SlideShare a Scribd company logo
1 of 135
Download to read offline
/135
Department of Electronic Engineering
National Taipei University of Technology
/135
• PN BJT
•
• BJT ( )
•
•
(CE) (CB) (CC)
•
•
2 Department of Electronic Engineering, NTUT
/135
PN BJT
3
/135
PN
• PN
• PN
PN
Cathode Anodepn
0t = 1t t= t = ∞
pn pn pn
(Depletion region)
E
4 Department of Electronic Engineering, NTUT
/135
PN
•
•
1F
T
V
V
tot SI I e
 
− 
 
=
+− FV
pn
2 pn
S i
A n D p
DD
I Aqn
N L N L
 
= +  
 
26 mV@ 300T
kT
V T K
q
= =≃
F TV V>
F
T
V
V
tot SI I e
 
 
 
≃
F TV V<< tot SI I−≃
−+ RV
pn
DI
DV
D
T
V
V
SI e
 
 
 
≃
SI−
I/V
5 Department of Electronic Engineering, NTUT
/135
(Reverse Breakdown)
• PN IS
PN
• ( )
• PN
(Zener effect) (Avalanche effect)
DI
DV
BDV
6 Department of Electronic Engineering, NTUT
/135
•
( 1V/µm)
n
−+ RV
pn E
•
PN
3 ~ 8 V
7 Department of Electronic Engineering, NTUT
/135
( )
• PN
•
(impact ionization)
−+
RV
pn E• (
)
8 Department of Electronic Engineering, NTUT
/135
( )
•
( )
0 1s 2s 3s 4s
t
BEV
0 1s 2s 3s 4s
t
BE BE bev V v= +
BEV bev ( ) BEv ( + )
beV phasor ( )
0 1s 2s 3s 4s
t
bev
9 Department of Electronic Engineering, NTUT
/135
•
•
•
VCCS
VCVS CCVS
+
-
+
-
v1 v = mv1
+
-
v = gi1
i1
VCCS CCCS
+
-
v1 i = gv1
i1
i = bi1
10 Department of Electronic Engineering, NTUT
/135
(VCCS)
•
• VCCS RL RL vout
+
−
inv 1 1i kv=
1kv1i LR
L mkR V
mV
t tinv outv
+
−
1v
+
−
inv
+
−
1v
+
−
outv
VCVS
1out L L inv kv R kR v= − = − kRL 1 VCCS
11 Department of Electronic Engineering, NTUT
/135
• VCCS rin
+
−
inv 1kv1i LR
+
−
outv
+
−
1vinr
1 1
1
out L L
L
in in
v kv R kv R
kR
v v v
− −
= = = −
kRL 1 VCCS
12 Department of Electronic Engineering, NTUT
/135
BJT
• (bipolar-junction transistor, BJT) 1945
Shockley Brattain Bardeen
• (BJT )
VBE ( ) VCE
e− (−IE )
Collector
Base
Emitter
(C)
(B)
(E)
+
−
0.8 VBEV =
−
+
1 VCEV =
+
−
+
−
−
+
13 Department of Electronic Engineering, NTUT
/135
BJT I/V
• IC VBE
• IC VCE
+
−
BEV
CI
+
−
CEV
+
−
BEV
CI
+
−
CEV
2B
T
V
V
SI e
1B
T
V
V
SI e
CEV
CI
1BE BV V=
2BE BV V=
BEV
CI
BE
T
V
V
C SI I e= ⋅
14 Department of Electronic Engineering, NTUT
/135
BJT VCCS
• BJT exponential VCCS
CBV
+
−
+
−BEV
CEV
+
−
(C)
(B)
(E)
Collector
Base
Emitter
BEV
+
−
BE
T
V
V
sI e
(C)(B)
(E)
BE
T
V
V
C sI I e=
15 Department of Electronic Engineering, NTUT
/135
( ) (I)
BEV BEV BEV BEV
CEV
CEV
CEV CEV
CI
BE
T
V
V
C SI I e= ⋅
CI
VBE
IC
(VBE=0 V)
VCE
(VCE>VBE)
IC
(VCE=0 V)
VCE
VBE
(VCE=VBE)
IC
VCE VBE
(VCE<VBE)
IC
VCE
IC
CI
16 Department of Electronic Engineering, NTUT
/135
( ) (II)
BEV
+
−
CEV
+
−
VCE
VCE
IC
VBE1
VBE2
VBE3
BEV
CEV
BE
T
V
V
C SI I e= ⋅
BEV
CEV
CEV
BEV
BJT
IC VCE
VBE
BEV
+
−
CEV
+
−
BE
T
V
V
SI e⋅
IC
VCE
CEV
+
−
BJT
17 Department of Electronic Engineering, NTUT
/135
• VOUT
16
5 10 ASI −
= ⋅
1.69 mA
BE
T
V
V
C SI I e= ⋅ =
( )3
3 V 3 V 1.69 10 1000 1.31 VCE C LV I R −
= − = − ⋅ ⋅ =
1.31 VOUTV =
750 mV
3 V
+
−
+
−
CI
LR
OUTV
+
−
1 kΩ
Q:
VBE IC
3 V 2.155 VOUT C LV I R= − =
18 Department of Electronic Engineering, NTUT
/135
C BI Iβ=
1 1
1
BE
T
V
V
E C B C SI I I I I e
β
β β
  +
= + = + = ⋅ 
 
