Lesson #5 :
Solving Exponential
Equations and Inequalities
Before anything else, let’s
recall the different
Laws of Exponent
Laws of Exponent
𝑎𝑚
. 𝑎𝑛
= 𝑎𝑚+𝑛
23. 24 = 23+4
𝑹𝒖𝒍𝒆 #𝟏
𝑹𝒖𝒍𝒆 #𝟐
(𝑎𝑚)𝑛 = 𝑎𝑚𝑛
(23)4 = 23(4)
𝑹𝒖𝒍𝒆 #𝟑
(𝑎𝑏)𝑚
= 𝑎𝑚
𝑏𝑚
(2.3)4 = 2434
𝑹𝒖𝒍𝒆 #𝟒
𝑎𝑚
𝑎𝑛
= 𝑎𝑚−𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑎 ≠ 0
23
22
= 23−2
𝑹𝒖𝒍𝒆 #𝟔
𝑎0 = 1
20
= 1
𝑹𝒖𝒍𝒆 #𝟓
(
𝑎
𝑏
)𝑛 =
𝑎𝑛
𝑏𝑛
, 𝑤ℎ𝑒𝑟𝑒 𝑏 ≠ 0
(
2
3
)2 =
22
32
Laws of Exponent
𝑹𝒖𝒍𝒆 #𝟕 𝑹𝒖𝒍𝒆 #𝟖
𝑎−𝑥
=
1
𝑎𝑥
2−4
=
1
24
𝑎
𝑥
𝑦 =
𝑦
𝑎𝑥
2
3
4 =
4
23
Exponential Equation vs Inequality
Try This: Ask yourself this question: what’s the difference between equality and
inequality? Now, identify which item falls under exponential equation and
exponential inequality.
1) 10𝑥−2
= 1000010
2) 254+2𝑥 > 56𝑥
3)
1
16
10𝑥−3
≤ 4𝑥
4) 2𝑥2
= 32𝑥+3
5)
1
8
9−2𝑥
= 163
6) 124
𝑥
3 < 126
Solving Exponential Equation
Solving Exponential Equation
1) 2𝑥 = 4
𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑒𝑝 𝑖𝑠 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑜𝑓 𝑏𝑜𝑡ℎ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑙
𝑖𝑛 𝑜𝑢𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝟐, 𝑚𝑎𝑘𝑒 4 𝑎𝑠 𝑎 𝑏𝑎𝑠𝑒 𝑜𝑓 2 (4 = 22)
2𝑥 = 22 𝑒𝑞𝑢𝑎𝑡𝑒 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑡ℎ𝑒𝑛 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝒙
𝑥 = 2
𝐶ℎ𝑒𝑘𝑖𝑛𝑔: 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑥 = 2 𝑡𝑜 𝑜𝑢𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
2𝑥
= 4
22 = 4
4 = 4
𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦
𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙, 𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑢𝑟 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
Solving Exponential Equation
2) 5𝑥 =
1
5
𝑈𝑠𝑒 𝑅𝑢𝑙𝑒 #7 𝑖𝑛 𝐿𝑎𝑤𝑠 𝑜𝑓 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡
5𝑥= 5−1 𝑒𝑞𝑢𝑎𝑡𝑒 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑡ℎ𝑒𝑛 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝒙
𝑥 = −1
𝐶ℎ𝑒𝑘𝑖𝑛𝑔: 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑥 = 2 𝑡𝑜 𝑜𝑢𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
5𝑥
=
1
5
5−1
=
1
5
1
5
=
1
5
𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙, 𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑢𝑟 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
Solving Exponential Equation
3) 6𝑥+2 = 36
6𝑥+2
= 62
(36 = 62
)
𝑥 + 2 = 2
𝑒𝑞𝑢𝑎𝑡𝑒 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑡ℎ𝑒𝑛 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝒙
𝑥 = 2 − 2
𝑥 = 0
𝑁𝑜𝑤 𝑖𝑡′𝑠 𝑦𝑜𝑢𝑟 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
Solving Exponential Equation
4) 93𝑥+1 = 81𝑥+1
93𝑥+1
