Algebra: Equations & Inequalities
Miguel Pérez Fontenla
November, 2010
Algebra: Equations & Inequalities
What is an equation?
   
22
22 1
2 3
4 9
yx
x
x

   Example:
An equation is a mathematical statement
Algebra: Equations & Inequalities
Properpies of equations
Property 1 - Adding or Subtracting a Number
An equation is not changed when the same number is added or subtracted from
both sides of the equality.
Example: A = B (adding 4 to both sides gives) ⇔ A + 4 = B + 4
Property 2 - Multiplying or dividing by a Number
An equation is not changed if both sides are multiplied or divided by the same
number.
Example: A = B (Multiplying both sides by 2 gives) ⇔ 2A = 2B
A = B (Dividing both sides by 3 gives) ⇔ A/3 = B/3
Algebra: Equations & Inequalities
Types of equations?
4 1 5
3 2 2
x x b
ax b x
a
 
     
Linear equations
Quadratic equations
Biquadratic
Simultaneous equations
Linear
Quadratic
Rational equations
Irrational equations
Other types
2
2 4
0
2
b b ac
ax bx c x
a
  
    
2
4 2 2 4
0
2
b b ac
ax bx c x
a
  
    
5 8 19
2 2 10
x y
x y
  

  
2 2
3 8 8
9 28
x y
x y
  
 
  
2
2
3 4 1
4 2 2
x x
x x x
 
 
  
2 15 2 4x x   
3 2
3 4 12 0x x x   
Algebra: Equations & Inequalities
Solving linear equations
1 1 5 14 2 9 7
4 8 4 5 2 8
x x x x    
    
 
1 5 14 2 9 7
4 32 40 2 8
x x x x   
   
1. No parenthesis
2. No fractions
3. Isolate x to side one
4. Obtain x
5. Check your work
 4;32;40;2;8 160 40 40 5 25 56 8 80 720 140mcm x x x x         
27 80 860 41 53 901x x x       
53 901 901
53 901 17
53 53 53
x
x x
 
       
 
 
17 1 1 17 5 14 2 17 17 9 7 1 7 25 25
4 3 4 4
4 8 4 5 2 8 8 8 8 8
     
           
 
Algebra: Equations & Inequalities
Solving quadratic equations
2
1 5 2 2
2 6 3 3
x x x 
  1. No parenthesis
2. No fractions
3. Isolate everything
to side one
4. Obtain x
5. Check your work
  2
2;6;3 6 3 3 5 4 4mcm x x x      
2
3 5 2 0x x  
2
5 7
2
( 5) ( 5) 4 3 ( 2) 5 49 6
5 7 12 3 6
6 3
x x


        
   

 
  
 
2 1 2 1 2 5 2 3 3 6 3 1
2 1 2....
2 6 3 2 6 3 2 2
   
        
  
 
1 1 5 2
1
2 6 3
x x x
x
  
  
Algebra: Equations & Inequalities
What is an inequality?
SIMBOLS
= Equal to
< Less than
> Greater than
Less than or equal
Greater than or equal


Algebra: Equations & Inequalities
What is an inequality?
   
22
22 1
2 3
4 9
yx
x
x

   Example:
Algebra: Equations & Inequalities
Properpies of inequalities
Property 1 - Adding or Subtracting a Number
The sense of an inequality is not changed when the same number is added or
subtracted from both sides of the inequality.
Example: 9 > 6 (adding 4 to both sides gives) ⇔ 9 + 4 > 6 + 4
Property 2 - Multiplying by a Positive Number
The sense of the inequality is not changed if both sides are multiplied or divided by
the same positive number.
Example: 8 < 15 (Multiplying both sides by 2 gives) ⇔ 8 × 2 < 15 × 2
Property 3 - Multiplying by a Negative Number
The sense of the inequality is reversed if both sides are multiplied or divided by the
same negative number.
Example: 4 > −2 (Multiplying both sides by -3 gives) ⇔ 4 × −3 < −2 × −3 ⇔ −12 < 6
(Note the change in the sign used)
Algebra: Equations & Inequalities
Solving Linear inequalities
1 1 5 14 2 9 7
4 8 4 5 2 8
x x x x    
    