BE
T
V
V
C SI I e= ⋅
1
BE
T
V
V
B SI I e
β
= ⋅
1
C E EI I I
β
α
β
= =
+
β IC IE
+
−
BEV
CEV
+
−
CI
BI
EI
IE IC
IB IC
C BI Iβ=
IB IE
( )1E BI Iβ= +
β
IB IC
β
( β
)
VCCS
( )expC S BE TI I V V= ⋅
19 Department of Electronic Engineering, NTUT
/135
• BJT VBE
750 mV β
50~200 IB IE
1.685 mA
BE
T
V
V
C SI I e= ⋅ =
200 50C B CI I I< <
8.43 A 33.7 ABIµ µ< <
1.005 1.02C E CI I I< <
1.693 mA 1.719 mAEI< <
16
5 10 ASI −
= ⋅
50 200 1.05 1.002β α< < ⇒ < <
VBE( VCCS )
+
−
BEV
BE
T
V
V
SI e
BE
T
V
VSI
e
β
CB
E
20 Department of Electronic Engineering, NTUT
/135
− BJT RC
• VBE = 800 mV β=100
BJT BJT
RC
X
+
−
BEV
CI
CR500 Ω
+
2 VCCV =
−
( )VXV
( )CR Ω
2.0
1.424
0.800
500 1041
17
5 10 ASI −
= ⋅
1.153 mA
BE
T
V
V
C SI I e= ⋅ =
1
11.53 µA
BE
T
V
V
B SI I e
β
= ⋅ =
1
1.165 mA
BE
T
V
V
E SI I e
β
β
+
= ⋅ =
1.424 VCC C C X XV R I V V= + ⇒ =
1.424 VCE X BEV V V= = >
800 mVCE XV V= = 1041CC X
C C
C
V V
R R
I
−
= ⇒ = Ω
RC
VBE IC
(VCE VBE )
21 Department of Electronic Engineering, NTUT
/135
•
10 VCCV =
2 kCR = Ω
220 kBR = Ω
CI
BI
4 VBBV =
+
−
CEV
+
−
BEV
4 0.7
15 µA
220k
BB BE
B
B
V V
I
R
− −
= = =
200 15 µA 3 mAC BI Iβ= = × =
200β =
( )1 3.015 mAE BI Iβ= + =
10 3 mA 2 k 4 VCE CC C CV V I R= − = − × Ω =
0.015 0.7 3 4 12 mWT B BE C CE C CEP I V I V I V= + = × + × =≃
(mA)Ci
,C satI
,CE satV
(V)CEv0 2 4 6 8 10
1
2
3
4
5
6
(Cut-off)
Q-point
5 µABi =
10 µA
15 µABQI =
20 µA
25 µA
30 µA
CE CC C CV V I R= − CC CE
C
C
V V
I
R
−
=
y x
22 Department of Electronic Engineering, NTUT
/13523
/135
gm (I)
• +
• VBE ( )
•
+
−
BEV∆
CI∆
+
CEV
−
0BEas V
C C
BE BE
I dI
V dV
∆ →
∆
=
∆
C
m
BE
dI
g
dV
=
BE
T
V
V
C SI I e= ⋅
1BE BE
T T
V V
V VC C
m S S
BE BE T T
dI Id
g I e I e
dV dV V V
 
