0. Introducció
a) Lesequacions de 2n grau són aquelles en què hi ha un
terme amb la incògnita x elevada a al quadrat (2).
5x2
−3+4=3+2x
5x3
+x=4
Exemples ràpids
b) Poden tenir: dues solucions
una única solució
cap solució.
Sí
No (seria de 3r grau)
4.
c) Per resoldreequacions de 2n grau, abans les haurem
d'"arreglar" passant tots els termes al 1r membre i reduint-los,
obtenint la forma: ax2
+ bx + c = 0.
5x2
−3+4=3+2x
d) Hi ha dos tipus d'equacions de 2n grau:
5x2
−2x−2=0
ax2
+bx+c=0
ax2
+bx=0
ax2
+c=0
ax2
=0
Completes
Incompletes (falta algun terme)
"a" és el coeficient que acompanya x2
, "b" la x i "c"
el terme independent
Identificar “a, b i c” a p76 14 i 15
5.
1. Resolució d'equacionsax2
+c=0 (incompletes)
5x2
−180=0;5x2
=180; x2
=
180
5
;
Resol les equacions següents:
-Aïllarem la x2
, i farem l'arrel quadrada, obtenint dues
solucions, la negativa i la positiva.
x2
=36; x=√ 36=±6
3x2
- 3=0
2x2
=50
x2
-64=0
x2
=52-3
x2
-6=30
x2
/2=2
3x2
=220+23
x2
/3+9=60-3
13x2
-12x2
=16
x2
-117=4
-120+20=-x2
4x2
-2x2
=18
6.
2. Resolució d'equacionsax2
+bx=0 (incompletes)
-Extraurem factor comú dels termes del membre esquerre, i
igualarem a 0 cada un dels factors resultants, obtenint així dues
equacions senzilles de 1r grau.
3x2
+27x=0;
3· x · x+3·3·3· x=0
p84 58 i 60
3x·(x+9)=0 Si el resultat del producte és 0, és
veritat que cada un dels factors pot
ser 0
3x=0; x=0/3; x=0
x+9=0; x=−9
7.
3. Resolució d'equacionsax2
=0 (incompletes)
-Si aïllem la x2
, en aquesta forma l'equació sempre tindrà una única
solució: x= 0.
6x2
=0; x2
=
0
6
; x2
=0 ; x=√ 0; x=0
Uns quants exemples absurds
8.
4. Resolució d'equacionsax2
+bx+c=0 (completes)
-Un cop transformada l'equació en la seva forma canònica,
identificarem els coeficients a, b i c per aplicar la fórmula:
x=
−b±√ b2
−4ac
2a
Exemple:
2x2
−3x−2=0
a=2
b=-3
c=-2
x=
−(−3)±√(−3)
2
−4·2·(−2)
2·2