / 14
  • 8. 1. Kernel Methods in Nonlinear Identification Identification in the RKHS Reproducing Kernel Hilbert Spaces Kernel function defines the model class : K ↔ H Hence, functions can be represented in terms of kernels : f (x) = ⟨ f , kx⟩H (1) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 5 / 14
  • 9. 1. Kernel Methods in Nonlinear Identification The Kernel Selection Problem Choosing an overly flexible model class (a small kernel) : FIGURE: Flexible Model Class Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
  • 10. 1. Kernel Methods in Nonlinear Identification The Kernel Selection Problem Choosing an overly flexible model class (a small kernel) : FIGURE: Flexible Model Class -1 -0.5 0 0.5 1 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 fo y ˆf kx FIGURE: High Variance Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
  • 11. 1. Kernel Methods in Nonlinear Identification The Kernel Selection Problem Choosing an overly constrained model class (a large kernel) : FIGURE: Constrained Model Class Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
  • 12. 1. Kernel Methods in Nonlinear Identification The Kernel Selection Problem Choosing an overly constrained model class (a large kernel) : FIGURE: Constrained Model Class -1 -0.5 0 0.5 1 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 fo y ˆf kx FIGURE: Model Biased Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
  • 13. 1. Kernel Methods in Nonlinear Identification The Kernel Selection Problem Why not just choose the ’optimal’ model class ? FIGURE: Optimal Model Class Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
  • 14. 1. Kernel Methods in Nonlinear Identification The Kernel Selection Problem Why not just choose the ’optimal’ model class ? FIGURE: Optimal Model Class -1 -0.5 0 0.5 1 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 fo y ˆf kx FIGURE: Optimal Model Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
  • 15. 1. Kernel Methods in Nonlinear Identification The Kernel Selection Problem Why not just choose the ’optimal’ model class ? • This is, in general, what we try to do. • However, Hopt is unknown. • Optimisation over one hyperparameter - not that difficult. • Optimisation over multiple model structures, kernel functions and hyperparameters → more difficult. -1 -0.5 0 0.5 1 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 fo y ˆf kx Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
  • 16. Outline 1. Kernel Methods in Nonlinear Identification 2. Model Selection Using Derivatives 3. Smoothness-Enforcing Regularisation 4. Application : Estimation of Locally Nonsmooth Functions Yusuf Bhujwalla (Université de Lorraine) CDC 2016 6 / 14
  • 17. 2. Model Selection Using Derivatives But, note that many properties of K are encoded into its derivatives, e.g. Smoothness f (x) = ax2 + bx + c =⇒ d3 f(x) dx3 ∀x = 0 f (x) = g1(x) [ x < x∗ ] + g2(x) [ x > x∗ ] =⇒ ∃ d f(x) dx ∀x̸=x∗ Linearity f ( x1, x2 ) = x1 h1(x2) + h2(x2) =⇒ ∂2 f( x1,x2 ) ∂x2 1 ∀x1 = 0 Separability f ( x1, x2 ) = g(x1) + h(x2) =⇒ ∂2 f( x1,x2 ) ∂x1 ∂x1 ∀x1,x2 = 0 Yusuf Bhujwalla (Université de Lorraine) CDC 2016 7 / 14
  • 18. 2. Model Selection Using Derivatives But, note that many properties of K are encoded into its derivatives, e.g. Smoothness f (x) = ax2 + bx + c =⇒ d3 f(x) dx3 ∀x = 0 f (x) = g1(x) [ x < x∗ ] + g2(x) [ x > x∗ ] =⇒ ∃ d f(x) dx ∀x̸=x∗ Linearity f ( x1, x2 ) = x1 h1(x2) + h2(x2) =⇒ ∂2 f( x1,x2 ) ∂x2 1 ∀x1 = 0 Separability f ( x1, x2 ) = g(x1) + h(x2) =⇒ ∂2 f( x1,x2 ) ∂x1 ∂x1 ∀x1,x2 = 0 Yusuf Bhujwalla (Université de Lorraine) CDC 2016 7 / 14
  • 19. 2. Model Selection Using Derivatives But, note that many properties of K are encoded into its derivatives, e.g. Smoothness f (x) = ax2 + bx + c =⇒ d3 f(x) dx3 ∀x = 0 f (x) = g1(x) [ x < x∗ ] + g2(x) [ x > x∗ ] =⇒ ∃ d f(x) dx ∀x̸=x∗ Linearity f ( x1, x2 ) = x1 h1(x2) + h2(x2) =⇒ ∂2 f( x1,x2 ) ∂x2 1 ∀x1 = 0 Separability f ( x1, x2 ) = g(x1) + h(x2) =⇒ ∂2 f( x1,x2 ) ∂x1 ∂x1 ∀x1,x2 = 0 Yusuf Bhujwalla (Université de Lorraine) CDC 2016 7 / 14
  • 20. 2. Model Selection Using Derivatives Incorporating this information into the problem formulation allows the model selection can be transferred from an optimisation over K. . . . . . to an explicit regularisation problem over derivatives, using an a priori flexible model class definition. Yusuf Bhujwalla (Université de Lorraine) CDC 2016 8 / 14