= = ⋅ = ⋅ = 
 
 
gm
gm IC !!
IC = 1mA VT = 26mV 11
0.0385 0.0385 S 38.5 mS
26
mg −
= = Ω = =
Ω
24 Department of Electronic Engineering, NTUT
/135
gm (II)
• gm=dIC/dVBE IC-VBE
IC0 VBE0
• IC-VCE IC1
IC2
mg V∆
BEV
0BEV
0CI
CI
V∆
2BE BV V V= + ∆
2BE BV V=
1BE BV V=
1BE BV V V= + ∆
CI
2CI
1CI
2mg V∆
1mg V∆
CEV
VBE0 ∆V
IC0 gm∆V
gm= IC0/VT gm IC0 IC0
( )
VBE ∆V IC2 IC1
IC gm2 > gm1
m C BEg dI dV=
25 Department of Electronic Engineering, NTUT
/135
BJT
• BJT
+
−
BEV∆
+
CEV
−
BI∆
EI∆
CI∆
rπ
rπ E
CB
vπ
−
+
mg vπrπ
mr gπ β=
BE BE beV V v∆ = +
+
−
B B bI I i∆ = +
BEV∆
+
−
BE
T
V
V
SI e
∆
C C cI I i∆ = +
b ci i β=
+
CEV
−
!
CB
E
bev
−
+
c m bei g v=
bi
ib B-E
b c m bei i g vβ β= =
be
b m
v
r
i g
π
β
= =
BJT
m C Tg I V=
26 Department of Electronic Engineering, NTUT
/135
• v1 Q1
(a) (b) 1 mV C B
?
16
5 10 ASI −
= ⋅ 100β =
1
3.75
C
m
T
I
g
V
= =
Ω
6.92 mA
BE
T
V
V
C SI I e= =
800 mVBEV =
375
m
r
g
π
β
= = Ω
+
−
1v
+
ci
−
bi
rπ vπ mg vπ
1v vπ =
1
1 mV
0.267 mA
3.75
c m mi g v g vπ= = = =
Ω
1 1 mV
26.7 µA=
375
c
b
v i
i
rπ β
= = =
Ω
+
−
1v
+
1.8 V
−
CI
−
+
800 mV
(1)
(2) gm rπ
(3)
VBE IC
27 Department of Electronic Engineering, NTUT
/135
v.s.
•
+
−
1v
+
CR−
rπ vπ mg vπ
+
−
outv
+
−
1v
+
3.6 VCCV =
−
200CR = Ω
−
+
800 mV
+
−
OUT OUT outv V v= +3.6 6.92 mA 200 2.216 VCV = − × Ω = (>VBE, )
1out m C m Cv g v R g R vπ= − = −
1
out
v m C
v
A g R
v
= = −
1
3.75
mg =
Ω 200CR = Ω 53.4vA = −
RC
BJT
800 mVBEV = 6.92 mA
BE
T
V
V
C SI I e= =
28 Department of Electronic Engineering, NTUT
/135
(Early Effect)
• (VA )
BJT IC VBE VCE
( ) VBE IC VCE IC
1
BE
T
V
V CE
C S
A
V
I I e
V
 
+ 
 
≃
1 1
1
BE BE
T T
V V
V VC CE C
S S
CE CE A A A o
I d V I
I e I e
V dV V V V r
  ∂
= + = ⋅ =  
∂    
≃
CI
BE
T
V
VSI
e
β
w/ Early Effect
w/o Early Effect
CEV
1
BE
T
V
VS CE
A
I V
e
Vβ
 
+ 
 
BJT
ro
CI
CEV
AV−
CdI
CEdV
1
or
29 Department of Electronic Engineering, NTUT
/135
1
BE BE
T T
V V
V VCE ce ce
C C c S C S
A A
V v v
I I i I e I I e
V V
 +
∆ = + = + = + 
 
BE
T
V
V ce
c S
A
v
i I e
V
=
BE
T
ce A A
o V
c CV
S
v V V
r
i I
I e
= = ≃
+
−
BEV
C C cI I i∆ = +
CE CE ceV V v∆ = +
rπ
+
−
vπ mg vπ or
B C
E
Early effect BJT
BJT (gm, vπ, ro)
mr gπ β=
m C Tg I V=
o A Cr V I=
IC
30 Department of Electronic Engineering, NTUT
/135
• BJT IC = 1 mA β = 100 VA=15 V
+
−
BEV
CI∆
V∆
rπ
+
−
vπ mg vπ or
B C
E
1
26
C
m
T
I
g
V
= =
Ω
2600
m
r
g
π
β
= = Ω
15 kA
o
C
V
r
I
= = Ω
31 Department of Electronic Engineering, NTUT
/135
PNP
• PNP NPN
BEV
+
−
CEV
+
−BI
EI
CI
EB
T
V
V
C sI I e=
EB
T
V
Vs
B
I
I e
β
=
1 EB
T
V
V
E sI I e
β
β
+
=
1
EB
T
V
V EC
C s
A
V
I I e
V
 
