Πολυώνυμα 
Κοζαλάκης Ευστάθιος ΠΕ03 
ΠΕΡΙΕΧΟΜΕΝΑ 
1.Μονώνυμα 
2.Πολυώνυμα 
3.Αριθμιτική τιμή πολυωνύμων 
4.Πράξεις πολυωνύμων 
5. Διαίρεση πολυωνύμου
Μονώνυμο του χ ονομάζεται κάθε παράσταση της μορφής αχν όπου α είναι ένας πραγματικός αριθμός και ν ένας θετικός ακέραιος.
Παράδειγμα 
Οι παραστάσεις: 3χ3 , (-2/5)χ5 , 0χ4 και οι αριθμοί 2, -3, 0 είναι μονώνυμα του χ.
Πολυώνυμο του χ ονομάζεται κάθε παράσταση της μορφής: 
ανχν+αν-1χν-1+.........α1χ+α0 όπου ν είναι ένας φυσικός αριθμός και αi είναι πραγματικοί αριθμοι. 
Τα πολυώνυμα της μορφής α0 λέγονται σταθερά πολυώνυμα 
Ειδικά το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο
Παράδειγμα 
Οι παραστάσεις 3χ3 +2χ2 –χ+2, 0χ2 -5χ+1, και οι αριθμοί 2, 0 κτλ. Είναι πολυώνυμα τουχ.
Δύο πολυώνυμα λέγονται ίσα εάν έχουν όλους τους συντελεστές του χ και τον σταθερό όρο ίσους 
Για κάθε μη μηδενικό πολυώνυμο ο μεγαλύτερος εκθέτης λέγεται βαθμός του πολυωνύμου.
Παράδειγμα 
Τα πολυώνυμα οχ4 +0χ3 +2χ2 –χ+2 και 2χ2 –χ+2 είναι ίσα. Ο βαθμός του πολυωνύμου είναι 2
Αριθμητική τιμή πολυωνύμου 
Εστω ένα πολυώνυμο P(x) Aν αντικαταστήσουμε το χ με έναν ορισμένο πραγματικό αριθμό ρ, τότε ο πραγματικός αριθμός Ρ(ρ) που προκύπτει λέγεται αριθμητική τιμή ή απλά τιμή του πολυωνύμου για χ=ρ 
Αν είναι Ρ(ρ)=0, τότε ο ρ λέγεται ρίζα του πολυωνύμου.
Παράδειγμα 
Η τιμή του πολυωνύμου Ρ(χ)=-χ3 +2χ2 +4χ+1, για χ=1 είναι Ρ(1)=-1+2+4+1=6, ενώ για χ=-1 είναι Ρ(-1)=0 που σημαίνει ότι ο -1 είναι ρίζα του πολυωνύμου Ρ(χ).
Πράξεις με πολυώνυμα 
Μπορούμε να προσθέσουμε, να αφαιρέσουμε ή να πολλαπλασιάσουμε πολυώνυμα, χρησιμοποιώνας τις ιδιότητες των πραγματικών αριθμών. 
Για τον βαθμό του πολυωνύμου αποδεικνύεται ότι: 
Αν το άθροισμα δυο μη μηδενικών πολυωνύμων είναι μη μηδενικό πολυώνυμο , τότε ο βαθμός του είναι ίσος ή μικρότερος από το μέγιστο των βαθμών των δυο πολυωνύμων. 
Ο βαθμός του γινομένου δύο μη μηδενικών πολυωνύμων είναι ίσος με το άθροισμα των βαθμών των πολυωνύμων αυτών.
Ασκηση 1 
Να βρεθούν οι τιμές του λ Ε R για τις οποίες το πολυώνυμο Ρ(χ)= (λ2 -2)χ3 +(λ2 -3λ+2)χ+λ-2 είναι το μηδενικό πολυώνυμο.
Το Ρ(χ) θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ για τις οποίες συναληθεύουν οι εξισώσεις: 
λ2 -2=0, λ2 -3λ+2=0 και λ-2=0 
Η κοινή λύση των εξισώσεων αυτών είναι λ=2. 
Λύση
Ασκηση 2 
Αν Ρ(χ) = χ2 +4χ+α-1, να βρεθούν οι τιμές του α Ε R για τις οποίες ισχύει Ρ(-1)=1.
