SlideShare a Scribd company logo
7.3 and part of 7.5
Rates of Change, Slopes, and Derivatives
A.   What algebra skill you’ll need
B.   Where average rate of change (ARC) is on a graph
C.   How to find it algebraically (without a graph)
D.   How we get the difference quotients definition of ARC
E.   Where instantaneous rate of change (IRC) is on a graph
F.   How we get the difference quotient definition of IRC
G.   How to find the IRC
H.   What a derivative is
I.   What Leibniz’s Notation looks like
J.   Word Problems
A. What algebra skills you’ll need
• Negative, positive slope
• Slope formula
• Combining rational expressions
B. Where average rate of change (ARC) is on
                 a graph The average rate of
                             change(ARC)
                             between x = 2
                             and x = 5 is the
                             SLOPE of that red
                             dotted line.
                            [a secant line]
                          Let’s find it:
C. How to find it algebraically (without a
                       graph)
• Well, since the ARC is really a SLOPE, let’s recall the
  slope formula:
  rise y2 − y1 f ( x2 ) − f ( x1 )
      =       =
  run x2 − x1       x2 − x1
• We can use that f(x) notation because we’ll be
  dealing with functions. Recall that f(x) simply
  means the y value that corresponds to x.
• Let’s apply this to a problem:
" If f ( x) = 3 x + 5, find the average
             2


rate of change between x = 1 and x = 2."
You try : " If f ( x) = x + 1, find the average
                       2


rate of change between x = 3 and x = 5."
D. How we get the difference quotients
                definition of ARC
• You may or may not have been introduced to the
  famous “difference quotient” in your algebra class.
  Here is what it looked like:
       f ( x + h) − f ( x)
                h
• First, I’ll show you where this came from.
• Then , we’ll discover what is so great about it.
Let’s take this curve, and label a fixed point x. It
would have corresponding y-value labeled f(x).
                                 If I jog over a
                                 certain
                                 distance h on
                                 the x-axis.
                                 What could I
                                 call this new
                                 fixed point?
x + h would be that newly created point
       on the x-axis. Its corresponding
       y-value would be called f(x + h).
Here is the red, dotted secant line.
     We need the slope of it.
RISE =




                           RUN =




That’s where the difference quotient came from.
Now, I’ll show you what is so great about it.
E. Where instantaneous rate of change (IRC)
               is on a graph
• It’s the slope of the tangent line. I’ll draw it:
F. How we get the difference quotient definition of IRC
       Remember that secant line that was h wide?

                                         • It was h
                                           wide.
                                           Imagine you
                                           could make h
                                           shrink
                                           (“approach
                                           zero”).
That would get closer and closer to the slope
       of the tangent line! The IRC!
              f ( x + h) − f ( x)
   IRC = lim
         h →0          h
 This will be useful because we can use this
 formula algebraically (no graphing necessary
 to find or guess at the IRC.)
 Let’s see if we can work one…
G. How to find the IRC
• Find the instantaneous rate of change of this
  function at x = 1. f ( x) = x
                                2
1
Find the slope of the tangent line to f ( x) = at x = 2.
                                              x
2
You try : Find the slope of the tangent line to f ( x) = at x = 3.
                                                        x
You try : Find the instantaneous rate
of change of f ( x) = 2 x at x = 3.
                        2
Sometimes they ask you whether the slope of
the tangent line is positive, negative, or zero.
H. What a derivative is
• We can evaluate the IRC at any point we want
  algebraically, but wouldn’t it be easier if we
  could create a function for the IRC, and then
  we could plug in any value. It would be more
  efficient.
• The DERIVATIVE is just that. Basically, it is a
  function for the IRC.
• When you see “IRC,” think “Derivative.”
The derivative, noted by f ′( x ) , can be found by
                f ( x + h) − f ( x)
f ′( x ) = lim                      .
           h →0          h
Find the derivative of f ( x) = x 2 − 7 x + 150.
f ( x + h) − f ( x)
You try : f ′( x ) = lim
                     h →0          h
Find the derivative of f ( x) = x 2 − 2 x + 41.
I. What Leibniz’s Notation looks
                   like
                                             d
Instead of writing f ′( x ) , Leibniz wrote    f ( x ).
                                            dx
                                         dy
Instead of writing y′, Leibniz wrote .
                                        dx
J. Word Problems
• First of all, the units of the ARC or IRC is
  always consistent with it being a rate. [Like,
  “something” per “something”]
• More particularly, the first “something” is the
  units of the function f(x), and the second
  “something” is the units of the x.
• “something” per “something”
Refining crude oil requires heating and cooling at different
rates. Suppose the temperature of the oil at time x hours is
 f ( x) = x − 7 x + 150 degrees Fahrenheit. Find the IRC of
         2