= + 
 
+
−
vπ mg vπ orrπ
cibi
ei
B C
E
+
−
vπ mg vπ orrπ
cibi
ei
B C
E
npn
( )
32 Department of Electronic Engineering, NTUT
/135
BJT
• BJT B-C 2 VA
+
−
Xv
Xi
rπ
+
−
vπ mg vπ
X
m X
v
g v i
r
π
π
+ =
1mg rπ β= >> 1
1 1X T
X m m C
v V
i g r g Iπ
−
= =
+
≃
BC diode
IC=1 mA ?
33 Department of Electronic Engineering, NTUT
/135
(I) –
+
−
INv
CR
CCV
+
−
OUTv
+
−
inv rπ
+
−
vπ mg vπ or CR
+
−
outv
+
−
INv
CR
CCV
+
−
OUTv
+
−
inv
rπ
−
+
vπ mg vπ or
CR
+
−
outv
+
−
inv rπ
+
−
vπ mg vπ or CR
+
−
outv
VCCS
NPN
34 Department of Electronic Engineering, NTUT
/135
(II) –
−
+
INv
CR
CCV
+
−
OUTv
−
+
inv
rπ
−
+
vπ mg vπ or
CR
+
−
outv
+
−
inv rπ
+
−
vπ mg vπ or CR
+
−
outv
+
−
INv
1CR
CCV
+
−
OUTv
2CR
1Q
2Q
−
+
inv 1rπ
−
+
1vπ 1 1mg vπ 1or
1CR
+
−
outv
2rπ
−
+
2vπ 2 2mg vπ 2or
2CR
35 Department of Electronic Engineering, NTUT
/135
• MOSFET
MOSFET IV
( ) ( )2 21
2 2
2
D n ox GS TH DS DS n GS TH DS DS
W
I C V V V V K V V V V
L
µ    = − ⋅ − = − ⋅ −   
( ) ( ) ( ) ( )
2 21
1 1
2
D n ox GS TH DS n GS TH DS
W
I C V V V K V V V
L
µ λ λ= − + = − +
,DS sat GS THv v V= −
Di
0GSv
DSv
1GSv
2GSv
3GSv
4GSv
5GSv
2GS THv V−
( ) ( )
2
2 1D n GS TH DSi K v V vλ= − +
(Triode Region)
(Saturated Region)
+
−
GSV
D
G
S
+
−
DSV
DI
DSV( )
1
2
DS
D n GS TH
V
R
I K V V
= =
−
36 Department of Electronic Engineering, NTUT
/135
MOSFET
•
•
•
( ) ( )
2
2
2
D n D
m GS TH n ox GS TH n ox D
GS GS TH
I K W W W I
g V V C V V C I
V L L L V V
µ µ
∂
= = − = − = =
∂ −
( ) ( )
2 21
2
D n ox GS TH n GS TH
W
I C V V K V V
L
µ= − = − gm ID !!
( ) ( ) ( )
2 2 1
1D
n GS TH DS n GS TH D
DS DS o
I d
K V V V K V V I
V dV r
λ λ λ
∂  = − + = − = =
 ∂
MOS
ro
CI
CEV
1AV λ− = −
DdI
DSdV
1
or
( ) ( )
2
1D n GS TH DSI K V V Vλ= − +
1
o
D
r
Iλ
=
+
−
gsv
DG
S
m gsg v or
BJT !
37 Department of Electronic Engineering, NTUT
/135
BJT
38
/135
•
•
−
+
inv out inv v=
sR
+
−
( )
−
+
inv
L
out in
s L
R
v v
R R
=
+
sR
+
−
LR
vin
39 Department of Electronic Engineering, NTUT
/135
/
•
−
+
thv
ocv
thR
+
−
ocv
+
−
−
+
thv
sR
LR
+
outv
−
LR +
outv
−
th outR R=
outR
th inR R=
inR
40 Department of Electronic Engineering, NTUT
/135
• 10
10-mV 200 8
(a) 2 k 500
(b) 10 2
10vA =
10 mV
+
−
mv
200 Ω
8 Ω
200 Ω 8 Ω
outRinR
in
in m
in s
R
v v
R R
=
+
2 k 0.91in in mR v v= Ω ⇒ =
500 0.71in in mR v v= Ω ⇒ =
L
out amp
L o
R
v v
R R
=
+
2 0.8o out ampR v v= Ω ⇒ =
10 0.44o out ampR v v= Ω ⇒ =
41 Department of Electronic Engineering, NTUT
/135
•
•
•
xv
+
−
inR
xi xi
outR
xv
+
−
42 Department of Electronic Engineering, NTUT
/135
• (a) a-b
(b) Rth
v
+−
b
a
V
+
−
v
Rth
v
V2i1
i−i1
6 Ω4 Ω
i1
+
−
i
a
b
3 Ω
16v i=
( )1 1 16 2 4i i i i= + −
1 0.5 , 3i i v i= =
( )3th
v
R
i
= = Ω
+−
a
b(a)
6 Ω
V2i1
i1
4 Ω
43 Department of Electronic Engineering, NTUT