 
1 5 14 2 9 7
4 32 40 2 8
x x x x   
   
1. No parenthesis
2. No fractions
3. Isolate x to side one
4. Obtain x
5. Check
 4;32;40;2;8 160 40 40 5 25 56 8 80 720 140mcm x x x x         
27 80 860 41 53 901 53 901 ...x x x x          
901
... 17
53
x  
0 1 1 0 5 14 2 0 0 9 7 1 1 51 9 7
If 0
4 8 4 5 4 8 4 8 20 4 8
1 51 25 11 25
4 160 8 160 8
x
          
             
   
  
    
Algebra: Equations & Inequalities
Linear inequalities: Graphic Solution
1 1 5 14 2 9 7
17
4 8 4 5 2 8
x x x x
x
    
      
 
Algebra: Equations & Inequalities
Solving quadratic inequalities
2
1 5 2 2
2 6 3 3
x x x 
  1. No parenthesis
2. No fractions
3. Isolate everything
to side one
4. Obtain solutions of
the equation
5. Set the intervals
solution
6. Check
  2
2;6;3 6 3 3 5 4 4mcm x x x      
2
3 5 2 0x x  
2
5 7
2
( 5) ( 5) 4 3 ( 2) 5 49 6
5 7 12 3 6
6 3
x x


        
   

 
  
 
1 1 5 2
1
2 6 3
x x x
x
  
  
 
1
, 2,
3
 
   
 
Algebra: Equations & Inequalities
Quadratic inequalities: Graphic Solution
  
 
1 1 5 2
1
2 6 3
x x x
x
  
  
 
:
1
, 2,
3
1
/ 2
3
Solutions
x x x
 
   
 
 
     
 
Algebra: Equations & Inequalities
Puting into a Graph
A linear equation with two variables can
be represented by a straight line in the
plane.
A quadratic equation with two variables
can be represented by a parabole in the
plane.
Algebra: Equations & Inequalities
Solving simultaneous linear inequalities
1 1
2 2 2 2
y x y x
y x y x
    
 
     
Algebra: Equations & Inequalities
Solving simultaneous inequalities
2 2
1 1
6 6
y x y x
y x x y x x
    
 
      
Algebra: Equations & Inequalities
Solving simultaneous quadratic inequalities
2 2
2 2
3 2 2 3
6 6
y x x y x x
y x x y x x
        
 
       
Algebra: Equations & Inequalities
Solving simultaneous inequalities
2 2
2 2
1
2 4 2
2
2
2
y x
y x
x y y x
x y
y x
   
   
 
     
      
Algebra: Equations & Inequalities
Algebra: Equations & Inequalities
Algebra: Equations & Inequalities

