SlideShare a Scribd company logo
1 of 32
Download to read offline
Dividing Polynomials
Chapter 5 Polynomial and Rational Functions
Concepts and Objectives
⚫ The objectives for this section are
⚫ Use long division to divide polynomials.
⚫ Use synthetic division to divide polynomials.
Dividing Polynomials
⚫ To divide polynomials, we use much the same process
we use to divide whole numbers:
Example: Divide 3 2
4 8 4 6 by 2 1
m m m m
− + + −
Dividing Polynomials
⚫ To divide polynomials, we use much the same process
we use to divide whole numbers:
Example: Divide 3 2
4 8 4 6 by 2 1
m m m m
− + + −
2m‒1  4m3 ‒ 8m2 + 4m + 6
Dividing Polynomials
⚫ To divide polynomials, we use much the same process
we use to divide whole numbers:
Example: Divide 3 2
4 8 4 6 by 2 1
m m m m
− + + −
2m2
2m‒1  4m3 ‒ 8m2 + 4m + 6
4m3 – 2m2
You have to cancel
out the first term,
so this has to be
the same.
Dividing Polynomials
⚫ To divide polynomials, we use much the same process
we use to divide whole numbers:
Example: Divide 3 2
4 8 4 6 by 2 1
m m m m
− + + −
2m2
2m‒1  4m3 ‒ 8m2 + 4m + 6
4m3 + 2m2
‒6m2 + 4m
–
Now change all of
the signs.
Dividing Polynomials
⚫ To divide polynomials, we use much the same process
we use to divide whole numbers:
Example: Divide 3 2
4 8 4 6 by 2 1
m m m m
− + + −
2m2 ‒ 3m
2m‒1  4m3 ‒ 8m2 + 4m + 6
4m3 + 2m2
‒6m2 + 4m
–6m2 + 3m
–
Dividing Polynomials
⚫ To divide polynomials, we use much the same process
we use to divide whole numbers:
Example: Divide 3 2
4 8 4 6 by 2 1
m m m m
− + + −
2m2 ‒ 3m
2m‒1  4m3 ‒ 8m2 + 4m + 6
4m3 + 2m2
‒6m2 + 4m
+6m2 – 3m
m + 6
–
Dividing Polynomials
⚫ To divide polynomials, we use much the same process
we use to divide whole numbers:
Example: Divide 3 2
4 8 4 6 by 2 1
m m m m
− + + −
2m2 ‒ 3m + ½
2m‒1  4m3 ‒ 8m2 + 4m + 6
4m3 + 2m2
‒6m2 + 4m
+6m2 – 3m
m + 6
m – ½
–
Dividing Polynomials
⚫ To divide polynomials, we use much the same process
we use to divide whole numbers:
Example: Divide 3 2
4 8 4 6 by 2 1
m m m m
− + + −
2m2 ‒ 3m + ½
2m‒1  4m3 ‒ 8m2 + 4m + 6
4m3 + 2m2
‒6m2 + 4m
+6m2 – 3m
m + 6
m + ½
13
2
–
–
12
6
2
 
