Topic Cover
2.1 Number System (decimal, binary,
octal, and hexadecimal)
2.2 Arithmetic Operation in number
system.
2.3 Convert Decimal, Binary, Octal
and Hexadecimal Numbers to
different bases.
2.4 Coding system:
Sign and magnitude,
1‟s Complement and 2‟s Complement
Binary Coded Decimal (BCD system)
ASCII and EBCDIC
3.
INTRODUCTION
Examples
Real World Computer
Data Input device Data
Dear Mom: Keyboard 10110010…
Digital 10110010…
camera
4.
2.1 Number System
•Many number system are in use in digital
technology.
• Most common are:
– Decimal, N10
– Binary, N2
– Octal, N8
– Hexadecimal, N16
5.
2.2 ARITHMETIC OPERATION
•Arithmetic operation in number system
consist of:
– Addition Only cover this 2 topics
– Subtraction
– Multiplication
– Division
6.
Decimal
number system
•Decimal system is composed of 10
numerals or symbol.
• Symbol: 0,1,2,3,4,5,6,7,8,9
10 Symbol
• Example: 23410
Multiplier:
103 102 101 100 . 10-1
= 1000 = 100 = 10 =1 . = 0.1
7.
Example:
2746.210
This number is came from this calculation:
2 7 4 2 . 2
103 102 101 100 . 10-1
= 1000 = 100 = 10 =1 . = 0.1
2746.210 = (2x1000) + (7x100) + (4x10) + (2x1) + (2x0.1)
= 2000 + 700 + 40 + 2 + 0.2
= 2746.2
Decimal number = Natural Number
Octal Addition
Sekiranya setiaphasil perjumlahan yang melebihi atau sama
dengan 8 mestilah ditolak dengan 8.
Example:
a. 1238 + 3218 =
b. 4578 + 2458 =
1238 4578
+3218 + 2458
4448 7248
Try this : 7338 + 748 = ?
15.
Octal Subtraction
Sekiranya terdapatpeminjam, nombor peminjam mestilah
dijumlahkan dengan 8.
Example:
a. 5248 - 1678 =
b. 1678 - 248 =
5248 1678
- 1678 - 248
3358 1438
Try this : 15238 - 3648 = ?
16.
Binary
number system
•Binary system is composed of 2 numerals
or symbol.
• Symbol: 0,1
2 Symbol
• Example: 1012
Multiplier:
25 24 23 22 21 20
= 32 = 16 =8 =4 =2 =1
17.
Example:
10.1012
This number can be convert to decimal value using this calculation:
1 0 . 1 0 1
21 20 . 2-1 2-2 2-3
=2 =1 . = 0.5000 = 0.2500 = 0.1250
10.1012 = (1x2)+(0x1)+(1x0.5)+(0x0.25)+(1x0.125)
= 2 + 0 + 0.5 + 0 + 0.125
= 2.62510
Binary Addition
The fourbasic rules for adding binary digits are as follows:
0+0=0
0+1=1
1+0=1
1 + 1 = 0 carry 1
Example:
110112 + 100012 =
110112
+ 100012
1011002
Try this : 101112 + 1112 = ?
20.
Binary Subtraction
The fourbasic rules for subtracting binary digits are as follows:-
0-0=0
0 - 1 = 1 borrow 1
1-0=1
1-1=0
Example:
10012 -102 =
10012
- 102
1112
Try this : 1010112 – 11112 =?
21.
Binary Subtraction
Have previouslylooked at the subtraction operation. A
quick review.
Just like subtraction in any other base
10110
-10010
00100
• And when a borrow is needed. Note that the borrow
gives us 2 in the current bit position.
.
In General
• Whenthere is no borrow into the msb position, then the
subtrahend in not larger than the minuend and the result is
positive and correct.
• If a borrow into the msb does occur, then the subtrahend is
larger than the minuend.
24.
Consider
• Now dothe operation 4 – 6
• Correct difference is -2 or -0010
• Different because 2n was brought in and made the operation M-
N+2n
25.