Algebra equations & inequalities

  • 1.
    Algebra: Equations &Inequalities Miguel Pérez Fontenla November, 2010
  • 3.
    Algebra: Equations &Inequalities What is an equation?     22 22 1 2 3 4 9 yx x x     Example: An equation is a mathematical statement
  • 4.
    Algebra: Equations &Inequalities Properpies of equations Property 1 - Adding or Subtracting a Number An equation is not changed when the same number is added or subtracted from both sides of the equality. Example: A = B (adding 4 to both sides gives) ⇔ A + 4 = B + 4 Property 2 - Multiplying or dividing by a Number An equation is not changed if both sides are multiplied or divided by the same number. Example: A = B (Multiplying both sides by 2 gives) ⇔ 2A = 2B A = B (Dividing both sides by 3 gives) ⇔ A/3 = B/3
  • 5.
    Algebra: Equations &Inequalities Types of equations? 4 1 5 3 2 2 x x b ax b x a         Linear equations Quadratic equations Biquadratic Simultaneous equations Linear Quadratic Rational equations Irrational equations Other types 2 2 4 0 2 b b ac ax bx c x a         2 4 2 2 4 0 2 b b ac ax bx c x a         5 8 19 2 2 10 x y x y        2 2 3 8 8 9 28 x y x y         2 2 3 4 1 4 2 2 x x x x x        2 15 2 4x x    3 2 3 4 12 0x x x   
  • 6.
    Algebra: Equations &Inequalities Solving linear equations 1 1 5 14 2 9 7 4 8 4 5 2 8 x x x x            1 5 14 2 9 7 4 32 40 2 8 x x x x        1. No parenthesis 2. No fractions 3. Isolate x to side one 4. Obtain x 5. Check your work  4;32;40;2;8 160 40 40 5 25 56 8 80 720 140mcm x x x x          27 80 860 41 53 901x x x        53 901 901 53 901 17 53 53 53 x x x               17 1 1 17 5 14 2 17 17 9 7 1 7 25 25 4 3 4 4 4 8 4 5 2 8 8 8 8 8                    
  • 7.
    Algebra: Equations &Inequalities Solving quadratic equations 2 1 5 2 2 2 6 3 3 x x x    1. No parenthesis 2. No fractions 3. Isolate everything to side one 4. Obtain x 5. Check your work   2 2;6;3 6 3 3 5 4 4mcm x x x       2 3 5 2 0x x   2 5 7 2 ( 5) ( 5) 4 3 ( 2) 5 49 6 5 7 12 3 6 6 3 x x                        2 1 2 1 2 5 2 3 3 6 3 1 2 1 2.... 2 6 3 2 6 3 2 2                   1 1 5 2 1 2 6 3 x x x x      
  • 8.
    Algebra: Equations &Inequalities What is an inequality? SIMBOLS = Equal to < Less than > Greater than Less than or equal Greater than or equal  
  • 9.
    Algebra: Equations &Inequalities What is an inequality?     22 22 1 2 3 4 9 yx x x     Example:
  • 10.
    Algebra: Equations &Inequalities Properpies of inequalities Property 1 - Adding or Subtracting a Number The sense of an inequality is not changed when the same number is added or subtracted from both sides of the inequality. Example: 9 > 6 (adding 4 to both sides gives) ⇔ 9 + 4 > 6 + 4 Property 2 - Multiplying by a Positive Number The sense of the inequality is not changed if both sides are multiplied or divided by the same positive number. Example: 8 < 15 (Multiplying both sides by 2 gives) ⇔ 8 × 2 < 15 × 2 Property 3 - Multiplying by a Negative Number The sense of the inequality is reversed if both sides are multiplied or divided by the same negative number. Example: 4 > −2 (Multiplying both sides by -3 gives) ⇔ 4 × −3 < −2 × −3 ⇔ −12 < 6 (Note the change in the sign used)
  • 11.
    Algebra: Equations &Inequalities Solving Linear inequalities 1 1 5 14 2 9 7 4 8 4 5 2 8 x x x x            1 5 14 2 9 7 4 32 40 2 8 x x x x        1. No parenthesis 2. No fractions 3. Isolate x to side one 4. Obtain x 5. Check  4;32;40;2;8 160 40 40 5 25 56 8 80 720 140mcm x x x x          27 80 860 41 53 901 53 901 ...x x x x           901 ... 17 53 x   0 1 1 0 5 14 2 0 0 9 7 1 1 51 9 7 If 0 4 8 4 5 4 8 4 8 20 4 8 1 51 25 11 25 4 160 8 160 8 x                                     
  • 12.
    Algebra: Equations &Inequalities Linear inequalities: Graphic Solution 1 1 5 14 2 9 7 17 4 8 4 5 2 8 x x x x x              
  • 13.
    Algebra: Equations &Inequalities Solving quadratic inequalities 2 1 5 2 2 2 6 3 3 x x x    1. No parenthesis 2. No fractions 3. Isolate everything to side one 4. Obtain solutions of the equation 5. Set the intervals solution 6. Check   2 2;6;3 6 3 3 5 4 4mcm x x x       2 3 5 2 0x x   2 5 7 2 ( 5) ( 5) 4 3 ( 2) 5 49 6 5 7 12 3 6 6 3 x x                        1 1 5 2 1 2 6 3 x x x x         1 , 2, 3        
  • 14.
    Algebra: Equations &Inequalities Quadratic inequalities: Graphic Solution      1 1 5 2 1 2 6 3 x x x x         : 1 , 2, 3 1 / 2 3 Solutions x x x                  
  • 15.
    Algebra: Equations &Inequalities Puting into a Graph A linear equation with two variables can be represented by a straight line in the plane. A quadratic equation with two variables can be represented by a parabole in the plane.
  • 16.
    Algebra: Equations &Inequalities Solving simultaneous linear inequalities 1 1 2 2 2 2 y x y x y x y x             
  • 17.
    Algebra: Equations &Inequalities Solving simultaneous inequalities 2 2 1 1 6 6 y x y x y x x y x x              
  • 18.
    Algebra: Equations &Inequalities Solving simultaneous quadratic inequalities 2 2 2 2 3 2 2 3 6 6 y x x y x x y x x y x x                   
  • 19.
    Algebra: Equations &Inequalities Solving simultaneous inequalities 2 2 2 2 1 2 4 2 2 2 2 y x y x x y y x x y y x                       
  • 20.
  • 21.
  • 22.