Εχουμε Ρ(-1)=1 (-1)2 +4(-1)+α-1=1 1-3+α-1=1α=5 
Λύση
Ερώτηση 1 
Το μηδενικό πολυώνυμο στερείται βαθμού;
Ερώτηση 2 
Δύο μη μηδενικά ίσα πολυώνυμα έχουν τον ίδιο βαθμό;
Ερώτηση 3 
Αν το ρ=1 είναι ρίζα του πολυωνύμου Ρ(χ), τότε το ίδιο ισχύει και για το πολυώνυμο Q(χ)=Ρ(2χ-1)+2χ-2
Διαίρεση πολυωνύμου με χ-ρ 
Η ταυτότητα της διαίρεσης του πολυωνύμου Ρ(χ) με το πολυώνυμο χ-ρ γράφεται Ρ(χ)=(χ-ρ)π(χ)+υ(χ) 
ΘΕΩΡΗΜΑ Το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(χ) με το χ-ρ είναι ίσο με την τιμή του πολυωνύμου για χ=ρ. Είναι δηλ. υ=Ρ(ρ) 
ΘΕΩΡΗΜΑ Ενα πολυωνύμου Ρ(χ) έχει παράγοντα το χ-ρ αν και μόνο αν Ρ(ρ)=0.
Να βρείτε τους πραγματικούς αριθμούς λ,μ για τους οποίους το πολυώνυμο Ρ(χ)=χ3 +λχ2 +μχ+4 έχει ρίζα τον αριθμό 2 και για χ=1 παίρνει την τιμή 8 
Ασκηση 1
Ρ(2)=0 και Ρ(1)=8 
23 +λ22 +μ2+4=0 και 
13 +λ12 +μ1+4=8 και 
στην συνέχεια λύνουμε 
το σύστημα. 
Ρίζα ενός πολυωνύμου Ρ(χ) 
Καλείται κάθε πραγματικός 
Αριθμός ρ για τον οποίο 
Ισχύει:Ρ(ρ)=0 
Λύση
Ασκηση 2 
Να εξεταστεί αν τα πολυώνυμα χ+2 και χ-1 είναι παράγοντες του πολυωνύμου Ρ(χ)=χ3 +χ2 –χ+2
Να εξεταστεί αν τα πολυώνυμα x + 2 και x - 1 είναι παράγοντες του πολυωνύμου P(x) = x3 + x2 - x + 2. 
Το x + 2 γράφεται x - (-2). Επειδή P(-2) = (-2)3 + (-2)2 - (-2) + 2 = 0, το -2 είναι ρίζα του Ρ(x). Επομένως, σύμφωνα με το παραπάνω θεώρημα, το x + 2 είναι παράγοντας του Ρ(x). 
Επειδή P(1) = 13 + 12 - 1 + 2 = 3 ≠ 0, το 1 δεν είναι ρίζα του Ρ(x). Επομένως το x - 1 δεν είναι παράγοντας του Ρ(x). 
Λύση
Διαίρεση πολυωνύμων 
Έστω ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης ενός πολυωνύμου, π.χ. του P(x) = 3x3 - 8x2 + 7x + 2 με ένα πολυώνυμο της μορφής x - ρ.
Παράδειγμα
Ασκηση 
Να βρεθούν οι τιμές του λ ∈ R για τις οποίες τα πολυώνυμο Q(x) = λ2x3 + (λ - 2)x2 + 3 και R(x) = (5λ - 6)x3 + (λ2 - 4)x2 + λ + 1είναι ίσα.
Τα Q(x) και R(x) θα είναι ίσα για εκείνες τις τιμές του λ για τις οποίες συναληθεύουν οι εξισώσεις: 
λ2 = 5λ - 6, λ - 2 = λ2 - 4 και 3 = λ + 1 
Η κοινή λύση των εξισώσεων αυτών είναι η λ = 2. Επομένως για λ = 2 τα πολυώνυμα Q(x) και R(x) είναι ίσα. 
Λύση

πολυώνυμα 2

  • 1.
    Πολυώνυμα Κοζαλάκης ΕυστάθιοςΠΕ03 ΠΕΡΙΕΧΟΜΕΝΑ 1.Μονώνυμα 2.Πολυώνυμα 3.Αριθμιτική τιμή πολυωνύμων 4.Πράξεις πολυωνύμων 5. Διαίρεση πολυωνύμου
  • 2.
    Μονώνυμο του χονομάζεται κάθε παράσταση της μορφής αχν όπου α είναι ένας πραγματικός αριθμός και ν ένας θετικός ακέραιος.
  • 3.
    Παράδειγμα Οι παραστάσεις:3χ3 , (-2/5)χ5 , 0χ4 και οι αριθμοί 2, -3, 0 είναι μονώνυμα του χ.
  • 4.
    Πολυώνυμο του χονομάζεται κάθε παράσταση της μορφής: ανχν+αν-1χν-1+.........α1χ+α0 όπου ν είναι ένας φυσικός αριθμός και αi είναι πραγματικοί αριθμοι. Τα πολυώνυμα της μορφής α0 λέγονται σταθερά πολυώνυμα Ειδικά το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο
  • 5.
    Παράδειγμα Οι παραστάσεις3χ3 +2χ2 –χ+2, 0χ2 -5χ+1, και οι αριθμοί 2, 0 κτλ. Είναι πολυώνυμα τουχ.
  • 6.
    Δύο πολυώνυμα λέγονταιίσα εάν έχουν όλους τους συντελεστές του χ και τον σταθερό όρο ίσους Για κάθε μη μηδενικό πολυώνυμο ο μεγαλύτερος εκθέτης λέγεται βαθμός του πολυωνύμου.
  • 7.
    Παράδειγμα Τα πολυώνυμαοχ4 +0χ3 +2χ2 –χ+2 και 2χ2 –χ+2 είναι ίσα. Ο βαθμός του πολυωνύμου είναι 2
  • 8.
    Αριθμητική τιμή πολυωνύμου Εστω ένα πολυώνυμο P(x) Aν αντικαταστήσουμε το χ με έναν ορισμένο πραγματικό αριθμό ρ, τότε ο πραγματικός αριθμός Ρ(ρ) που προκύπτει λέγεται αριθμητική τιμή ή απλά τιμή του πολυωνύμου για χ=ρ Αν είναι Ρ(ρ)=0, τότε ο ρ λέγεται ρίζα του πολυωνύμου.
  • 9.
    Παράδειγμα Η τιμήτου πολυωνύμου Ρ(χ)=-χ3 +2χ2 +4χ+1, για χ=1 είναι Ρ(1)=-1+2+4+1=6, ενώ για χ=-1 είναι Ρ(-1)=0 που σημαίνει ότι ο -1 είναι ρίζα του πολυωνύμου Ρ(χ).
  • 10.
    Πράξεις με πολυώνυμα Μπορούμε να προσθέσουμε, να αφαιρέσουμε ή να πολλαπλασιάσουμε πολυώνυμα, χρησιμοποιώνας τις ιδιότητες των πραγματικών αριθμών. Για τον βαθμό του πολυωνύμου αποδεικνύεται ότι: Αν το άθροισμα δυο μη μηδενικών πολυωνύμων είναι μη μηδενικό πολυώνυμο , τότε ο βαθμός του είναι ίσος ή μικρότερος από το μέγιστο των βαθμών των δυο πολυωνύμων. Ο βαθμός του γινομένου δύο μη μηδενικών πολυωνύμων είναι ίσος με το άθροισμα των βαθμών των πολυωνύμων αυτών.
  • 11.
    Ασκηση 1 Ναβρεθούν οι τιμές του λ Ε R για τις οποίες το πολυώνυμο Ρ(χ)= (λ2 -2)χ3 +(λ2 -3λ+2)χ+λ-2 είναι το μηδενικό πολυώνυμο.
  • 12.
    Το Ρ(χ) θαείναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ για τις οποίες συναληθεύουν οι εξισώσεις: λ2 -2=0, λ2 -3λ+2=0 και λ-2=0 Η κοινή λύση των εξισώσεων αυτών είναι λ=2. Λύση
  • 13.