temperature at time x = 6, and interpret it.
You try : Suppose the temperature of the oil at time x hours is
 f ( x) = x − 2 x + 12 degrees Fahrenheit. Find the IRC of
         2


temperature at time x = 2, and interpret it.
Use the limit definition to find an EQUATION
(y=mx+b) of the tangent line to the graph of f at
                 the given point:

f ( x ) = − x ; ( − 1,− 1)
             2
The word “differentiable” means…
_________________________________
• If it is differentiable at a point, then it is
  continuous at that point.
• BUT
• Just because it is continuous at a point doesn’t
  necessarily mean it is differentiable there.
• Example:

More Related Content

What's hot

CRMS Calculus 2010 May 17, 2010
CRMS Calculus 2010 May 17, 2010CRMS Calculus 2010 May 17, 2010
CRMS Calculus 2010 May 17, 2010
Fountain Valley School of Colorado
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
Leo Crisologo
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
Matthew Leingang
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integrals
Lawrence De Vera
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
Matthew Leingang
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
Silvius
 
Lesson 3: Continuity
Lesson 3: ContinuityLesson 3: Continuity
Lesson 3: Continuity
Matthew Leingang
 
The inverse trigonometric functions
The inverse trigonometric functionsThe inverse trigonometric functions
The inverse trigonometric functions
Alfiramita Hertanti
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
Dr. Jennifer Chang Wathall
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
Matthew Leingang
 
Limit and continuity
Limit and continuityLimit and continuity
Limit and continuity
Sanjeev Kumar Prajapati
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
goldenratio618
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
Digvijaysinh Gohil
 
125 arc, irc, and derivative
125  arc, irc, and derivative125  arc, irc, and derivative
125 arc, irc, and derivative
Jeneva Clark
 
Continuity
ContinuityContinuity
Continuity
Phil Saraspe
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iii
manoj302009
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
Matthew Leingang
 
Pseudo and Quasi Random Number Generation
Pseudo and Quasi Random Number GenerationPseudo and Quasi Random Number Generation
Pseudo and Quasi Random Number Generation
Ashwin Rao
 

What's hot (18)

CRMS Calculus 2010 May 17, 2010
CRMS Calculus 2010 May 17, 2010CRMS Calculus 2010 May 17, 2010
CRMS Calculus 2010 May 17, 2010
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integrals
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
Lesson 3: Continuity
Lesson 3: ContinuityLesson 3: Continuity
Lesson 3: Continuity
 
The inverse trigonometric functions
The inverse trigonometric functionsThe inverse trigonometric functions
The inverse trigonometric functions
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Limit and continuity
Limit and continuityLimit and continuity
Limit and continuity
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
 
125 arc, irc, and derivative
125  arc, irc, and derivative125  arc, irc, and derivative
125 arc, irc, and derivative
 
Continuity
ContinuityContinuity
Continuity
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iii
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Pseudo and Quasi Random Number Generation
Pseudo and Quasi Random Number GenerationPseudo and Quasi Random Number Generation
Pseudo and Quasi Random Number Generation
 