Hexadecimal
number system
•Hexadecimal system is composed of 16
numerals or symbol. 10 11 12 13 14 15
• Symbol: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
16 Symbol
• Example: 7A16
Multiplier:
163 162 161 160 . 16-1
= 4096 = 256 = 16 =1 . = 0.0626
26.
Example:
B6F.7C16
This number can be convert to decimal value using this calculation:
B 6 F . 7 C
162 161 160 . 16-1 16-2
= 256 = 16 =1 . 0.0625 = 0.0039
B6F.7C16 = (11x256) + (6x16) + (15x1) + (7x0.0625) + (12x0.0039)
= 2816 + 96 + 15 + 0.4375 + 0.0468
= 2927.484310
Hexadecimal Addition
Sekiranya setiaphasil perjumlahan yang melebihi atau sama
dengan 16 mestilah ditolak dengan 16.
Example:
a. 3316 + 4716 = b. 20D316 + 12BC16 =
3316 20D316
+ 4716 + 12BC16
338F16
7A16
Try this : DF16 + AB16 = ?
29.
Hexadecimal Subtraction
Nilai yangkecil daripada 16 boleh dipinjam dari sebelah dengan
nilai 16.
Example:
a. 4416 - 1716 = b. 20D316 - 12BC16 =
20D316
4416
- 12BC16
- 1716 0E1716
2D16
Try this : DF16 - AB16 = ?
Convert Binary toDecimal (N2 – N10)
Example:
1111012
This number can be convert to decimal value using this calculation:
1 1 1 1 0 1
25 24 23 22 21 20
= 32 = 16 =8 =4 =2 =1
1111012 = (1x32)+(1x16)+(1x8)+(1x4)+(0x2)+(1x1)
= 32 + 16 + 8 + 4 + 0 + 1
= 6110
Try this: Convert 1100.10112 to decimal?
Convert 100.10112 to decimal?
32.
Convert Binary toOctal (N2 - N8)
Convert Binary to Octal adalah dengan membahagikan nombor
Binary tersebut kepada 3 bit bermula dari sebelah kanan (LSB)
LSB
1111012
1 1 1 1 0 1
22 21 20 22 21 20
=4 =2 =1 =4 =2 =1
1111012 = [(1x4)+(1x2)+(1x1)] [(1x4)+(0x2)+(1x1)]
= [4 + 2 + 1][ 4 + 0 + 1]
= 758
Try this: Convert 110010112 to Octal?
33.
Convert Binary toHexadecimal
(N2 – N16)
Convert Binary to Hexadecimal adalah dengan membahagikan
nombor binary kepada 4 bit bermula dari LSB. Sekiranya bit tersebut
tidak mencukupi, maka digit „0‟ perlu ditambah pada MSB
LSB
01012
0 1 0 1
23 22 21 20
=8 =4 =2 =1
01012 = (0x8)+(1x4)+(0x2)+(1x1)
=0+4+0+1
= 516
Try this: Convert 101111012 to Hexadecimal?
8-Bit Binary NumberSystem
Apply what you have learned to the +127 01111111
pos(+)
binary number systems. How do you +126 01111110
represent negative numbers in this 8-bit
+125 01111101
binary system?
Cut the number system in half. +1 00000001
0 00000000
Use 00000001 – 01111111 to indicate
-1 11111111
positive numbers.
-2 11111110
Use 10000000 – 11111111 to indicate
negative numbers. -127 10000001
neg(-)
-128 10000000
Notice that 00000000 is not positive or
negative.
41.
Representing Negative Numbers
•As there is no third symbol available to
store a negative symbol explicitly we must
use a bit to show if a number is negative
or not.
– We name this bit the „Sign Bit‟
– We use the leftmost bit.
– If the „Sign Bit‟ is 1 then the number is
negative, if it is 0 then it is positive.
42.
Sign Bit
• What did do you notice about the +127 01111111
pos(+)
most significant bit of the binary +126 01111110
numbers? +125 01111101
• The MSB is (0) for all positive
numbers. +1 00000001
• The MSB is (1) for all negative 0 00000000
numbers. -1 11111111
-2 11111110
• The MSB is called the sign bit.
• In a signed number system, this -127 10000001
allows you to instantly determine -128 10000000
neg(-)
whether a number is positive or
negative.