  • 21. Outline 1. Kernel Methods in Nonlinear Identification 2. Model Selection Using Derivatives 3. Smoothness-Enforcing Regularisation 4. Application : Estimation of Locally Nonsmooth Functions Yusuf Bhujwalla (Université de Lorraine) CDC 2016 8 / 14
  • 22. 3. Smoothness-Enforcing Regularisation Problem Formulation Here we consider X = R → where the kernel optimisation is reduced to a smoothness selection problem. What would we like to do ? Replace exisiting functional norm regularisation. . . Vf : V( f ) = N k=1 ( yk − f (xk))2 + λ ∥ f ∥2 H Yusuf Bhujwalla (Université de Lorraine) CDC 2016 9 / 14
  • 23. 3. Smoothness-Enforcing Regularisation Problem Formulation Here we consider X = R → where the kernel optimisation is reduced to a smoothness selection problem. What would we like to do ? Replace exisiting functional norm regularisation. . . Vf : V( f ) = N k=1 ( yk − f (xk))2 + λ ∥ f ∥2 H With a smoothness-penalty in the cost-function. . . VD : V( f ) = N k=1 ( yk − f (xk))2 + λ ∥Df ∥2 H Yusuf Bhujwalla (Université de Lorraine) CDC 2016 9 / 14
  • 24. 3. Smoothness-Enforcing Regularisation Problem Formulation Here we consider X = R → where the kernel optimisation is reduced to a smoothness selection problem. What would we like to do ? Replace exisiting functional norm regularisation. . . Vf : V( f ) = N k=1 ( yk − f (xk))2 + λ ∥ f ∥2 H With a smoothness-penalty in the cost-function. . . VD : V( f ) = N k=1 ( yk − f (xk))2 + λ ∥Df ∥2 H How ? - ∥Df ∥2 H → known (D. X. Zhou, 2008) - f (x) for VD → unknown Yusuf Bhujwalla (Université de Lorraine) CDC 2016 9 / 14
  • 25. 3. Smoothness-Enforcing Regularisation An Extended Representer of f (x) A finite representer for VD does not exist. But, by adding kernels along X , an approximate formulation can be defined : Input (x/σ) -6 -4 -2 0 2 4 6 Output 0 0.5 1 1.5 Observations Obs Kernels ∥ f∥2 FIGURE: N = 2 Input (x/σ) -6 -4 -2 0 2 4 6 Output 0 0.5 1 1.5 Observations Obs Kernels Add Kernels ∥Df∥2 FIGURE: (N, P) = (2, 8) FD : f (x) = N i=1 αi kxi (x) + P j=1 α∗ j kx∗ j (x) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 10 / 14
  • 26. 3. Smoothness-Enforcing Regularisation Choosing the Kernel Width Examination of the kernel density allows us to make an a priori choice of kernel width : Input (x/σ) -6 -4 -2 0 2 4 6 Output 0 0.5 1 1.5 ˆf kx FIGURE: ρk = 0.4 Input (x/σ) -6 -4 -2 0 2 4 6 Output 0 0.5 1 1.5 ˆf kx FIGURE: ρk = 0.5 Input (x/σ) -6 -4 -2 0 2 4 6 Output 0 0.5 1 1.5 ˆf kx FIGURE: ρk = 0.6 Hence, for a given P we can define the maximally flexible model class for a given problem. Yusuf Bhujwalla (Université de Lorraine) CDC 2016 11 / 14
  • 27. Outline 1. Kernel Methods in Nonlinear Identification 2. Model Selection Using Derivatives 3. Smoothness-Enforcing Regularisation 4. Application : Estimation of Locally Nonsmooth Functions Yusuf Bhujwalla (Université de Lorraine) CDC 2016 11 / 14
  • 28. 4. Application Estimation of Locally Nonsmooth Functions In VD, smoothness ∼ regularisation. Hence, by introducing weights into the loss-function, importance of the regularisation can be varied across X : Vw : V( f ) = N i=1 (wk yk − wk f (xk))2 + λ∥Df ∥2 H, How to determine the weights ? Relative to a particular modelling objective, e.g. • wk ∼ ∥D ˆf(0)(xk)∥2 2 for piecewise constant structures, or • wk ∼ ∥D2 ˆf(0)(xk)∥2 2 for piecewise linear structures. Yusuf Bhujwalla (Université de Lorraine) CDC 2016 12 / 14
  • 29. 4. Application Estimation of Locally Nonsmooth Functions -0.5 0 0.5 -10 -5 0 5 10 15 20 25 yo FIGURE: Noise-Free System -0.5 0 0.5 -10 -5 0 5 10 15 20 25 y FIGURE: Noisy System Yusuf Bhujwalla (Université de Lorraine) CDC 2016 13 / 14
  • 30. 4. Application Estimation of Locally Nonsmooth Functions -0.5 0 0.5 -10 -5 0 5 10 15 20 25 yo ˆfMED BIAS + SDEV FIGURE: Vf : R( f) -0.5 0 0.5 -10 -5 0 5 10 15 20 25 yo ˆfMED BIAS + SDEV FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 13 / 14
  • 31. 4. Application Estimation of Locally Nonsmooth Functions -0.5 0 0.5 -10 -5 0 5 10 15 20 25 yo ˆfMED BIAS + SDEV FIGURE: Vf : R( f) -0.5 0 0.5 -10 -5 0 5 10 15 20 25 yo ˆfMED BIAS + SDEV FIGURE: Vw : R(Df) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 13 / 14