=
 
 
Dividing Polynomials
⚫ Therefore,
⚫ If either polynomial does not have a term for each
power, you will need to insert a placeholder for it.
3 2
2
13
4 8 4 6 1 2
2 3
2 1 2 2 1
m m m
m m
m m
− + +
= − + +
− −
Dividing Polynomials
⚫ Example: Divide 3x3 ‒ 2x2 ‒ 150 by x2 ‒ 4
x2 + 0x ‒ 4  3x3 ‒ 2x2 + 0x ‒ 150
Dividing Polynomials
⚫ Example: Divide 3x3 ‒ 2x2 ‒ 150 by x2 ‒ 4
3x
x2 + 0x ‒ 4  3x3 ‒ 2x2 + 0x ‒ 150
3x3 + 0x2 ‒ 12x
‒ 2x2 + 12x ‒ 150
Dividing Polynomials
⚫ Example: Divide 3x3 ‒ 2x2 ‒ 150 by x2 ‒ 4
3x ‒ 2
x2 + 0x ‒ 4  3x3 ‒ 2x2 + 0x ‒ 150
3x3 + 0x2 ‒ 12x
‒ 2x2 + 12x ‒ 150
‒ 2x2 + 0x + 8
12x ‒ 158
Dividing Polynomials
⚫ Example: Divide 3x3 ‒ 2x2 ‒ 150 by x2 ‒ 4
So,
3x ‒ 2
x2 + 0x ‒ 4  3x3 ‒ 2x2 + 0x ‒ 150
3x3 + 0x2 ‒ 12x
‒ 2x2 + 12x ‒ 150
‒ 2x2 + 0x + 8
12x ‒ 158
3 2
2 2
3 2 150 12 158
3 2
4 4
x x x
x
x x
− − −
= − +
− −
Dividing Polynomials
⚫ More formally, we can state that:
Let f(x) and g(x) be polynomials with g(x) of degree one
or more, but of lower degree than f(x). There exist
unique polynomials q(x) and r(x) such that
where either r(x) = 0 or the degree of r(x) is less than the
degree of g(x). ( ) ( ) ( ) ( )
= +
f x g x q x r x
Dividing Polynomials (cont.)
⚫ For example, could be evaluated as
or
− −
−
3 2
2
3 2 150
4
x x
x
− − + −
2 3 2
3
4 3 2 0 150
x
x x x x
− + +
3 2
3 0 12
x x x
− + −
2
2 12 150
x x
−2
+ −
2
2 0 8
x x
−
12 158
x
−
− +
−
2
12 158
3 2
4
x
x
x
Dividing Polynomials (cont.)
⚫ Using the division algorithm, this means that
( )( )
− − = − − + −
3 2 2
3 2 150 4 3 2 12 158
x x x x x
( )
f x ( )
g x ( )
q x ( )
r x
Dividend = Divisor • Quotient + Remainder
Synthetic Division
⚫ A shortcut method of performing long division with
certain polynomials, called synthetic division, is used
only when a polynomial is divided by a binomial of the
form x – k, where the coefficient of x is 1.
⚫ To use synthetic division:
The numbers on the bottom are the coefficients of the
quotient.
−1 1 0
...
n n
k a a a a
−
−
+ + + +
=
−
1
1 1 0
...
n n
n n
a x a x a x a
x k
an
kan
− +
1
n n
a ka …
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + −
−
3 2
4 15 11 10
3
x x x
x
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + −
−
3 2
4 15 11 10
3
x x x
x
− −
3 4 15 11 10
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + −
−
3 2
4 15 11 10
3
x x x
x
− −
3 4 15 11 10
4
12
–3
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + −
−
3 2
4 15 11 10
3
x x x
x
− −
3 4 15 11 10
4
12
–3
–9
2
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + −
−
3 2
4 15 11 10
3
x x x
x
− −
3 4 15 11 10
4
12
–3
–9
2
6
–4
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + −
−
3 2
4 15 11 10
3
x x x
x
− −
3 4 15 11 10
4
12
–3
–9
2
6
–4
−
− + +
−
2 4
4 3 2
3
x x
x
Notice that the
exponent is 1 less
than the numerator.
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + − +
−
4 3
3 15 50 25
4
x x x
x
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + − +
−
4 3
3 15 50 25
4
x x x
x
− −
4 3 15 50
0 25
Notice the place-
holder for the
missing x2 term.
Synthetic Division (cont.)
⚫ Example: Use synthetic division to divide
− + − +
−
4 3
3 15 50 25
4
x x x
x
− −
4 3 15 50
0 25
−3
–12
3
12
12
48
−2
–8
17
− + + − +
−
3 2 17
3 3 12 2
4
x x x
x
Notice the place-
holder for the
missing x2 term.
Synthetic Division (cont.)
If the coefficient of x is not 1, we can divide everything in
both expressions by the coefficient to still let us use
synthetic division.
⚫ Example: Use synthetic division to divide
+ − −
−
3 2
2 7 13 3
2 3
x x x
x
Synthetic Division (cont.)
If the coefficient of x is not 1, we can divide everything in
both expressions by the coefficient to still let us use
synthetic division.
⚫ Example: Use synthetic division to divide
First, we have to divide everything by 2 (the
coefficient of 2x).
+ − −
−
3 2
2 7 13 3
2 3
x x x
x
Synthetic Division (cont.)
Now, we can set up the synthetic division:
+ − −
+ − −
 =
− −
3 2
3 2 1
2
1
2
13 3
7
2 7 13 3 2 2 2
3
2 3
2
x x x
x x x
x x
− −
3 13 3
7
1
2 2 2 2
1 5 1 0
3
2
15
2
3
2
2
5 1
x x
+ +
Classwork
⚫ College Algebra 2e
⚫ 5.4: 16-36 (×4); 5.3: 30-46 (even); 5.2: 52-64 (even)
⚫ 5.4 Classwork Check
⚫ Quiz 5.3