    Ασκηση 2 ΑνΡ(χ) = χ2 +4χ+α-1, να βρεθούν οι τιμές του α Ε R για τις οποίες ισχύει Ρ(-1)=1.
  • 14.
    Εχουμε Ρ(-1)=1 (-1)2+4(-1)+α-1=1 1-3+α-1=1α=5 Λύση
  • 15.
    Ερώτηση 1 Τομηδενικό πολυώνυμο στερείται βαθμού;
  • 16.
    Ερώτηση 2 Δύομη μηδενικά ίσα πολυώνυμα έχουν τον ίδιο βαθμό;
  • 17.
    Ερώτηση 3 Αντο ρ=1 είναι ρίζα του πολυωνύμου Ρ(χ), τότε το ίδιο ισχύει και για το πολυώνυμο Q(χ)=Ρ(2χ-1)+2χ-2
  • 18.
    Διαίρεση πολυωνύμου μεχ-ρ Η ταυτότητα της διαίρεσης του πολυωνύμου Ρ(χ) με το πολυώνυμο χ-ρ γράφεται Ρ(χ)=(χ-ρ)π(χ)+υ(χ) ΘΕΩΡΗΜΑ Το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(χ) με το χ-ρ είναι ίσο με την τιμή του πολυωνύμου για χ=ρ. Είναι δηλ. υ=Ρ(ρ) ΘΕΩΡΗΜΑ Ενα πολυωνύμου Ρ(χ) έχει παράγοντα το χ-ρ αν και μόνο αν Ρ(ρ)=0.
  • 19.
    Να βρείτε τουςπραγματικούς αριθμούς λ,μ για τους οποίους το πολυώνυμο Ρ(χ)=χ3 +λχ2 +μχ+4 έχει ρίζα τον αριθμό 2 και για χ=1 παίρνει την τιμή 8 Ασκηση 1
  • 20.
    Ρ(2)=0 και Ρ(1)=8 23 +λ22 +μ2+4=0 και 13 +λ12 +μ1+4=8 και στην συνέχεια λύνουμε το σύστημα. Ρίζα ενός πολυωνύμου Ρ(χ) Καλείται κάθε πραγματικός Αριθμός ρ για τον οποίο Ισχύει:Ρ(ρ)=0 Λύση
  • 21.
    Ασκηση 2 Ναεξεταστεί αν τα πολυώνυμα χ+2 και χ-1 είναι παράγοντες του πολυωνύμου Ρ(χ)=χ3 +χ2 –χ+2
  • 22.
    Να εξεταστεί αντα πολυώνυμα x + 2 και x - 1 είναι παράγοντες του πολυωνύμου P(x) = x3 + x2 - x + 2. Το x + 2 γράφεται x - (-2). Επειδή P(-2) = (-2)3 + (-2)2 - (-2) + 2 = 0, το -2 είναι ρίζα του Ρ(x). Επομένως, σύμφωνα με το παραπάνω θεώρημα, το x + 2 είναι παράγοντας του Ρ(x). Επειδή P(1) = 13 + 12 - 1 + 2 = 3 ≠ 0, το 1 δεν είναι ρίζα του Ρ(x). Επομένως το x - 1 δεν είναι παράγοντας του Ρ(x). Λύση
  • 23.
    Διαίρεση πολυωνύμων Έστωότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης ενός πολυωνύμου, π.χ. του P(x) = 3x3 - 8x2 + 7x + 2 με ένα πολυώνυμο της μορφής x - ρ.
  • 25.
  • 26.
    Ασκηση Να βρεθούνοι τιμές του λ ∈ R για τις οποίες τα πολυώνυμο Q(x) = λ2x3 + (λ - 2)x2 + 3 και R(x) = (5λ - 6)x3 + (λ2 - 4)x2 + λ + 1είναι ίσα.
  • 27.
    Τα Q(x) καιR(x) θα είναι ίσα για εκείνες τις τιμές του λ για τις οποίες συναληθεύουν οι εξισώσεις: λ2 = 5λ - 6, λ - 2 = λ2 - 4 και 3 = λ + 1 Η κοινή λύση των εξισώσεων αυτών είναι η λ = 2. Επομένως για λ = 2 τα πολυώνυμα Q(x) και R(x) είναι ίσα. Λύση