/135
• B ( )
+
−
xv rπ
+
−
vπ mg vπ or
CR
xi
x
in
x
v
R r
i
π= = T
m C
V
r
g I
π
β β
= =
1. β ( IC IB
)
2. (CE ) RC
( BJT )
B
B
inv
CR
CCV
outv
44 Department of Electronic Engineering, NTUT
/135
• C ( )
rπ
+
−
vπ mg vπ or
inv outR
outR
0vπ = 0mg vπ = out oR r=
(CE )
C
C
outv
45 Department of Electronic Engineering, NTUT
/135
• E ( Early Effect)
rπ
+
−
vπ mg vπ
xv
v
r
π
π
inv
outR
xi
CCV
xv vπ = −
m x
v
g v i
r
π
π
π
+ = −
1 1
1
x
out
x m
m
v
R
i gg
rπ
= =
+
≃
1 m
m
m
g
r g
g r
π
π
β
β
= → = <<
C
E ( vbe )
46 Department of Electronic Engineering, NTUT
/135
• E AC rπ
• E AC ro
• B AC 1/gm
m
r
g
π
β
=
AC
A
o
C
V
r
I
=
AC
1 T
m C
V
g I
=
AV = ∞
AC
47 Department of Electronic Engineering, NTUT
/13548
/135
(I)
• (B-E B-C ) BJT VCCS
• BJT gm rπ ro
IC
•
( )
T
m C
V
r
g I
π
β
β= = A
o
C
V
r
I
=C
m
T
I
g
V
=
rπ = ∞
1A
o
D D
V
r
I Iλ
= =
2 D
m
GS TH
I
g
V V
=
−
BJT
MOSFET
49 Department of Electronic Engineering, NTUT
/135
(II)
•
β
VBE
IC IB ( β)
IB RB
VBE
BR CR
CCV
1R CR
2R
CCV
1R CR
2R
ERREV
−
+
CCV
BR CR
CCV
VBE IC
(
)
R1 R2
RE
BJT
(thermal
runaway)
RB
BJT
BJT
50 Department of Electronic Engineering, NTUT
/135
( )
+
− inv
1CR
CCV
1CICBV
+
−BEV
2CI
−
+
outv
−
+
(
)
(
)
51 Department of Electronic Engineering, NTUT
/135
• BJT
BR CR
CCV
BI
CI
X
Y
B B BE CCR I V V+ = CC BE
B
B
V V
I
R
−
= CC BE
C B
B
V V
I I
R
β β
−
= =
CC BE
CE CC C C CC C
B
V V
V V I R V R
R
β
−
= − = −
RB RC VCE
RB RC
( )CC BE
CE CC C C CC C BE
B
V V
V V I R V R V
R
β
−
= − = − >
+
−
BEV
(1)
(2)
VBE VBE 700 mV 800 mV
( 800 mV) VBE
IC=ISexp(VBE/VT) VBE VBE IC=ISexp(VBE/VT) VCC−IBRB
VBE
52 Department of Electronic Engineering, NTUT
/135
• BJT
BR CR
BI
CI
X
Y
2.5 VCCV =
100 kΩ 0.5 kΩ
17
10 ASI −
= 100β =
17 µACC BE
B
B
V V
I
R
−
= ≃
1.675 VCE CC C C BEV V I R V= − = >
( ) 800 mVBEV =
17 µA 100 1.7 mACI = × =
IC VBE
ln 852 mVC
BE T
S
I
V V
I
= =
16.5 µACC BE
B
B
V V
I
R
−
= =
17 µA 100 1.65 mACI = × =VBE
VBE 850 mV
IC
1.65 mA
IB (VCC−VBE)
VBE VCC
IB IC
(1)
VBE IB IC
(2)
52 mV
?
ln 851.2 mVC
BE T
S
I
V V
I
= =
( )
53 Department of Electronic Engineering, NTUT
/135
− BJT VBE
• ( IB )
1R CR
CCV
CI
X
Y
2R
2
1 2
BE X CC
R
V V V
R R
= =
+
BE
T
V
V
C SI I e=
IC VBE VBE R1 R2
1R CR
CI
X
Y
2.5 VCCV =
17 kΩ 5 kΩ
2R8 kΩ
100β =
17
10 ASI −
=
231 µA
BE
T
V
V
C SI I e= =2
1 2
800 mVX CC
R
V V
R R
= =
+
2.31 µABI =
1
1 2
100 µA 43CC
B
V
I I
R R
= =
+
≃ (IB )
1.345 VCE CC C C BEV V I R V= − = > ( )
1I
IB IC/β β
IB IB I1
R1 VBE
IC
1I
54 Department of Electronic Engineering, NTUT
/135
IB
1R
2R
CCV
CR
CI
Y
X
1R
2R
thR
thV
X
CI
CCV
CR
BI
1R
+
−
2RCCV
+
−
+
−
2
1 2
th CC
R
V V
R R
=
+
1 2||thR R R=
X th B thV V I R= −
th B th
T
V I R
V
C SI I e
−
=
1
ln C
B th T
S th
I
I V V
I R
 