More Related Content

Similar to 5.4 Dividing Polynomials

Square roots, decimals & number system
Square roots, decimals & number systemSquare roots, decimals & number system
Square roots, decimals & number system
Dr. Trilok Kumar Jain
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integration
Muhammad Luthfan
 
5.3 multiplying fractions updated
5.3 multiplying fractions updated5.3 multiplying fractions updated
5.3 multiplying fractions updated
bweldon
 

Similar to 5.4 Dividing Polynomials (20)

1.6 Other Types of Equations
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equations
 
2.6 Other Types of Equations
2.6 Other Types of Equations2.6 Other Types of Equations
2.6 Other Types of Equations
 
9.6 Binomial Theorem
9.6 Binomial Theorem9.6 Binomial Theorem
9.6 Binomial Theorem
 
6.6 Exponential and Logarithmic Equations
6.6 Exponential and Logarithmic Equations6.6 Exponential and Logarithmic Equations
6.6 Exponential and Logarithmic Equations
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
1.8 Absolute Value Equations and Inequalities
1.8 Absolute Value Equations and Inequalities1.8 Absolute Value Equations and Inequalities
1.8 Absolute Value Equations and Inequalities
 
Square roots, decimals & number system
Square roots, decimals & number systemSquare roots, decimals & number system
Square roots, decimals & number system
 
Square roots, decimals & number system
Square roots, decimals & number systemSquare roots, decimals & number system
Square roots, decimals & number system
 
Square roots, decimals & number system
Square roots, decimals & number systemSquare roots, decimals & number system
Square roots, decimals & number system
 
9.1 Sequences and Their Notations
9.1 Sequences and Their Notations9.1 Sequences and Their Notations
9.1 Sequences and Their Notations
 
9.5 Nonlinear Systems of Equations
9.5 Nonlinear Systems of Equations9.5 Nonlinear Systems of Equations
9.5 Nonlinear Systems of Equations
 
Section 7.3
Section 7.3Section 7.3
Section 7.3
 
8.2 The Hyperbola
8.2 The Hyperbola8.2 The Hyperbola
8.2 The Hyperbola
 
Division
DivisionDivision
Division
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integration
 
Introduction to fractions and concepts
Introduction to fractions and conceptsIntroduction to fractions and concepts
Introduction to fractions and concepts
 
1. DIVISION OF POLYNOMIALS.pptx
1. DIVISION OF POLYNOMIALS.pptx1. DIVISION OF POLYNOMIALS.pptx
1. DIVISION OF POLYNOMIALS.pptx
 
1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents
 
Division of Polynomials
Division of PolynomialsDivision of Polynomials
Division of Polynomials
 
5.3 multiplying fractions updated
5.3 multiplying fractions updated5.3 multiplying fractions updated
5.3 multiplying fractions updated
 

More from smiller5

More from smiller5 (20)

6.7 Exponential and Logarithmic Models
6.7 Exponential and Logarithmic Models6.7 Exponential and Logarithmic Models
6.7 Exponential and Logarithmic Models
 
4.5 Special Segments in Triangles
4.5 Special Segments in Triangles4.5 Special Segments in Triangles
4.5 Special Segments in Triangles
 
1.4 Conditional Statements
1.4 Conditional Statements1.4 Conditional Statements
1.4 Conditional Statements
 
1.3 Distance and Midpoint Formulas
1.3 Distance and Midpoint Formulas1.3 Distance and Midpoint Formulas
1.3 Distance and Midpoint Formulas
 
1.5 Quadratic Equations.pdf
1.5 Quadratic Equations.pdf1.5 Quadratic Equations.pdf
1.5 Quadratic Equations.pdf
 
3.2 Graphs of Functions
3.2 Graphs of Functions3.2 Graphs of Functions
3.2 Graphs of Functions
 
3.2 Graphs of Functions
3.2 Graphs of Functions3.2 Graphs of Functions
3.2 Graphs of Functions
 
3.1 Functions
3.1 Functions3.1 Functions
3.1 Functions
 
2.5 Transformations of Functions
2.5 Transformations of Functions2.5 Transformations of Functions
2.5 Transformations of Functions
 
2.2 More on Functions and Their Graphs
2.2 More on Functions and Their Graphs2.2 More on Functions and Their Graphs
2.2 More on Functions and Their Graphs
 
1.5 Quadratic Equations (Review)
1.5 Quadratic Equations (Review)1.5 Quadratic Equations (Review)
1.5 Quadratic Equations (Review)
 
2.1 Basics of Functions and Their Graphs
2.1 Basics of Functions and Their Graphs2.1 Basics of Functions and Their Graphs
2.1 Basics of Functions and Their Graphs
 
13.3 Venn Diagrams & Two-Way Tables
13.3 Venn Diagrams & Two-Way Tables13.3 Venn Diagrams & Two-Way Tables
13.3 Venn Diagrams & Two-Way Tables
 
13.2 Independent & Dependent Events
13.2 Independent & Dependent Events13.2 Independent & Dependent Events
13.2 Independent & Dependent Events
 
9.5 Counting Principles
9.5 Counting Principles9.5 Counting Principles
9.5 Counting Principles
 
13.1 Geometric Probability
13.1 Geometric Probability13.1 Geometric Probability
13.1 Geometric Probability
 
9.4 Series and Their Notations
9.4 Series and Their Notations9.4 Series and Their Notations
9.4 Series and Their Notations
 
9.3 Geometric Sequences
9.3 Geometric Sequences9.3 Geometric Sequences
9.3 Geometric Sequences
 
9.2 Arithmetic Sequences
9.2 Arithmetic Sequences9.2 Arithmetic Sequences
9.2 Arithmetic Sequences
 
8.4 Summary of the Conic Sections
8.4 Summary of the Conic Sections8.4 Summary of the Conic Sections
8.4 Summary of the Conic Sections
 

Recently uploaded

Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
EADTU
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 

Recently uploaded (20)

Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesTrauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical Principles
 
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of TransportBasic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
 
Supporting Newcomer Multilingual Learners
Supporting Newcomer  Multilingual LearnersSupporting Newcomer  Multilingual Learners
Supporting Newcomer Multilingual Learners
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio App
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
How to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptxHow to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptx
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopal
 
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 

5.4 Dividing Polynomials

  • 1. Dividing Polynomials Chapter 5 Polynomial and Rational Functions
  • 2. Concepts and Objectives ⚫ The objectives for this section are ⚫ Use long division to divide polynomials. ⚫ Use synthetic division to divide polynomials.
  • 3. Dividing Polynomials ⚫ To divide polynomials, we use much the same process we use to divide whole numbers: Example: Divide 3 2 4 8 4 6 by 2 1 m m m m − + + −
  • 4. Dividing Polynomials ⚫ To divide polynomials, we use much the same process we use to divide whole numbers: Example: Divide 3 2 4 8 4 6 by 2 1 m m m m − + + − 2m‒1  4m3 ‒ 8m2 + 4m + 6
  • 5. Dividing Polynomials ⚫ To divide polynomials, we use much the same process we use to divide whole numbers: Example: Divide 3 2 4 8 4 6 by 2 1 m m m m − + + − 2m2 2m‒1  4m3 ‒ 8m2 + 4m + 6 4m3 – 2m2 You have to cancel out the first term, so this has to be the same.
  • 6. Dividing Polynomials ⚫ To divide polynomials, we use much the same process we use to divide whole numbers: Example: Divide 3 2 4 8 4 6 by 2 1 m m m m − + + − 2m2 2m‒1  4m3 ‒ 8m2 + 4m + 6 4m3 + 2m2 ‒6m2 + 4m – Now change all of the signs.
  • 7. Dividing Polynomials ⚫ To divide polynomials, we use much the same process we use to divide whole numbers: Example: Divide 3 2 4 8 4 6 by 2 1 m m m m − + + − 2m2 ‒ 3m 2m‒1  4m3 ‒ 8m2 + 4m + 6 4m3 + 2m2 ‒6m2 + 4m –6m2 + 3m –
  • 8. Dividing Polynomials ⚫ To divide polynomials, we use much the same process we use to divide whole numbers: Example: Divide 3 2 4 8 4 6 by 2 1 m m m m − + + − 2m2 ‒ 3m 2m‒1  4m3 ‒ 8m2 + 4m + 6 4m3 + 2m2 ‒6m2 + 4m +6m2 – 3m m + 6 –
  • 9. Dividing Polynomials ⚫ To divide polynomials, we use much the same process we use to divide whole numbers: Example: Divide 3 2 4 8 4 6 by 2 1 m m m m − + + − 2m2 ‒ 3m + ½ 2m‒1  4m3 ‒ 8m2 + 4m + 6 4m3 + 2m2 ‒6m2 + 4m +6m2 – 3m m + 6 m – ½ –
  • 10. Dividing Polynomials ⚫ To divide polynomials, we use much the same process we use to divide whole numbers: Example: Divide 3 2 4 8 4 6 by 2 1 m m m m − + + − 2m2 ‒ 3m + ½ 2m‒1  4m3 ‒ 8m2 + 4m + 6 4m3 + 2m2 ‒6m2 + 4m +6m2 – 3m m + 6 m + ½ 13 2 – – 12 6 2   =    
  • 11. Dividing Polynomials ⚫ Therefore, ⚫ If either polynomial does not have a term for each power, you will need to insert a placeholder for it. 3 2 2 13 4 8 4 6 1 2 2 3 2 1 2 2 1 m m m m m m m − + + = − + + − −
  • 12. Dividing Polynomials ⚫ Example: Divide 3x3 ‒ 2x2 ‒ 150 by x2 ‒ 4 x2 + 0x ‒ 4  3x3 ‒ 2x2 + 0x ‒ 150
  • 13. Dividing Polynomials ⚫ Example: Divide 3x3 ‒ 2x2 ‒ 150 by x2 ‒ 4 3x x2 + 0x ‒ 4  3x3 ‒ 2x2 + 0x ‒ 150 3x3 + 0x2 ‒ 12x ‒ 2x2 + 12x ‒ 150
  • 14. Dividing Polynomials ⚫ Example: Divide 3x3 ‒ 2x2 ‒ 150 by x2 ‒ 4 3x ‒ 2 x2 + 0x ‒ 4  3x3 ‒ 2x2 + 0x ‒ 150 3x3 + 0x2 ‒ 12x ‒ 2x2 + 12x ‒ 150 ‒ 2x2 + 0x + 8 12x ‒ 158
  • 15. Dividing Polynomials ⚫ Example: Divide 3x3 ‒ 2x2 ‒ 150 by x2 ‒ 4 So, 3x ‒ 2 x2 + 0x ‒ 4  3x3 ‒ 2x2 + 0x ‒ 150 3x3 + 0x2 ‒ 12x ‒ 2x2 + 12x ‒ 150 ‒ 2x2 + 0x + 8 12x ‒ 158 3 2 2 2 3 2 150 12 158 3 2 4 4 x x x x x x − − − = − + − −
  • 16. Dividing Polynomials ⚫ More formally, we can state that: Let f(x) and g(x) be polynomials with g(x) of degree one or more, but of lower degree than f(x). There exist unique polynomials q(x) and r(x) such that where either r(x) = 0 or the degree of r(x) is less than the degree of g(x). ( ) ( ) ( ) ( ) = + f x g x q x r x