  • 32. Conclusions Objectives : • To simplify model selection in nonlinear identification. • By shifting the problem to a regularisation over functional derivatives. → Allowing the definition of an a priori flexible model class. Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 33. Conclusions Objectives : • To simplify model selection in nonlinear identification. • By shifting the problem to a regularisation over functional derivatives. → Allowing the definition of an a priori flexible model class. This presentation : • First step ⇒ consider a simple example. → Model selection ⇔ smoothness detection. → Kernel selection ⇔ hyperparameter optimisation. Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 34. Conclusions Objectives : • To simplify model selection in nonlinear identification. • By shifting the problem to a regularisation over functional derivatives. → Allowing the definition of an a priori flexible model class. This presentation : • First step ⇒ consider a simple example. → Model selection ⇔ smoothness detection. → Kernel selection ⇔ hyperparameter optimisation. Current/Future Research : • Application to dynamical, control-oriented problems (e.g. linear parameter-varying identification) • Investigation of more complex model selection problems (e.g. detection of linearities, separability. . . ). Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 35. A. Bibliography • Sobolev Spaces (Wahba, 1990; Pillonetto et al, 2014) ∥ f ∥Hk = m i=0 X di f (x) dxi 2 dx • Identification using derivative observations (Zhou, 2008 ; Rosasco et al, 2010) Vobvs( f ) = ∥y − f (x)∥2 2 + γ1 dy dx − df (x) dx 2 2 + · · · γm dm y dxm − dm f (x) dxm 2 2 + λ ∥f ∥H • Regularization Using Derivatives (Rosasco et al, 2010; Lauer, Le and Bloch, 2012; Duijkers et al, 2014) VD( f ) = ∥y − f (x)∥2 2 + λ∥Dm f ∥p. Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 36. B. Choosing the Kernel Width The Smoothness-Tolerance Parameter ρk = σ ∆x∗ , ∆x∗ = x∗ max − x∗ min P , ϵˆf = 100 × 1 − ∥ˆf ∥inf C %. Kernel Density (ρ) 10-2 10-1 100 SmoothnessTolerance(ϵ%) 10 -15 10 -10 10 -5 10 0 ϵ(ρ) ˆϵ FIGURE: Selecting an appropriate kernel using ϵ Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 37. C. Effect of the Regularisation ⇒ Negligible regularisation (very small λf , λD). Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 38. C. Effect of the Regularisation ⇒ Light regularisation (small λf , λD). Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 39. C. Effect of the Regularisation ⇒ Moderate regularisation. Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 40. C. Effect of the Regularisation ⇒ Heavy regularisation (large λf , λD). Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 41. C. Effect of the Regularisation ⇒ Excessive regularisation (very large λf , λD). Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 42. D. Further Examples : Detecting Piecewise Structures So : Noise-free and observed data -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -0.49039 0 1 1.4358 FIGURE: y(x1, x2) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 43. D. Further Examples : Detecting Piecewise Structures Results M1 : (Vf , Ff ) FIGURE: MEDIAN FIGURE: BIAS FIGURE: SDEV Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 44. D. Further Examples : Detecting Piecewise Structures Results M2 : (VD, FD) FIGURE: MEDIAN FIGURE: BIAS FIGURE: SDEV Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 45. D. Further Examples : Detecting Piecewise Structures Results M3 : (Vw, FD) FIGURE: MEDIAN FIGURE: BIAS FIGURE: SDEV Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 46. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 47. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 48. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 49. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 50. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 51. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 52. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 53. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 54. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 55. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14
  • 56. E. Further Examples : Enforcing Separability f ( x1, x2 ) λ −→ f1(x1) + f2(x2) FIGURE: VDX : R(∂x1 ∂x2 f) Yusuf Bhujwalla (Université de Lorraine) CDC 2016 14 / 14