NUMBER SYSTEMS & DATA
REPRESENTATIONS
FUNDAMENTALS OF COMPUTER & PROGRAMMING (COMP 1)
PREPARED BY: PHILLIP GLENN LIBAY
NUMBER SYSTEM
NUMBER SYSTEM
Is a method of expressing values, using a set of symbols in a
consistent manner.
Several number systems has been used in the past which can be
categorized into two (2): positional and non-positional number
systems.
POSITIONAL NUMBER SYSTEM
POSITIONAL NUMBER SYSTEM
In a positional number system, the position the symbol occupies
determines the value it represents, thus, it is also often called the
PLACE VALUE system.
HOW DOES IT WORKS?
If number is represented as:
± 𝒔 𝒏−𝟏 ⋯ 𝒔 𝟏 𝒔 𝟎 . 𝒔−𝟏 𝒔−𝟐 ⋯ 𝒃
Then it has the value of:
𝒗 = ± 𝒔 𝒏−𝟏 × 𝒃 𝒏−𝟏 + ⋯ + 𝒔 𝟏 × 𝒃 𝟏 + 𝒔 𝟎 × 𝒃 𝟎 + 𝒔−𝟏 × 𝒃−𝟏 + 𝒔−𝟐 × 𝒃−𝟐 + ⋯
DECIMAL number system
DECIMAL NUMBER SYSTEM
• Is a number system with the base of 10.
• It uses ten (10) unique symbols to represent values.
0 1 2 3 4 5 6 7 8 9
1. 𝟏𝟐𝟑 𝟏𝟎
• n = 3, b = 10
• 1 × 102 + 2 × 101 + 3 × 100
• 1 × 100 + 2 × 10 + (3 × 1)
• 100 + 20 + 3
• The equivalent decimal number is One Hundred Twenty
Example 1.a - Decimal Number System, Positional Values
BINARY number system
BINARY NUMBER SYSTEM
• Is a number system with the base of 2.
• It uses two (2) unique symbols to represent values.
0 1
1. 𝟏𝟎𝟎𝟏 𝟐
• n = 4, b = 2
• 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20
• 1 × 8 + 0 × 4 + 0 × 2 + (1 × 1)
• 8 + 0 + 0 + 1
• The equivalent decimal number is Nine
Example 1.b - Binary Number System, Positional Values
OCTAL number system
OCTAL NUMBER SYSTEM
• Is a number system with the base of 8.
• It uses eight (8) unique symbols to represent values.
0 1 2 3 4 5 6 7
1. 𝟏𝟐𝟕 𝟖
• n = 3, b = 8
• 1 × 82 + 2 × 81 + 7 × 80
• 1 × 64 + 2 × 8 + 7 × 1
• 64 + 16 + 7
• So the equivalent decimal number is Eighty Seven
Example 1.c - Octal Number System, Positional Values
HEXADECIMAL number system
HEXADECIMAL NUMBER SYSTEM
• Is a number system with the base of 16.
• It uses sixteen (16) unique symbols to represent values.
0 1 2 3 4 5 6 7 8 9 A B C D E F
1. 𝑨𝟏𝟗 𝟏𝟔
• n = 3, b = 16
• 𝐴 × 162 + 1 × 161 + 9 × 160
• 10 × 256 + 1 × 16 + 9 × 1
• 256 + 16 + 9
• So the equivalent decimal number is Two Hundred Eighty
Example 1.d - Hexadecimal Number System, Positional Values
Decimal Binary Octal Hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
DECIMAL to BASE n conversions
START
Create an empty destination
(v).
Divide the source (s) by the
destination base (b).
Insert the remainder at the
destination (v).
STOP
The quotient becomes the
new source (s).
TRUE
FALSE
Condition: Is the quotient zero?
Given:
s = Source Number
b = Destination Base
Return:
v = Destination Value
Figure 1.a - Conversion from Decimal to any Base (Integral Part)
DECIMAL TO BINARY conversion
INTEGRAL VALUES
Convert the number 𝟏𝟑 𝟏𝟎 to binary.
