EQUACIONS DE PRIMERI SEGON GRAU, SISTEMES D’EQUACIONS I EQUACIONS IRRACIONALS
2.
Equacions de primergrau amb una incògnita Equació amb denominadors, fem comú denominador. Obtenim una equació amb parèntesi, operem i els treiem. Ara sols falta arreglar, reduïr i per últim, aïllar la incògnita.
3.
Equacions de primergrau amb dues incògnites 1er aïllem la y de l’equació. 2on fem una taula de valors per a dibuixar la recta. (Una equació amb dues incògnites, infinites solucions) 3er dibuixem la recta en els eixos. (infinits punts infinites solucions) -3 -1 1 -2 1 4 y x
4.
Equacions de segongrau Primer hem d’arreglar l’equació per a que quedi de la “forma” anterior. NOTA: Recordem que en ocasions també podem resoldre les equacions de segon grau mitjançant Ruffini. Completes Incompletes (També podem resoldre-les amb la fórmula) Resolem amb Resolució Una solució doble Dues solucions simples Dues solucions simples oposades o cap solució
5.
Nombre de solucionsd’una equació de segon grau i significat gràfic S’anomena discriminant d’una equació de segon grau a: - Si Dues solucions - Si Una solució - Si Cap solució Resoldre l’equació de segon grau equival a calcular els punts de tall amb l’eix x de la gràfica de y=ax 2 +bx+c (recordem que la gràfica era una paràbola) Exemples gràfics
6.
Equacions biquadrades Femel canvi de variable : Després del canvi, l’equació queda de la següent forma : Desfem el canvi : No hi ha solució Solucions:
Sistemes amb duesequacions i dues incògnites Mètode de substitució 1.- Aïllem una de les dues incògnites d’una de les dues equacions (la que més fàcil resulti) En aquest cas, com dona igual, hem aïllat la x de la primera equació. 2.- Substituïm el valor obtingut en l’equació que encara no hem utilitzat i resolem l’equació de primer grau que obtenim. 3.- Substituïm el valor que acabem d’obtenir en l’expressió del primer pas. SOLUCIÓ
Sistemes amb duesequacions i dues incògnites Mètode de Igualació 1.- Aïllem una de les dues incògnites de les dues equacions (la que més fàcil resulti) 2.- Igualem els valors obtinguts i resolem l’equació de primer grau que obtenim. 3.- Substituïm el valor que acabem d’obtenir en qualsevol de les expressions del primer pas. SOLUCIÓ En aquest cas, hem aïllat la x de les dues equacions.
Sistemes amb duesequacions i dues incògnites Mètode de Reducció 1.- Reduïm x : Hem de tenir davant de les x’s el mateix nombre i diferent signe. Multiplicarem les equacions si cal per algun nombre per a poder aconseguir-ho. 2.- Reduïm y : Hem de tenir davant de les y’s el mateix nombre i diferent signe. Multiplicarem les equacions si cal per algun nombre per a poder aconseguir-ho. SOLUCIÓ
Equacions irracionals (ambuna arrel quadrada) Aïllem l’arrel Elevem els dos membres al quadrat Comprovem: és solució. no és solució. Solució:
19.
Equacions irracionals (ambuna arrel quadrada) Un altre exemple: Elevem els dos membres al quadrat: Comprovem: és solució. és solució. Solucions:
20.
Equacions irracionals 1eraïllem una de les dues arrels: 2on elevem al quadrat els dos membres: 3er aïllem l’arrel que queda i tornem a elevar al quadrat els dos membres: Comprovem: SOLUCIÓ: x = 2