Viewers also liked

ニーズのフロントエンド集客⇒ウォンツのバックエンド成約
ニーズのフロントエンド集客⇒ウォンツのバックエンド成約ニーズのフロントエンド集客⇒ウォンツのバックエンド成約
ニーズのフロントエンド集客⇒ウォンツのバックエンド成約
新潟コンサルタント横田秀珠
 
山口県Facebookセミナー商売繁盛と成功事例in和木町商工会
山口県Facebookセミナー商売繁盛と成功事例in和木町商工会山口県Facebookセミナー商売繁盛と成功事例in和木町商工会
山口県Facebookセミナー商売繁盛と成功事例in和木町商工会
新潟コンサルタント横田秀珠
 
鹿児島Facebook4時間セミナーいちき串木野商工会議所
鹿児島Facebook4時間セミナーいちき串木野商工会議所鹿児島Facebook4時間セミナーいちき串木野商工会議所
鹿児島Facebook4時間セミナーいちき串木野商工会議所
新潟コンサルタント横田秀珠
 
Facebook
FacebookFacebook
ゲームだけでない!教育でも使えるiPhone・iPadアプリ7選
ゲームだけでない!教育でも使えるiPhone・iPadアプリ7選ゲームだけでない!教育でも使えるiPhone・iPadアプリ7選
ゲームだけでない!教育でも使えるiPhone・iPadアプリ7選
新潟コンサルタント横田秀珠
 
Unit 4 Flashcards
Unit 4 FlashcardsUnit 4 Flashcards
Unit 4 FlashcardsJeneva Clark
 
鳥取県facebookセミナーin境港商工会議所レジュメ88ページ
鳥取県facebookセミナーin境港商工会議所レジュメ88ページ鳥取県facebookセミナーin境港商工会議所レジュメ88ページ
鳥取県facebookセミナーin境港商工会議所レジュメ88ページ
新潟コンサルタント横田秀珠
 
125 2.2 and 2.3
125  2.2 and 2.3125  2.2 and 2.3
125 2.2 and 2.3
Jeneva Clark
 
北海道函館市Facebookセミナー中小企業家同友会函館支部
北海道函館市Facebookセミナー中小企業家同友会函館支部北海道函館市Facebookセミナー中小企業家同友会函館支部
北海道函館市Facebookセミナー中小企業家同友会函館支部
新潟コンサルタント横田秀珠
 
ステマ時代の著名人を利用したソーシャルメディア活用法
ステマ時代の著名人を利用したソーシャルメディア活用法ステマ時代の著名人を利用したソーシャルメディア活用法
ステマ時代の著名人を利用したソーシャルメディア活用法
新潟コンサルタント横田秀珠
 
YouTubeチャンネル登録してもらうメリットとデメリット
YouTubeチャンネル登録してもらうメリットとデメリットYouTubeチャンネル登録してもらうメリットとデメリット
YouTubeチャンネル登録してもらうメリットとデメリット
新潟コンサルタント横田秀珠
 
Facebookで「いいね!」を集めるコンテンツは写真に尽きる
Facebookで「いいね!」を集めるコンテンツは写真に尽きるFacebookで「いいね!」を集めるコンテンツは写真に尽きる
Facebookで「いいね!」を集めるコンテンツは写真に尽きる
新潟コンサルタント横田秀珠
 
大分県facebookセミナー別府商工会議所
大分県facebookセミナー別府商工会議所大分県facebookセミナー別府商工会議所
大分県facebookセミナー別府商工会議所
新潟コンサルタント横田秀珠
 
Which Road to Travel
Which Road to TravelWhich Road to Travel
Which Road to Travel
Jeneva Clark
 
(岡山県)Facebookセミナー&パワーランチ
(岡山県)Facebookセミナー&パワーランチ(岡山県)Facebookセミナー&パワーランチ
(岡山県)Facebookセミナー&パワーランチ
新潟コンサルタント横田秀珠
 