Results: 𝟏𝟑 𝟏𝟎 = 𝟏𝟏𝟎𝟏 𝟐
Example 1.e - Decimal to Binary Conversion (IntegralValues)
1361 30
1011
Source
Destination
DECIMAL TO OCTAL conversion
INTEGRAL VALUES
Example 1.f - Decimal to Octal Conversion (IntegralValues)
Convert the number 𝟏𝟐𝟔 𝟏𝟎 to octal.
Results: 𝟏𝟐𝟔 𝟏𝟎 = 𝟏𝟕𝟔 𝟖
126150 1
671
Source
Destination
DECIMAL TO HEXADECIMAL conversion
INTEGRAL VALUES
Example 1.g - Decimal to Hexadecimal Conversion (IntegralValues)
Convert the number 𝟏𝟐𝟔 𝟏𝟎 to octal.
Results: 𝟏𝟐𝟔 𝟏𝟎 = 𝟕𝑬 𝟏𝟔
12670
E7
Source
Destination
START
Create an empty destination
(v).
Multiply the source (s) by the
destination base (b).
Insert the integral part at the
destination (v).
STOP
The fractional part becomes
the new source (s).
TRUE
FALSE
Condition: Is the fractional part zero?
Given:
s = Source Number
b = Destination Base
Return:
v = Destination Value
Figure 1.b - Conversion from Decimal to any Base (Fractional Part)
DECIMAL TO BINARY conversion
FRACTIONAL VALUES
Convert 0.62510 to Binary.
Results: 𝟎. 𝟔𝟐𝟓 𝟏𝟎 = 𝟎. 𝟏𝟎𝟏 𝟐
Example 1.h - Decimal to Binary Conversion (FractionalValues)
0.625 0.25 0.50 0.00
1 0 1
DECIMAL TO OCTAL conversion
FRACTIONAL VALUES
Convert 𝟎. 𝟔𝟑𝟒 𝟏𝟎 to Octal.
Results: 𝟎. 𝟔𝟑𝟒 𝟏𝟎 = 𝟎. 𝟓𝟎𝟒 𝟖
Example 1.h - Decimal to Octal Conversion (FractionalValues)
0.634 0.072 0.576 0.608
5 0 4
DECIMAL TO HEXADECIMAL conversion
FRACTIONAL VALUES
Convert 𝟎. 𝟔𝟒 𝟏𝟎 to Hexadecimal.
Results: 𝟎. 𝟔𝟒 𝟏𝟎 = 𝟎. 𝑨𝟑𝑫 𝟏𝟔
Example 1.h - Decimal to Hexadecimal Conversion (FractionalValues)
0.64 0.24 0.84 0.44
A 3 D
BINARY to OCTAL conversion
𝑩𝒊 Binary Digit
𝑶𝒊 Octal Digit
Figure 1.c - Binary to Octal Conversion
𝐵 𝑚 𝐵 𝑚−1 𝐵 𝑚−2 𝐵5 𝐵4 𝐵3 𝐵2 𝐵1 𝐵0
…
𝑂 𝑚
𝑂1 𝑂0
BINARY to HEXADECIMAL conversion
𝑩𝒊 Binary Digit
𝑯𝒊 Octal Digit
𝐵 𝑚 𝐵 𝑚−1 𝐵 𝑚−2 𝐵 𝑚−3 𝐵7 𝐵6 𝐵5 𝐵4 𝐵3 𝐵2 𝐵1 𝐵0
…
𝐻 𝑚
𝐻1 𝐻0
OCTAL to HEXADECIMAL conversion
𝐻2 𝐻1 𝐻0
1 0 0 1 1 0 1 0 1 0 1 0
𝑂3 𝑂2 𝑂1 𝑂0

Number System & Data Representation

  • 1.
    NUMBER SYSTEMS &DATA REPRESENTATIONS FUNDAMENTALS OF COMPUTER & PROGRAMMING (COMP 1) PREPARED BY: PHILLIP GLENN LIBAY
  • 2.