= − ⋅ 
 
VBE ln C
BE T B C BE B C
S
I
V V I I V I I
I
= → → → → → →⋯
R1 R2 IB VX IB
IC
R1 R2 I1>10IB
1I
55 Department of Electronic Engineering, NTUT
/135
• R1 R2 VBE
β ( R1 R2 IB )
VBE
R2 1% VX 1%
exp(0.01VBE/VT)=1.36 1%
36%
1R
2R
CR
CI
Y
X
EI
ER
P
CCV
1
1 2
1
E P E CC BE C
E
R
I V R V V I
R R R
 
= = − 
+ 
≃
VX RE
VBE
( β >> 1)
•
56 Department of Electronic Engineering, NTUT
/135
•
(1) I1 >> IB β (I1 10IB ) ( )
(2) VRE (~100 mV) VX VBE ( RE )
(3) RC RC BJT
1R
2R
CR
CIY
X
BI
ER
P
CCV
1I
1 BI I>>
+
−
REV
RC BJT
VRE VX VBE
I1 IB 10 β
57 Department of Electronic Engineering, NTUT
/135
•
gm=1/(52 )
RC 3 k
1
52
C
m
T
I
g
V
= =
Ω
0.5 mACI =
778 mVBEV =
200 mVRE E CV R I =≃ 400ER = Ω
2
1 2
978 mVX BE E C CC
R
V V R I V
R R
= + = =
+
5 µABI =
1
1 2
10 50 µACC
B
V
I I
R R
= > =
+
1 2
2.5 V
50 k
50 µA
R R+ = = Ω
1 30.45 kR = Ω 2 19.55 kR = Ω
CC C C XV R I V− > 1.522 VC CR I < 3.044 kCR < Ω
17
5 10 ASI −
= ×
100β =
1R
2R
CR
CI
Y
X
EI
ER
P
2.5 VCCV =
VX
1I
BJT
58 Department of Electronic Engineering, NTUT
/135
• 500 mVREV =
1 100 BI I≥
500 mV 0.5 mA 1 kER = = Ω
2
1 2
1.278 VX BE E C CC
R
V V R I V
R R
+ = =
+
≃
1 2
100CC
B
V
I
R R
≥
+ 1 2 5 kR R+ ≤ Ω
1 1.45 kR = Ω 2 3.55 kR = Ω
1.044 kCC X
C
C
V V
R
I
−
< = Ω
VRE
VX RC BJT
RC I1 IB
R1 R2 R1 R2
17
5 10 ASI −
= ×
100β =
1R
2R
CR
CIY
X
EI
ER
P
2.5 VCCV =
1
52
C
m
T
I
g
V
= =
Ω
0.5 mACI =
778 mVBEV =
5 µABI =
BJT
RC 1 k
59 Department of Electronic Engineering, NTUT
/135
( )
• IC
BR CR
CCV
BI
X
Y
CI
X Y B BV V R I= −
RC
B CI I<< B C
Y CC C C B B BE BE
R I
V V R I R I V V
β
= − = + = + CC BE
C
B
C
V V
I
R
R
β
−
=
+
VBE IC ln C
BE T
S
I
V V
I
=
RC
60 Department of Electronic Engineering, NTUT
/135
• IC
2 kCR = Ω
800 mVBEV =
ln 807.6 mVC
BE T
S
I
V V
I
= =
154.5 mVB BR I = 0.955 VY B B BEV R I V= + ≃
ln 791 mVC
BE T
S
I
V V
I
= =
81 mVB BR I = 0.881 VYV ≃
100β =
17
5 10 ASI −
= ×
1 kCR = Ω10 kBR = Ω
2.5 VCCV =
BI
X
Y
CI
1.545 mACC BE
C
B
C
V V
I
R
R
β
−
= =
+
800 mVBEV = 0.81 mACC BE
C
B
C
V V
I
R
R
β
−
= =
+
61 Department of Electronic Engineering, NTUT
/135
(1) VBE ( VBE )
(2) RC β
•
CC BE
C
C
V V
I
R
−
≃ Y CC C C BEV V R I V= − ≃
( )CC BEV V−
BR β
10C BR R β=
1.1
CC BE
C
C
V V
I
R
−
= ln C
BE T
S
I
V V
I
=
1.1
CC BE
C
C
V V
R
I
−
=
10
C
B
R
R
β
=
CC BE
C
B
C
V V
I
R
R
β
−
=
+
1.8 VCCV =
1
13
mg =
Ω
BR CR
CCV
BI
X
Y