College Algebra 5.1
College Algebra 5.1College Algebra 5.1
College Algebra 5.1
Jeneva Clark
 

Viewers also liked (17)

ニーズのフロントエンド集客⇒ウォンツのバックエンド成約
ニーズのフロントエンド集客⇒ウォンツのバックエンド成約ニーズのフロントエンド集客⇒ウォンツのバックエンド成約
ニーズのフロントエンド集客⇒ウォンツのバックエンド成約
 
山口県Facebookセミナー商売繁盛と成功事例in和木町商工会
山口県Facebookセミナー商売繁盛と成功事例in和木町商工会山口県Facebookセミナー商売繁盛と成功事例in和木町商工会
山口県Facebookセミナー商売繁盛と成功事例in和木町商工会
 
鹿児島Facebook4時間セミナーいちき串木野商工会議所
鹿児島Facebook4時間セミナーいちき串木野商工会議所鹿児島Facebook4時間セミナーいちき串木野商工会議所
鹿児島Facebook4時間セミナーいちき串木野商工会議所
 
Facebook
FacebookFacebook
Facebook
 
ゲームだけでない!教育でも使えるiPhone・iPadアプリ7選
ゲームだけでない!教育でも使えるiPhone・iPadアプリ7選ゲームだけでない!教育でも使えるiPhone・iPadアプリ7選
ゲームだけでない!教育でも使えるiPhone・iPadアプリ7選
 
Unit 4 Flashcards
Unit 4 FlashcardsUnit 4 Flashcards
Unit 4 Flashcards
 
鳥取県facebookセミナーin境港商工会議所レジュメ88ページ
鳥取県facebookセミナーin境港商工会議所レジュメ88ページ鳥取県facebookセミナーin境港商工会議所レジュメ88ページ
鳥取県facebookセミナーin境港商工会議所レジュメ88ページ
 
125 2.2 and 2.3
125  2.2 and 2.3125  2.2 and 2.3
125 2.2 and 2.3
 
北海道函館市Facebookセミナー中小企業家同友会函館支部
北海道函館市Facebookセミナー中小企業家同友会函館支部北海道函館市Facebookセミナー中小企業家同友会函館支部
北海道函館市Facebookセミナー中小企業家同友会函館支部
 
ステマ時代の著名人を利用したソーシャルメディア活用法
ステマ時代の著名人を利用したソーシャルメディア活用法ステマ時代の著名人を利用したソーシャルメディア活用法
ステマ時代の著名人を利用したソーシャルメディア活用法
 
YouTubeチャンネル登録してもらうメリットとデメリット
YouTubeチャンネル登録してもらうメリットとデメリットYouTubeチャンネル登録してもらうメリットとデメリット
YouTubeチャンネル登録してもらうメリットとデメリット
 
Facebookで「いいね!」を集めるコンテンツは写真に尽きる
Facebookで「いいね!」を集めるコンテンツは写真に尽きるFacebookで「いいね!」を集めるコンテンツは写真に尽きる
Facebookで「いいね!」を集めるコンテンツは写真に尽きる
 
大分県facebookセミナー別府商工会議所
大分県facebookセミナー別府商工会議所大分県facebookセミナー別府商工会議所
大分県facebookセミナー別府商工会議所
 
Which Road to Travel
Which Road to TravelWhich Road to Travel
Which Road to Travel
 
(岡山県)Facebookセミナー&パワーランチ
(岡山県)Facebookセミナー&パワーランチ(岡山県)Facebookセミナー&パワーランチ
(岡山県)Facebookセミナー&パワーランチ
 
125 3.2
125 3.2125 3.2
125 3.2
 
College Algebra 5.1
College Algebra 5.1College Algebra 5.1
College Algebra 5.1
 

Similar to 125 7.3 and 7.5

Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
canalculus
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
btmathematics
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcu
patrickpaz
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
seltzermath
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
Tarun Gehlot
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
Tarun Gehlot
 
mc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdfmc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdf
Hazel Mier Timagos Basit
 