  • 3.
    NUMBER SYSTEM Is amethod of expressing values, using a set of symbols in a consistent manner. Several number systems has been used in the past which can be categorized into two (2): positional and non-positional number systems.
  • 4.
  • 5.
    POSITIONAL NUMBER SYSTEM Ina positional number system, the position the symbol occupies determines the value it represents, thus, it is also often called the PLACE VALUE system.
  • 6.
    HOW DOES ITWORKS? If number is represented as: ± 𝒔 𝒏−𝟏 ⋯ 𝒔 𝟏 𝒔 𝟎 . 𝒔−𝟏 𝒔−𝟐 ⋯ 𝒃 Then it has the value of: 𝒗 = ± 𝒔 𝒏−𝟏 × 𝒃 𝒏−𝟏 + ⋯ + 𝒔 𝟏 × 𝒃 𝟏 + 𝒔 𝟎 × 𝒃 𝟎 + 𝒔−𝟏 × 𝒃−𝟏 + 𝒔−𝟐 × 𝒃−𝟐 + ⋯
  • 7.
  • 8.
    DECIMAL NUMBER SYSTEM •Is a number system with the base of 10. • It uses ten (10) unique symbols to represent values. 0 1 2 3 4 5 6 7 8 9
  • 9.
    1. 𝟏𝟐𝟑 𝟏𝟎 •n = 3, b = 10 • 1 × 102 + 2 × 101 + 3 × 100 • 1 × 100 + 2 × 10 + (3 × 1) • 100 + 20 + 3 • The equivalent decimal number is One Hundred Twenty Example 1.a - Decimal Number System, Positional Values
  • 10.
  • 11.
    BINARY NUMBER SYSTEM •Is a number system with the base of 2. • It uses two (2) unique symbols to represent values. 0 1
  • 12.
    1. 𝟏𝟎𝟎𝟏 𝟐 •n = 4, b = 2 • 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 • 1 × 8 + 0 × 4 + 0 × 2 + (1 × 1) • 8 + 0 + 0 + 1 • The equivalent decimal number is Nine Example 1.b - Binary Number System, Positional Values
  • 13.
  • 14.
    OCTAL NUMBER SYSTEM •Is a number system with the base of 8. • It uses eight (8) unique symbols to represent values. 0 1 2 3 4 5 6 7
  • 15.
    1. 𝟏𝟐𝟕 𝟖 •n = 3, b = 8 • 1 × 82 + 2 × 81 + 7 × 80 • 1 × 64 + 2 × 8 + 7 × 1 • 64 + 16 + 7 • So the equivalent decimal number is Eighty Seven Example 1.c - Octal Number System, Positional Values
  • 16.
  • 17.
    HEXADECIMAL NUMBER SYSTEM •Is a number system with the base of 16. • It uses sixteen (16) unique symbols to represent values. 0 1 2 3 4 5 6 7 8 9 A B C D E F
  • 18.
    1. 𝑨𝟏𝟗 𝟏𝟔 •n = 3, b = 16 • 𝐴 × 162 + 1 × 161 + 9 × 160 • 10 × 256 + 1 × 16 + 9 × 1 • 256 + 16 + 9 • So the equivalent decimal number is Two Hundred Eighty Example 1.d - Hexadecimal Number System, Positional Values
  • 19.
    Decimal Binary OctalHexadecimal 0 0 0 0 1 1 1 1 2 10 2 2 3 11 3 3 4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8 9 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F
  • 20.
    DECIMAL to BASEn conversions
  • 21.
    START Create an emptydestination (v). Divide the source (s) by the destination base (b). Insert the remainder at the destination (v). STOP The quotient becomes the new source (s). TRUE FALSE Condition: Is the quotient zero? Given: s = Source Number b = Destination Base Return: v = Destination Value Figure 1.a - Conversion from Decimal to any Base (Integral Part)
  • 22.