CI
17
5 10 ASI −
= ×
100β =
1
13
C
m
T
I
g
V
= =
Ω
2 mACI = 754 mVBEV =
475
1.1
CC BE
C
C
V V
R
I
−
Ω≃ ≃ 4.75 k
10
C
B
R
R
β
= = Ω 95 mVB BI R =
754 mV 95 mV 849 mVCV = + =
62 Department of Electronic Engineering, NTUT
/13563
/135
BJT
• / 6
+
−
inv
outv
outv
outv
+
−
inv
+
−
inv
B-E
VCCS
CE CB CC
base ( )
CE
CC
CB
64 Department of Electronic Engineering, NTUT
/135
(Common-Emitter Topology)
• B C E
+
−
inv
outv
CCV
CR inv
rπ
+
−
vπ mg vπ CR
outv
out
C
v
R
−
Early Effect ( ro)
out m Cv g v Rπ= − out
v m C
in
v
A g R
v
= = −inv vπ =
(1)
(2) gm IC
C
m
T
I
g
V
= C C RC
v
T T
I R V
A
V V
= =
RC CC BEV V V≤ −
CC
v
T
V
A
V
≤
BJT
CC BE
v
T
V V
A
V
−
<
(3) RC RC RC
BJT
RC VCC
VCC BJT
VCC
65 Department of Electronic Engineering, NTUT
/135
800 mV
1.8 VCCV =
CR
pp2 mV
t
pp77 mV
800 mV
t
• RC 1 k 21.7v m CA g R= − −≃
1 mWC CCP I V= =
0.556 mACI =
CC C C BEV I R V− = 800 mVBEV ≃
1.798 kCC BE
C
C
V V
R
I
−
≤ = Ω
39v m CA g R= − −≃
0.02173mg =
VCC
38.46CC BE
v
T
V V
A
V
−
< =
1 mW
2 mW
2 mWC CCP I V= = 1.1111 mACI = 0.04273mg = 900CC BE
C
C
V V
R
I
−
≤ = Ω 38.45v m CA g R= − −≃
• RC 1 k 0.4 mA 27.66C
v m C C
T
I
A g R R
V
= − = − −≃
66 Department of Electronic Engineering, NTUT
/135
CE
•
rπ
+
−
vπ mg vπ CR
Xi
Xv
Xi
rπ
+
−
vπ mg vπ CRXv
+
−
+
−
X T
in
X m C
v V
R r
i g I
π
ββ
= = = =
IC (IB )
0vπ =
X
out C
X
v
R R
i
= =
•
out
v m C
in
R
A g R
R
β= − = − CE I/O
Early Effect
67 Department of Electronic Engineering, NTUT
/135
CE
• RC ( VCC
BJT )
• CE IC=1 mA RC 1 k β=100 VA=10 V ?
inv
rπ
+
−
vπ mg vπ or CR
outv
( )||v m C oA g R r= −
inR rπ=
||out C oR R r=
1 26m C Tg I V= = Ω
10 ko A Cr V I= = Ω
( )|| 35v m C oA g R r= − ≃
2.6 kin mR r gπ β= = = Ω
|| 0.91 kout C oR R r= = Ω
VAV = ∞ 38vA ≃
RC
CR = ∞ Ω 384vA ≃
68 Department of Electronic Engineering, NTUT
/135
CE
• RC
•
•
• CE VCC = 3 V VA = 5 V ? VCC 10 V ?
CR → ∞ v m oA g r= −
(intrinsic gain)
( )
C
m
T
I
g
V
= A
o
C
V
r
I
= A
v
T
V
A
V
=
intrinsic gain
VA 5 V
intrinsic gain 200
CC BE
v
T
V V
A
V
−
< VCC BJT
VCC
_3
84.6v VCC V
A =
192.3v VA
A =
_10
353.8v VCC V
A =
max
84.6vA =
192.3v VA
A = max
192.3vA =
69 Department of Electronic Engineering, NTUT
/135
CE
•
•
CCV
CR
OUTv
V∆
ER
+
−
+
−
0ER = mV g V∆ → ∆
0ER ≠ m smallV g V∆ → ∆
RE
( CE )
( )1in ER r Rπ β= + +
+
−
inv rπ
+
−
vπ mg vπ
outv
CR
ER
RE m E
v
v g v R
r
π
π
π
 