= 92(𝑥+1)
(81 = 92
)
3𝑥 + 1 = 2𝑥 + 2
𝑒𝑞𝑢𝑎𝑡𝑒 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑡ℎ𝑒𝑛 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝒙
𝑥 = 1
𝑁𝑜𝑤 𝑖𝑡′𝑠 𝑦𝑜𝑢𝑟 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
93𝑥+1 = 92𝑥+2
3𝑥 − 2𝑥 = 2 − 1
Solving Exponential Inequality
In solving exponential inequality there are 2 rules that we need to consider:
• 𝑖𝑓 𝑏 > 1, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑦 = 𝑏𝑥 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 𝑇ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡
𝑏𝑥 < 𝑏𝑦 𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇 𝑥 < 𝑦
• 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑏 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒕𝒂𝒊𝒏𝒆𝒅
• 𝑖𝑓 𝑏 > 1, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑦 = 𝑏𝑥 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 𝑇ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡
𝑏𝑥
< 𝑏𝑦
𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇 𝑥 < 𝑦
• 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑏 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 1, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅
𝑹𝒖𝒍𝒆 #𝟏
𝑹𝒖𝒍𝒆 #𝟐
• 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑎𝑟𝑒 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒅 𝒐𝒓 𝒅𝒊𝒗𝒊𝒅𝒆𝒅 𝑏𝑦 𝑎 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓, 𝑡ℎ𝑒𝑛
𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑒 𝑜𝑓 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒕𝒂𝒊𝒏𝒆𝒅
• 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑎𝑟𝑒 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒅 𝒐𝒓 𝒅𝒊𝒗𝒊𝒅𝒆𝒅 𝑏𝑦 𝑎 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓, 𝑡ℎ𝑒𝑛
𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑒 𝑜𝑓 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅
(𝑜𝑛 𝑡ℎ𝑒 𝒑𝒓𝒐𝒄𝒆𝒔𝒔 𝑜𝑓 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑓𝑜𝑟 𝑥)
(𝑤ℎ𝑒𝑛 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝒇𝒊𝒏𝒂𝒍 𝒂𝒏𝒔𝒘𝒆𝒓 𝑓𝑜𝑟 𝑥)
Solving Exponential Inequality
1) 4𝑥+2 > 64
4𝑥+2 > 43
(64 = 43
)
𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝒙
𝑥 + 2 > 3 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 4 > 1, 𝒘𝒆 𝒓𝒆𝒕𝒂𝒊𝒏 𝒕𝒉𝒆 𝒔𝒊𝒈𝒏 >
𝑥 > 3 − 2
𝑥 > 1
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡: (1, +∞)
𝑡ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 𝑎𝑟𝑒 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1
𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡 𝟏 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑎𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥
Solving Exponential Inequality
2) 7𝑥 ≥ 49𝑥−3