    DECIMAL TO BINARYconversion INTEGRAL VALUES
  • 23.
    Convert the number𝟏𝟑 𝟏𝟎 to binary. Results: 𝟏𝟑 𝟏𝟎 = 𝟏𝟏𝟎𝟏 𝟐 Example 1.e - Decimal to Binary Conversion (IntegralValues) 1361 30 1011 Source Destination
  • 24.
    DECIMAL TO OCTALconversion INTEGRAL VALUES
  • 25.
    Example 1.f -Decimal to Octal Conversion (IntegralValues) Convert the number 𝟏𝟐𝟔 𝟏𝟎 to octal. Results: 𝟏𝟐𝟔 𝟏𝟎 = 𝟏𝟕𝟔 𝟖 126150 1 671 Source Destination
  • 26.
    DECIMAL TO HEXADECIMALconversion INTEGRAL VALUES
  • 27.
    Example 1.g -Decimal to Hexadecimal Conversion (IntegralValues) Convert the number 𝟏𝟐𝟔 𝟏𝟎 to octal. Results: 𝟏𝟐𝟔 𝟏𝟎 = 𝟕𝑬 𝟏𝟔 12670 E7 Source Destination
  • 28.
    START Create an emptydestination (v). Multiply the source (s) by the destination base (b). Insert the integral part at the destination (v). STOP The fractional part becomes the new source (s). TRUE FALSE Condition: Is the fractional part zero? Given: s = Source Number b = Destination Base Return: v = Destination Value Figure 1.b - Conversion from Decimal to any Base (Fractional Part)
  • 29.
    DECIMAL TO BINARYconversion FRACTIONAL VALUES
  • 30.
    Convert 0.62510 toBinary. Results: 𝟎. 𝟔𝟐𝟓 𝟏𝟎 = 𝟎. 𝟏𝟎𝟏 𝟐 Example 1.h - Decimal to Binary Conversion (FractionalValues) 0.625 0.25 0.50 0.00 1 0 1
  • 31.
    DECIMAL TO OCTALconversion FRACTIONAL VALUES
  • 32.
    Convert 𝟎. 𝟔𝟑𝟒𝟏𝟎 to Octal. Results: 𝟎. 𝟔𝟑𝟒 𝟏𝟎 = 𝟎. 𝟓𝟎𝟒 𝟖 Example 1.h - Decimal to Octal Conversion (FractionalValues) 0.634 0.072 0.576 0.608 5 0 4
  • 33.
    DECIMAL TO HEXADECIMALconversion FRACTIONAL VALUES
  • 34.
    Convert 𝟎. 𝟔𝟒𝟏𝟎 to Hexadecimal. Results: 𝟎. 𝟔𝟒 𝟏𝟎 = 𝟎. 𝑨𝟑𝑫 𝟏𝟔 Example 1.h - Decimal to Hexadecimal Conversion (FractionalValues) 0.64 0.24 0.84 0.44 A 3 D
  • 35.
    BINARY to OCTALconversion
  • 36.
    𝑩𝒊 Binary Digit 𝑶𝒊Octal Digit Figure 1.c - Binary to Octal Conversion 𝐵 𝑚 𝐵 𝑚−1 𝐵 𝑚−2 𝐵5 𝐵4 𝐵3 𝐵2 𝐵1 𝐵0 … 𝑂 𝑚 𝑂1 𝑂0
  • 37.
  • 38.
    𝑩𝒊 Binary Digit 𝑯𝒊Octal Digit 𝐵 𝑚 𝐵 𝑚−1 𝐵 𝑚−2 𝐵 𝑚−3 𝐵7 𝐵6 𝐵5 𝐵4 𝐵3 𝐵2 𝐵1 𝐵0 … 𝐻 𝑚 𝐻1 𝐻0
  • 39.
  • 40.
    𝐻2 𝐻1 𝐻0 10 0 1 1 0 1 0 1 0 1 0 𝑂3 𝑂2 𝑂1 𝑂0