Derivatie class 12
Derivatie class 12Derivatie class 12
Derivatie class 12
Sadiq Hussain
 
Lambda Calculus by Dustin Mulcahey
Lambda Calculus by Dustin Mulcahey Lambda Calculus by Dustin Mulcahey
Lambda Calculus by Dustin Mulcahey
Hakka Labs
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
Mel Anthony Pepito
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
Matthew Leingang
 
Function Basics Math Wiki
Function Basics   Math WikiFunction Basics   Math Wiki
Function Basics Math Wiki
Alec Kargodorian
 
Vertical asymptotes to rational functions
Vertical asymptotes to rational functionsVertical asymptotes to rational functions
Vertical asymptotes to rational functions
Tarun Gehlot
 
Taylor problem
Taylor problemTaylor problem
Taylor problem
dinhmyhuyenvi
 
Applying the derivative
Applying the derivativeApplying the derivative
Applying the derivative
Inarotul Faiza
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
Matthew Leingang
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
Digvijaysinh Gohil
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
Matthew Leingang
 
When youseeab
When youseeabWhen youseeab
When youseeab
jchartiersjsd
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
Matthew Leingang
 

Similar to 125 7.3 and 7.5 (20)

Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcu
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
mc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdfmc-ty-polynomial-2009-1.pdf
mc-ty-polynomial-2009-1.pdf
 
Derivatie class 12
Derivatie class 12Derivatie class 12
Derivatie class 12
 
Lambda Calculus by Dustin Mulcahey
Lambda Calculus by Dustin Mulcahey Lambda Calculus by Dustin Mulcahey
Lambda Calculus by Dustin Mulcahey
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Function Basics Math Wiki
Function Basics   Math WikiFunction Basics   Math Wiki
Function Basics Math Wiki
 
Vertical asymptotes to rational functions
Vertical asymptotes to rational functionsVertical asymptotes to rational functions
Vertical asymptotes to rational functions
 
Taylor problem
Taylor problemTaylor problem
Taylor problem
 
Applying the derivative
Applying the derivativeApplying the derivative
Applying the derivative
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
When youseeab
When youseeabWhen youseeab
When youseeab
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
 

More from Jeneva Clark

161 course information spring 2016
161 course information spring 2016161 course information spring 2016
161 course information spring 2016
Jeneva Clark
 
Summer 2014 moseley 098 syllabus addendum
Summer 2014 moseley 098 syllabus addendumSummer 2014 moseley 098 syllabus addendum
Summer 2014 moseley 098 syllabus addendum
Jeneva Clark
 
2.1 homework
2.1 homework2.1 homework
2.1 homework
Jeneva Clark
 
2.6 homework
2.6 homework2.6 homework
2.6 homework
Jeneva Clark
 
2.2 homework b
2.2 homework b2.2 homework b
2.2 homework b
Jeneva Clark
 
2.2 homework a
2.2 homework a2.2 homework a
2.2 homework a
Jeneva Clark
 
College algebra hw 1.4
College algebra hw 1.4College algebra hw 1.4
College algebra hw 1.4
Jeneva Clark
 
1.3 homework
1.3 homework1.3 homework
1.3 homework
Jeneva Clark
 
Math 111 College Algebra 1.2
Math 111 College Algebra 1.2Math 111 College Algebra 1.2
Math 111 College Algebra 1.2
Jeneva Clark
 