  • 17. Dividing Polynomials (cont.) ⚫ For example, could be evaluated as or − − − 3 2 2 3 2 150 4 x x x − − + − 2 3 2 3 4 3 2 0 150 x x x x x − + + 3 2 3 0 12 x x x − + − 2 2 12 150 x x −2 + − 2 2 0 8 x x − 12 158 x − − + − 2 12 158 3 2 4 x x x
  • 18. Dividing Polynomials (cont.) ⚫ Using the division algorithm, this means that ( )( ) − − = − − + − 3 2 2 3 2 150 4 3 2 12 158 x x x x x ( ) f x ( ) g x ( ) q x ( ) r x Dividend = Divisor • Quotient + Remainder
  • 19. Synthetic Division ⚫ A shortcut method of performing long division with certain polynomials, called synthetic division, is used only when a polynomial is divided by a binomial of the form x – k, where the coefficient of x is 1. ⚫ To use synthetic division: The numbers on the bottom are the coefficients of the quotient. −1 1 0 ... n n k a a a a − − + + + + = − 1 1 1 0 ... n n n n a x a x a x a x k an kan − + 1 n n a ka …
  • 20. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − − 3 2 4 15 11 10 3 x x x x
  • 21. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − − 3 2 4 15 11 10 3 x x x x − − 3 4 15 11 10
  • 22. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − − 3 2 4 15 11 10 3 x x x x − − 3 4 15 11 10 4 12 –3
  • 23. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − − 3 2 4 15 11 10 3 x x x x − − 3 4 15 11 10 4 12 –3 –9 2
  • 24. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − − 3 2 4 15 11 10 3 x x x x − − 3 4 15 11 10 4 12 –3 –9 2 6 –4
  • 25. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − − 3 2 4 15 11 10 3 x x x x − − 3 4 15 11 10 4 12 –3 –9 2 6 –4 − − + + − 2 4 4 3 2 3 x x x Notice that the exponent is 1 less than the numerator.
  • 26. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − + − 4 3 3 15 50 25 4 x x x x
  • 27. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − + − 4 3 3 15 50 25 4 x x x x − − 4 3 15 50 0 25 Notice the place- holder for the missing x2 term.
  • 28. Synthetic Division (cont.) ⚫ Example: Use synthetic division to divide − + − + − 4 3 3 15 50 25 4 x x x x − − 4 3 15 50 0 25 −3 –12 3 12 12 48 −2 –8 17 − + + − + − 3 2 17 3 3 12 2 4 x x x x Notice the place- holder for the missing x2 term.
  • 29. Synthetic Division (cont.) If the coefficient of x is not 1, we can divide everything in both expressions by the coefficient to still let us use synthetic division. ⚫ Example: Use synthetic division to divide + − − − 3 2 2 7 13 3 2 3 x x x x
  • 30. Synthetic Division (cont.) If the coefficient of x is not 1, we can divide everything in both expressions by the coefficient to still let us use synthetic division. ⚫ Example: Use synthetic division to divide First, we have to divide everything by 2 (the coefficient of 2x). + − − − 3 2 2 7 13 3 2 3 x x x x
  • 31. Synthetic Division (cont.) Now, we can set up the synthetic division: + − − + − −  = − − 3 2 3 2 1 2 1 2 13 3 7 2 7 13 3 2 2 2 3 2 3 2 x x x x x x x x − − 3 13 3 7 1 2 2 2 2 1 5 1 0 3 2 15 2 3 2 2 5 1 x x + +
  • 32. Classwork ⚫ College Algebra 2e ⚫ 5.4: 16-36 (×4); 5.3: 30-46 (even); 5.2: 52-64 (even) ⚫ 5.4 Classwork Check ⚫ Quiz 5.3