7𝑥
≥ 72(𝑥−3)
(49 = 72
)
7𝑥 ≥ 72𝑥−6 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝒙
𝑥 ≥ 2𝑥 − 6 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 7 > 1, 𝒘𝒆 𝒓𝒆𝒕𝒂𝒊𝒏 𝒕𝒉𝒆 𝒔𝒊𝒈𝒏 ≥
𝑥 ≥ 2𝑥 − 6
𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝒙
𝑥 ≥ 2𝑥 − 6
𝑥 − 2𝑥 ≥ −6
−𝑥
−1
≥
−6
−1
𝑠𝑖𝑛𝑐𝑒 𝑤𝑒 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆
𝑡ℎ𝑒 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅
𝑥 ≤ 6
6 ≥ 2𝑥 − 𝑥
6 ≥ 𝑥
6 ≥ 𝑥
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡: (−∞, 6]
𝑡ℎ𝑒 𝑏𝑟𝑎𝑐𝑘𝑒𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡 𝟔 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑎𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥
Solving Exponential Inequality
3)
1
5
𝑥+2
≤
1
125
2𝑥
1
5
𝑥+2
≤
1
5
3(2𝑥)
(
1
125
=
1
5
3
)
1
5
𝑥+2
≤
1
5
6𝑥
𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝒙
𝑥 + 2 ≥ 6𝑥 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒
1
5
< 1, 𝒘𝒆 𝒓𝒆𝒗𝒆𝒓𝒔𝒆 𝒕𝒉𝒆 𝒔𝒊𝒈𝒏 ≤ 𝑡𝑜 ≥
𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝒙
𝑥 + 2 ≥ 6𝑥
𝑥 − 6𝑥 ≥ −2
−5𝑥
−5
≥
−2
−5
𝑥 ≤
2
5
𝑠𝑖𝑛𝑐𝑒 𝑤𝑒 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅
𝑥 + 2 ≥ 6𝑥
2 ≥ 6𝑥 − 𝑥
2
5
≥
5𝑥
5
2
5
≥ 𝑥
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡: (−∞,
2
5
]
𝑡ℎ𝑒 𝑏𝑟𝑎𝑐𝑘𝑒𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡
2
5
𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑎𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥
S.W. #5
A. Solve for the equality:
1) 52𝑥+2 = 125𝑥
2) 8𝑥−1 = 2𝑥+2
3)
1
3
𝑥+2
= 27−𝑥
4) 3𝑥2
= 9−2𝑥−3
B. Solve for the inequality:
5) 73𝑥+4
< 492𝑥+1
6) 44𝑥+10
≥ 642𝑥−2
7)
1
6
2𝑥−10
≤
1
36
3𝑥+13
8) 16𝑥+1 ≥ 44𝑥+1

EXPONENTIAL EQUATION AND INEQUALITY in in

  • 1.
    Lesson #5 : SolvingExponential Equations and Inequalities
  • 2.
    Before anything else,let’s recall the different Laws of Exponent
  • 3.
    Laws of Exponent 𝑎𝑚 .𝑎𝑛 = 𝑎𝑚+𝑛 23. 24 = 23+4 𝑹𝒖𝒍𝒆 #𝟏 𝑹𝒖𝒍𝒆 #𝟐 (𝑎𝑚)𝑛 = 𝑎𝑚𝑛 (23)4 = 23(4) 𝑹𝒖𝒍𝒆 #𝟑 (𝑎𝑏)𝑚 = 𝑎𝑚 𝑏𝑚 (2.3)4 = 2434 𝑹𝒖𝒍𝒆 #𝟒 𝑎𝑚 𝑎𝑛 = 𝑎𝑚−𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑎 ≠ 0 23 22 = 23−2 𝑹𝒖𝒍𝒆 #𝟔 𝑎0 = 1 20 = 1 𝑹𝒖𝒍𝒆 #𝟓 ( 𝑎 𝑏 )𝑛 = 𝑎𝑛 𝑏𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑏 ≠ 0 ( 2 3 )2 = 22 32
  • 4.
    Laws of Exponent 𝑹𝒖𝒍𝒆#𝟕 𝑹𝒖𝒍𝒆 #𝟖 𝑎−𝑥 = 1 𝑎𝑥 2−4 = 1 24 𝑎 𝑥 𝑦 = 𝑦 𝑎𝑥 2 3 4 = 4 23
  • 5.
    Exponential Equation vsInequality Try This: Ask yourself this question: what’s the difference between equality and inequality? Now, identify which item falls under exponential equation and exponential inequality. 1) 10𝑥−2 = 1000010 2) 254+2𝑥 > 56𝑥 3) 1 16 10𝑥−3 ≤ 4𝑥 4) 2𝑥2 = 32𝑥+3 5) 1 8 9−2𝑥 = 163 6) 124 𝑥 3 < 126
  • 6.