P.5 homework a
P.5 homework aP.5 homework a
P.5 homework a
Jeneva Clark
 
P.4 homework
P.4 homeworkP.4 homework
P.4 homeworkJeneva Clark
 
P.3 homework
P.3 homeworkP.3 homework
P.3 homework
Jeneva Clark
 
P 2 homework b
P 2 homework bP 2 homework b
P 2 homework b
Jeneva Clark
 
P.2 homework A
P.2 homework AP.2 homework A
P.2 homework A
Jeneva Clark
 
P.1 hw
P.1 hwP.1 hw
P.1 hw
Jeneva Clark
 
Moseley schedule
Moseley scheduleMoseley schedule
Moseley schedule
Jeneva Clark
 
Moseley m113 syllabus_summer2013
Moseley m113 syllabus_summer2013Moseley m113 syllabus_summer2013
Moseley m113 syllabus_summer2013
Jeneva Clark
 
Magic Money
Magic MoneyMagic Money
Magic Money
Jeneva Clark
 
We three sisters
We three sistersWe three sisters
We three sisters
Jeneva Clark
 
Triple beer rings
Triple beer ringsTriple beer rings
Triple beer rings
Jeneva Clark
 

More from Jeneva Clark (20)

161 course information spring 2016
161 course information spring 2016161 course information spring 2016
161 course information spring 2016
 
Summer 2014 moseley 098 syllabus addendum
Summer 2014 moseley 098 syllabus addendumSummer 2014 moseley 098 syllabus addendum
Summer 2014 moseley 098 syllabus addendum
 
2.1 homework
2.1 homework2.1 homework
2.1 homework
 
2.6 homework
2.6 homework2.6 homework
2.6 homework
 
2.2 homework b
2.2 homework b2.2 homework b
2.2 homework b
 
2.2 homework a
2.2 homework a2.2 homework a
2.2 homework a
 
College algebra hw 1.4
College algebra hw 1.4College algebra hw 1.4
College algebra hw 1.4
 
1.3 homework
1.3 homework1.3 homework
1.3 homework
 
Math 111 College Algebra 1.2
Math 111 College Algebra 1.2Math 111 College Algebra 1.2
Math 111 College Algebra 1.2
 
P.5 homework a
P.5 homework aP.5 homework a
P.5 homework a
 
P.4 homework
P.4 homeworkP.4 homework
P.4 homework
 
P.3 homework
P.3 homeworkP.3 homework
P.3 homework
 
P 2 homework b
P 2 homework bP 2 homework b
P 2 homework b
 
P.2 homework A
P.2 homework AP.2 homework A
P.2 homework A
 
P.1 hw
P.1 hwP.1 hw
P.1 hw
 
Moseley schedule
Moseley scheduleMoseley schedule
Moseley schedule
 
Moseley m113 syllabus_summer2013
Moseley m113 syllabus_summer2013Moseley m113 syllabus_summer2013
Moseley m113 syllabus_summer2013
 