43.
1‟s Complement
• Thisis just inverting each bit.
flip the
0000010 number.
1 1 11 1 0 1
1‟s compliment of 00000010
is 1111101
44.
2‟S Complement Process
Thesteps in the 2’s Complement process
First, complement all of the digits in a number.
– A digit‟s complement is the number you add to the digit to
make it equal to the largest digit in the base (i.e., 1 for
binary). In binary language, the complement of 0 is 1, and
the complement of 1 is 0.
Second, add 1.
– Without this step, our number system would have two
zeroes (+0 & -0), which no number system has.
Using The 2‟sCompliment Process
Use the 2‟s complement process to add together
the following numbers.
POS 9 NEG (-9)
+ POS + 5 + POS + 5
POS 14 NEG -4
POS 9 NEG (-9)
+ NEG + (-5) + NEG + (-5)
POS 4 NEG -4
47.
POS + POS→ POS Answer
If no 2‟s complement is needed, use regular binary
addition.
9 00001001
+ 5 + 00000101
14 00001110
48.
POS + NEG→ POS Answer
Take the 2‟s complement of the negative number and
use regular binary addition.
9 00001001
+ (-5) + 11111011
4 1]00000100
8th Bit = 0: Answer is Positive
Disregard 9th Bit
00000101
2’s
11111010 Complement
Process
+1
11111011
49.
POS + NEG→ NEG Answer
Take the 2‟s complement of the negative number and
use regular binary addition.
(-9) 11110111
+ 5 + 00000101
-4 11111100
8th Bit = 1: Answer is Negative
11111100 00001001
To Check: 2’s
Perform 2’s
Complement
00000011 11110110 Complement
Process
On Answer +1 +1
00000100 11110111
50.
NEG + NEG→ NEG Answer
Take the 2‟s complement of both negative numbers and
use regular binary addition.
2’s Complement
(-9) 11110111 Numbers, See
Conversion Process
+ (-5) + 11111011 In Previous Slides
-14 1]11110010
8th Bit = 1: Answer is Negative
Disregard 9th Bit
11110010
To Check:
Perform 2’s
Complement
00001101
On Answer +1
00001110
ASCII
• ASCII =American National Standard
Code for Information Interchange
• 7-bit code
• 8th bit is unused (or used for a parity bit)
• 27 = 128 codes
• Two general types of codes:
– 95 are “Graphic” codes (displayable on a
console)
– 33 are “Control” codes (control features of the
console or communications channel)
55.
ASCII Chart
000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [ k {
1100 FF FS , < L l |
1101 CR GS - = M ] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL
56.
000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 Most significant bit
$ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011Least significant ESC
VT bit + ; K [ k {
1100 FF FS , < L l |
1101 CR GS - = M ] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL
57.
e.g., ‘a’ =1100001
000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [ k {
1100 FF FS , < L l |
1101 CR GS - = M ] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL
58.
95 Graphic codes
000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [ k {
1100 FF FS , < L l |
1101 CR GS - = M ] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL
59.
33 Control codes
000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [ k {
1100 FF FS , < L l |
1101 CR GS - = M ] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL
60.
Alphabetic codes
000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [ k {
1100 FF FS , < L l |
1101 CR GS - = M ] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL
61.
Numeric codes
000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [ k {
1100 FF FS , < L l |
1101 CR GS - = M ] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL
62.
Punctuation, etc.
000 001 010 011 100 101 110 111
0000 NULL DLE 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EDT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ' 7 G W g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [ k {
1100 FF FS , < L l |
1101 CR GS - = M ] m }
1110 SO RS . > N ^ n ~
1111 SI US / ? O _ o DEL
#47 This slide show that there are only four possible combinations for adding together two signed numbers. The next four slides demonstrate each of these examples.
#49 This example shows the addition of one positive and one negative numbers. Note that this is done in the same way as subtracting a positive number from a positive number. In this case, the answer is positive.
#50 This slide demonstrates the addition of one positive and one negative number. Again, this is is the same a subtracting a positive number from a positive number. In this case the answer happens to be negative.
#51 This slide demonstrates the addition of two negative numbers.