  • 7.
    Solving Exponential Equation 1)2𝑥 = 4 𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑒𝑝 𝑖𝑠 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑜𝑓 𝑏𝑜𝑡ℎ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑙 𝑖𝑛 𝑜𝑢𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝟐, 𝑚𝑎𝑘𝑒 4 𝑎𝑠 𝑎 𝑏𝑎𝑠𝑒 𝑜𝑓 2 (4 = 22) 2𝑥 = 22 𝑒𝑞𝑢𝑎𝑡𝑒 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑡ℎ𝑒𝑛 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝒙 𝑥 = 2 𝐶ℎ𝑒𝑘𝑖𝑛𝑔: 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑥 = 2 𝑡𝑜 𝑜𝑢𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2𝑥 = 4 22 = 4 4 = 4 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙, 𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑢𝑟 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
  • 8.
    Solving Exponential Equation 2)5𝑥 = 1 5 𝑈𝑠𝑒 𝑅𝑢𝑙𝑒 #7 𝑖𝑛 𝐿𝑎𝑤𝑠 𝑜𝑓 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 5𝑥= 5−1 𝑒𝑞𝑢𝑎𝑡𝑒 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑡ℎ𝑒𝑛 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝒙 𝑥 = −1 𝐶ℎ𝑒𝑘𝑖𝑛𝑔: 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑥 = 2 𝑡𝑜 𝑜𝑢𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5𝑥 = 1 5 5−1 = 1 5 1 5 = 1 5 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙, 𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑜𝑢𝑟 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
  • 9.
    Solving Exponential Equation 3)6𝑥+2 = 36 6𝑥+2 = 62 (36 = 62 ) 𝑥 + 2 = 2 𝑒𝑞𝑢𝑎𝑡𝑒 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑡ℎ𝑒𝑛 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝒙 𝑥 = 2 − 2 𝑥 = 0 𝑁𝑜𝑤 𝑖𝑡′𝑠 𝑦𝑜𝑢𝑟 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
  • 10.
    Solving Exponential Equation 4)93𝑥+1 = 81𝑥+1 93𝑥+1 = 92(𝑥+1) (81 = 92 ) 3𝑥 + 1 = 2𝑥 + 2 𝑒𝑞𝑢𝑎𝑡𝑒 𝑡ℎ𝑒𝑖𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑡ℎ𝑒𝑛 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝒙 𝑥 = 1 𝑁𝑜𝑤 𝑖𝑡′𝑠 𝑦𝑜𝑢𝑟 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 93𝑥+1 = 92𝑥+2 3𝑥 − 2𝑥 = 2 − 1
  • 11.
  • 12.
    In solving exponentialinequality there are 2 rules that we need to consider: • 𝑖𝑓 𝑏 > 1, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑦 = 𝑏𝑥 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 𝑇ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡 𝑏𝑥 < 𝑏𝑦 𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇 𝑥 < 𝑦 • 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑏 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒕𝒂𝒊𝒏𝒆𝒅 • 𝑖𝑓 𝑏 > 1, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑦 = 𝑏𝑥 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 𝑇ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡 𝑏𝑥 < 𝑏𝑦 𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇 𝑥 < 𝑦 • 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑏 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 1, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅 𝑹𝒖𝒍𝒆 #𝟏 𝑹𝒖𝒍𝒆 #𝟐 • 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑎𝑟𝑒 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒅 𝒐𝒓 𝒅𝒊𝒗𝒊𝒅𝒆𝒅 𝑏𝑦 𝑎 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑒 𝑜𝑓 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒕𝒂𝒊𝒏𝒆𝒅 • 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑎𝑟𝑒 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒅 𝒐𝒓 𝒅𝒊𝒗𝒊𝒅𝒆𝒅 𝑏𝑦 𝑎 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑒 𝑜𝑓 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅 (𝑜𝑛 𝑡ℎ𝑒 𝒑𝒓𝒐𝒄𝒆𝒔𝒔 𝑜𝑓 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑓𝑜𝑟 𝑥) (𝑤ℎ𝑒𝑛 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝒇𝒊𝒏𝒂𝒍 𝒂𝒏𝒔𝒘𝒆𝒓 𝑓𝑜𝑟 𝑥)
  • 13.
    Solving Exponential Inequality 1)4𝑥+2 > 64 4𝑥+2 > 43 (64 = 43 ) 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝒙 𝑥 + 2 > 3 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 4 > 1, 𝒘𝒆 𝒓𝒆𝒕𝒂𝒊𝒏 𝒕𝒉𝒆 𝒔𝒊𝒈𝒏 > 𝑥 > 3 − 2 𝑥 > 1 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡: (1, +∞) 𝑡ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 𝑎𝑟𝑒 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1 𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡 𝟏 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑎𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥
  • 14.
    Solving Exponential Inequality 2)7𝑥 ≥ 49𝑥−3 7𝑥 ≥ 72(𝑥−3) (49 = 72 ) 7𝑥 ≥ 72𝑥−6 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝒙 𝑥 ≥ 2𝑥 − 6 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 7 > 1, 𝒘𝒆 𝒓𝒆𝒕𝒂𝒊𝒏 𝒕𝒉𝒆 𝒔𝒊𝒈𝒏 ≥ 𝑥 ≥ 2𝑥 − 6 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝒙 𝑥 ≥ 2𝑥 − 6 𝑥 − 2𝑥 ≥ −6 −𝑥 −1 ≥ −6 −1 𝑠𝑖𝑛𝑐𝑒 𝑤𝑒 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅 𝑥 ≤ 6 6 ≥ 2𝑥 − 𝑥 6 ≥ 𝑥 6 ≥ 𝑥 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡: (−∞, 6] 𝑡ℎ𝑒 𝑏𝑟𝑎𝑐𝑘𝑒𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡 𝟔 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑎𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥
  • 15.
    Solving Exponential Inequality 3) 1 5 𝑥+2 ≤ 1 125 2𝑥 1 5 𝑥+2 ≤ 1 5 3(2𝑥) ( 1 125 = 1 5 3 ) 1 5 𝑥+2 ≤ 1 5 6𝑥 𝑠𝑜𝑙𝑣𝑒𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝒙 𝑥 + 2 ≥ 6𝑥 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 1 5 < 1, 𝒘𝒆 𝒓𝒆𝒗𝒆𝒓𝒔𝒆 𝒕𝒉𝒆 𝒔𝒊𝒈𝒏 ≤ 𝑡𝑜 ≥ 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝒙 𝑥 + 2 ≥ 6𝑥 𝑥 − 6𝑥 ≥ −2 −5𝑥 −5 ≥ −2 −5 𝑥 ≤ 2 5 𝑠𝑖𝑛𝑐𝑒 𝑤𝑒 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝒓𝒆𝒗𝒆𝒓𝒔𝒆𝒅 𝑥 + 2 ≥ 6𝑥 2 ≥ 6𝑥 − 𝑥 2 5 ≥ 5𝑥 5 2 5 ≥ 𝑥 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡: (−∞, 2 5 ] 𝑡ℎ𝑒 𝑏𝑟𝑎𝑐𝑘𝑒𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑎𝑡 2 5 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑎𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥
  • 16.
    S.W. #5 A. Solvefor the equality: 1) 52𝑥+2 = 125𝑥 2) 8𝑥−1 = 2𝑥+2 3) 1 3 𝑥+2 = 27−𝑥 4) 3𝑥2 = 9−2𝑥−3 B. Solve for the inequality: 5) 73𝑥+4 < 492𝑥+1 6) 44𝑥+10 ≥ 642𝑥−2 7) 1 6 2𝑥−10 ≤ 1 36 3𝑥+13 8) 16𝑥+1 ≥ 44𝑥+1