Magic Money
Magic MoneyMagic Money
Magic Money
 
We three sisters
We three sistersWe three sisters
We three sisters
 
Triple beer rings
Triple beer ringsTriple beer rings
Triple beer rings
 

125 7.3 and 7.5

  • 1. 7.3 and part of 7.5 Rates of Change, Slopes, and Derivatives A. What algebra skill you’ll need B. Where average rate of change (ARC) is on a graph C. How to find it algebraically (without a graph) D. How we get the difference quotients definition of ARC E. Where instantaneous rate of change (IRC) is on a graph F. How we get the difference quotient definition of IRC G. How to find the IRC H. What a derivative is I. What Leibniz’s Notation looks like J. Word Problems
  • 2. A. What algebra skills you’ll need • Negative, positive slope • Slope formula • Combining rational expressions
  • 3. B. Where average rate of change (ARC) is on a graph The average rate of change(ARC) between x = 2 and x = 5 is the SLOPE of that red dotted line. [a secant line] Let’s find it:
  • 4. C. How to find it algebraically (without a graph) • Well, since the ARC is really a SLOPE, let’s recall the slope formula: rise y2 − y1 f ( x2 ) − f ( x1 ) = = run x2 − x1 x2 − x1 • We can use that f(x) notation because we’ll be dealing with functions. Recall that f(x) simply means the y value that corresponds to x. • Let’s apply this to a problem:
  • 5. " If f ( x) = 3 x + 5, find the average 2 rate of change between x = 1 and x = 2."
  • 6. You try : " If f ( x) = x + 1, find the average 2 rate of change between x = 3 and x = 5."
  • 7. D. How we get the difference quotients definition of ARC • You may or may not have been introduced to the famous “difference quotient” in your algebra class. Here is what it looked like: f ( x + h) − f ( x) h • First, I’ll show you where this came from. • Then , we’ll discover what is so great about it.
  • 8. Let’s take this curve, and label a fixed point x. It would have corresponding y-value labeled f(x). If I jog over a certain distance h on the x-axis. What could I call this new fixed point?
  • 9. x + h would be that newly created point on the x-axis. Its corresponding y-value would be called f(x + h).
  • 10. Here is the red, dotted secant line. We need the slope of it.
  • 11. RISE = RUN = That’s where the difference quotient came from. Now, I’ll show you what is so great about it.
  • 12. E. Where instantaneous rate of change (IRC) is on a graph • It’s the slope of the tangent line. I’ll draw it:
  • 13. F. How we get the difference quotient definition of IRC Remember that secant line that was h wide? • It was h wide. Imagine you could make h shrink (“approach zero”).
  • 14. That would get closer and closer to the slope of the tangent line! The IRC! f ( x + h) − f ( x) IRC = lim h →0 h This will be useful because we can use this formula algebraically (no graphing necessary to find or guess at the IRC.) Let’s see if we can work one…
  • 15.
  • 16. G. How to find the IRC • Find the instantaneous rate of change of this function at x = 1. f ( x) = x 2
  • 17. 1 Find the slope of the tangent line to f ( x) = at x = 2. x
  • 18. 2 You try : Find the slope of the tangent line to f ( x) = at x = 3. x
  • 19. You try : Find the instantaneous rate of change of f ( x) = 2 x at x = 3. 2
  • 20. Sometimes they ask you whether the slope of the tangent line is positive, negative, or zero.
  • 21. H. What a derivative is • We can evaluate the IRC at any point we want algebraically, but wouldn’t it be easier if we could create a function for the IRC, and then we could plug in any value. It would be more efficient. • The DERIVATIVE is just that. Basically, it is a function for the IRC. • When you see “IRC,” think “Derivative.”
  • 22. The derivative, noted by f ′( x ) , can be found by f ( x + h) − f ( x) f ′( x ) = lim . h →0 h Find the derivative of f ( x) = x 2 − 7 x + 150.
  • 23. f ( x + h) − f ( x) You try : f ′( x ) = lim h →0 h Find the derivative of f ( x) = x 2 − 2 x + 41.
  • 24. I. What Leibniz’s Notation looks like d Instead of writing f ′( x ) , Leibniz wrote f ( x ). dx dy Instead of writing y′, Leibniz wrote . dx
  • 25. J. Word Problems • First of all, the units of the ARC or IRC is always consistent with it being a rate. [Like, “something” per “something”] • More particularly, the first “something” is the units of the function f(x), and the second “something” is the units of the x. • “something” per “something”
  • 26. Refining crude oil requires heating and cooling at different rates. Suppose the temperature of the oil at time x hours is f ( x) = x − 7 x + 150 degrees Fahrenheit. Find the IRC of 2 temperature at time x = 6, and interpret it.
  • 27. You try : Suppose the temperature of the oil at time x hours is f ( x) = x − 2 x + 12 degrees Fahrenheit. Find the IRC of 2 temperature at time x = 2, and interpret it.
  • 28. Use the limit definition to find an EQUATION (y=mx+b) of the tangent line to the graph of f at the given point: f ( x ) = − x ; ( − 1,− 1) 2
  • 29. The word “differentiable” means… _________________________________
  • 30. • If it is differentiable at a point, then it is continuous at that point. • BUT • Just because it is continuous at a point doesn’t necessarily mean it is differentiable there. • Example: