1
By MGMP Matematika SMPN
      2 Sindang Indramayu
SOLIDS / bangun Ruang                                Standards 8, 10, 11




                                                    PYRAMID / Limas
       PRISM / Prisma




CYLINDER / Tabung              CONE kerucut                                SPHERE / Bola
                                                                                           3
                PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
4
base          STUDENT’S WORKSHEET
                             SURFACE AREA OF CYLINDER                                        r




                 h
                                                                                                         h

                     r

  base

                 Fill in the blank !
                                                                                                 r
1. Net of cylinder (jaring jaring tabung ) : ....................and ................
2. What’ shape (bentuk) Blanket (selimut) of cylinder ........................................?
3. The weight (lebar) of rectangle =..........................Cylinder (tabung)
4. The length (panjang ) of rectangle =...........................Of Circle ( lingkaran)
5. The formula of blanket (selimut) =.................................
6. The formula base of Cylinder =...............
                                                                                                     5
7. The formula of surface area of Cylinder =....................................................
Let’s cek your answer




                        6
SURFACE AREA OF CYLINDERS

                base                                             r

                                                            r2




                h                                  2   rh            h


                    r

                                                       2    r
                                          r2
       base
                                               r
Lateral/blanket (selimut) Area:
                     2 rh
              Total Surface Area = Lateral Area + 2(Base Area)
               T= 2 r h + 2 r 2
               h= height
               r= radius
                                                                         7
Standards 8, 10, 11
  VOLUME OF CYLINDERS




        B=          r2



                                             V = Bh

                                             V=       r2 h
            h


                r

CYLINDER




                                                                           8
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standards 8, 10, 11

    Find the lateral area, the surface area and volume of a cylinder with a
    radius of 20 cm and a height of 10 cm.

                                       Total Surface Area = Lateral Area + 2(Base Area)
                                          T= 2      rh + 2 r2
                                                                                             2
             10 cm                     T=2 (          20 cm)( 10 cm        ) +2    (   20 cm )
                       20                  T= 400
                                                               2     2
                                                          cm + 2(400 cm )
                       cm
                                          T = 400       cm 2
                                                               + 800     Cm2
                                                          cm 2
Lateral Area:                              T = 1200
L =2    rh
                                           Volume:
L=2     (20 cm )( 10 cm )
L=400    cm2                               V=       r2 h
                                                             2
                                           V=       ( 20 cm ) ( 10 cm )
                                                    2
                                           V= (400 cm )(10 cm)
                                                            3
                                           V= 4000         cm

                                                                                                 9
                       PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standards 8, 10, 11
Find the lateral area and the surface area of a cylinder with a circumference
of 14 cm. and a height of 5cm.


 Finding the radius:                        Lateral Area:
                                             L =2      rh
      C=2 r
                                             L=2        (7 cm )(5 cm )
      r= C
         2                                   L= 70        cm2

                                         Total Surface Area = Lateral Area + 2(Base Area)
               14                           T= 2      rh + 2 r2
      r=
           2                                                                           2
                                            T = 2 ( 7 cm )( 5 cm ) + 2 ( 7 cm )
      r=7 cm
                                            T= 70       cm2 + 2(49 cm 2 )

                                            T = 70        cm 2 + 98         cm 2

    5 cm                                    T = 168       cm 2
               7 cm

                                                                                                10
                      PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standards 8, 10, 11
          Find the Volume for the cylinder below:
                      h



                  2
      4
                      5




First we find the height:
                                                                   Volume:
          h                  2          2                          V=       r2 h
                           5 = 4 + h2                                            2
                                                                   V=       ( 2) (3 )
                           25 = 16 + h2
                          -16 -16                                  V= ( 4 )(3)
  4           5
                             h=9
                                 2                                  V= 12       unit3
                                 2
                             h= 9
                             h=3
                                                                                                              11
                                     PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standards 8, 10, 11
                                                     2
       The surface area of a right cylinder is 400 cm. If the height is 12 cm., find the
       radius of the base.

                                                           We substitute values:
Total Surface Area:
                  Subtituting:                                     -( 75.4 ) +
                                                                             _      ( 75.4 )2 - 4(6.28 )(-400)
T= 2 r h + 2 r 2
          2       400 = 2(3.14)r(12) + 2(3.14)r2              r=
T= 400 cm                                                                                  2( 6.28 )
h= 12 cm            400 = 75.4 r + 6.28r 2
                  -400              -400                                 -75.4 +
                                                                               _      5685.16 + 10048
  =3.14                                                        r=
                                                                                        12.56
                    0 = 6.28r 2 + 75.4 r - 400
                                                                              _
                                                                              +
Using the Quadratic Formula:                                        r = -75.4 15733.2
                                                                            12.56
                                                                          _
                                                                          +
                      2                                         r = -75.4 125.43
          -b +
             _    b - 4ac                                               12.56
     X=                                                           +                 -
                 2a
                                                         -75.4+125.43                -75.4 -125.43
                          2                           r=                         r=
  where: 0 = aX +bX +c                                                                   12.56
                                                             12.56
                                                          50.03                     -200.83
                                                      r=                         r=
                              a= 6.28                    12.56                        12.56
   From equation:             b= 75.4                 r     4 cm                            r      -16
                              c= -400                                                                    12
                                        PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standards 8, 10, 11
                        SIMILARITY IN SOLIDS
Are this two cylinders similar?




              4
                                                               6


         8                                                         3




                               4
                                    = 8
                               6      3

                  These cylinders are NOT SIMILAR
                                                                                           13
                  PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standards 8, 10, 11

            The ratio of the radii of two similar cylinders is 2:5. If the volume of the
            smaller cylinder is 40 units,3 what is the volume of the larger cylinder.


                                         VOLUME 1 < VOLUME 2
 Volume:                              VOLUME 1                   VOLUME 2                                       2
                                                                                                  V1           r1 h1
 V=      r2 h            IF                     2                         2           THEN                =
                                      V1 =     r1 h1              V2 =   r2 h 2                   V2           r2 h2
                                                                                                                2



                                                            2
       V1         2
                 r1 h1                       V1        r1       h1                               r1       h1
            =                 AND                  =                    AND IF                        =        = 2
       V2        r2 h2
                  2                          V2        r2       h2   They are similar            r2       h2     5

                Substituting values:
                              2
                 40 = 2           2                    40 = 4 2                   40   8
THEN                                                                                 =
                 V2   5           5                    V2 25 5                    V2 125
                                                                             (40)(125) = 8V2
       What can you conclude about the ratio of                                   8     8
       the volumes and the ratio of the radii?
                                                                              V2 = 625 units 3
                                                                                                                       14
                                      PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Practice diligently don’t be give up

                                    Remember :
              -Where there is will there is away
- You can if you think you can

6 1 surf_area_vol_cylinders

  • 1.
  • 2.
    By MGMP MatematikaSMPN 2 Sindang Indramayu
  • 3.
    SOLIDS / bangunRuang Standards 8, 10, 11 PYRAMID / Limas PRISM / Prisma CYLINDER / Tabung CONE kerucut SPHERE / Bola 3 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 4.
  • 5.
    base STUDENT’S WORKSHEET SURFACE AREA OF CYLINDER r h h r base Fill in the blank ! r 1. Net of cylinder (jaring jaring tabung ) : ....................and ................ 2. What’ shape (bentuk) Blanket (selimut) of cylinder ........................................? 3. The weight (lebar) of rectangle =..........................Cylinder (tabung) 4. The length (panjang ) of rectangle =...........................Of Circle ( lingkaran) 5. The formula of blanket (selimut) =................................. 6. The formula base of Cylinder =............... 5 7. The formula of surface area of Cylinder =....................................................
  • 6.
  • 7.
    SURFACE AREA OFCYLINDERS base r r2 h 2 rh h r 2 r r2 base r Lateral/blanket (selimut) Area: 2 rh Total Surface Area = Lateral Area + 2(Base Area) T= 2 r h + 2 r 2 h= height r= radius 7
  • 8.
    Standards 8, 10,11 VOLUME OF CYLINDERS B= r2 V = Bh V= r2 h h r CYLINDER 8 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 9.
    Standards 8, 10,11 Find the lateral area, the surface area and volume of a cylinder with a radius of 20 cm and a height of 10 cm. Total Surface Area = Lateral Area + 2(Base Area) T= 2 rh + 2 r2 2 10 cm T=2 ( 20 cm)( 10 cm ) +2 ( 20 cm ) 20 T= 400 2 2 cm + 2(400 cm ) cm T = 400 cm 2 + 800 Cm2 cm 2 Lateral Area: T = 1200 L =2 rh Volume: L=2 (20 cm )( 10 cm ) L=400 cm2 V= r2 h 2 V= ( 20 cm ) ( 10 cm ) 2 V= (400 cm )(10 cm) 3 V= 4000 cm 9 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 10.
    Standards 8, 10,11 Find the lateral area and the surface area of a cylinder with a circumference of 14 cm. and a height of 5cm. Finding the radius: Lateral Area: L =2 rh C=2 r L=2 (7 cm )(5 cm ) r= C 2 L= 70 cm2 Total Surface Area = Lateral Area + 2(Base Area) 14 T= 2 rh + 2 r2 r= 2 2 T = 2 ( 7 cm )( 5 cm ) + 2 ( 7 cm ) r=7 cm T= 70 cm2 + 2(49 cm 2 ) T = 70 cm 2 + 98 cm 2 5 cm T = 168 cm 2 7 cm 10 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 11.
    Standards 8, 10,11 Find the Volume for the cylinder below: h 2 4 5 First we find the height: Volume: h 2 2 V= r2 h 5 = 4 + h2 2 V= ( 2) (3 ) 25 = 16 + h2 -16 -16 V= ( 4 )(3) 4 5 h=9 2 V= 12 unit3 2 h= 9 h=3 11 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 12.
    Standards 8, 10,11 2 The surface area of a right cylinder is 400 cm. If the height is 12 cm., find the radius of the base. We substitute values: Total Surface Area: Subtituting: -( 75.4 ) + _ ( 75.4 )2 - 4(6.28 )(-400) T= 2 r h + 2 r 2 2 400 = 2(3.14)r(12) + 2(3.14)r2 r= T= 400 cm 2( 6.28 ) h= 12 cm 400 = 75.4 r + 6.28r 2 -400 -400 -75.4 + _ 5685.16 + 10048 =3.14 r= 12.56 0 = 6.28r 2 + 75.4 r - 400 _ + Using the Quadratic Formula: r = -75.4 15733.2 12.56 _ + 2 r = -75.4 125.43 -b + _ b - 4ac 12.56 X= + - 2a -75.4+125.43 -75.4 -125.43 2 r= r= where: 0 = aX +bX +c 12.56 12.56 50.03 -200.83 r= r= a= 6.28 12.56 12.56 From equation: b= 75.4 r 4 cm r -16 c= -400 12 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 13.
    Standards 8, 10,11 SIMILARITY IN SOLIDS Are this two cylinders similar? 4 6 8 3 4 = 8 6 3 These cylinders are NOT SIMILAR 13 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 14.
    Standards 8, 10,11 The ratio of the radii of two similar cylinders is 2:5. If the volume of the smaller cylinder is 40 units,3 what is the volume of the larger cylinder. VOLUME 1 < VOLUME 2 Volume: VOLUME 1 VOLUME 2 2 V1 r1 h1 V= r2 h IF 2 2 THEN = V1 = r1 h1 V2 = r2 h 2 V2 r2 h2 2 2 V1 2 r1 h1 V1 r1 h1 r1 h1 = AND = AND IF = = 2 V2 r2 h2 2 V2 r2 h2 They are similar r2 h2 5 Substituting values: 2 40 = 2 2 40 = 4 2 40 8 THEN = V2 5 5 V2 25 5 V2 125 (40)(125) = 8V2 What can you conclude about the ratio of 8 8 the volumes and the ratio of the radii? V2 = 625 units 3 14 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
  • 15.
    Practice diligently don’tbe give up Remember : -Where there is will there is away - You can if you think you can