= + 
 
1
1in RE m E m E
v
v v v v g v R v g R
r r
π
π π π π
π π
    
= + = + + = + +    
    
1
111
1
mg r
out m C m C C
v
in m E
Em E
m
v g R g R R
A
v g R Rg R
gr
π
π
>>
− −
= = = −
+  ++ + 
 
≃
( CE ) 1 m Eg R+
bev
REv
vbe ( CE ) ic ib
( CE )
( )in mR r gπ β> =
+
−
REv
C
E
70 Department of Electronic Engineering, NTUT
/135
CE
•
•
Xv i rπ π=
RE
( ) ( )1X m X Xi g r i iπ β+ = + ( )1X X E Xv r i R iπ β= + + ( )1X
in E
X
v
R r R
i
π β= = + +
+
−
Xv rπ
+
−
vπ mg vπ CR
outv
ER
+
REv
−
P
+
−
Xv rπ
+
vπ
Xi
inR
( )1 ERβ+
−
rπ ib
RE ib+βib
ib (1+β)RE
emitter ground base (1+β)
+
−
Xvrπ
+
−
vπ mg vπ CR
Xi
ER
+
REv
−
0vπ =
0in m E
v
v v g v R
r
π
π π
π
 
= = + + 
 
0vπ = 0mg vπ =
X
out C
X
v
R R
i
= =
Xi
Early Effect
71 Department of Electronic Engineering, NTUT
/135
• CE
•
BR
rπ
( )1 ERβ+
A
gm
1m Eg R >>
out A out
in in A
v v v
v v v
=
( )
( )
1
1
EA
in E B
r Rv
v r R R
π
π
β
β
+ +
=
+ + +
( )
( ) ( )
1
1 1
E m C
E B E
r R g r R
r R R r R
π π
π π
β
β β
+ + −
= ⋅
+ + + + +
1
1
C
v
B
E
m
R
A
R
R
g β
−
+ +
+
≃
( )1in B ER R r Rπ β= + + +
out CR R=
1
1
m Eg R
m C C
v
m E E
g R R
A
g R R
>>
−
= −
+
≃
( )
( )
1
1 1
1
Eout m C
in E B
m E
r Rv g R
v r R R
g R
r
π
π
π
β
β
+ + −
= ⋅
+ + +  
+ + 
 
( )1
C
E B
R
r R Rπ
β
β
−
=
+ + +
CR
outv
ER
inv
BR
A
CCV
1
BR
β+
1
mg
72 Department of Electronic Engineering, NTUT
/135
( )
CCV
CR
outv
ER
inv
2rπ
CCV
CCV
CR
outv
ER
inv
2rπ
•
2||ER rπ
2
1
||
C
v
E
m
R
A
R r
g
π
= −
+
CCV
CR
outv
ER
inv
CCV
CCV
CR
outv
ER
inv
2rπ 2||
1
C
v
E
m
R r
A
R
g
π
= −
+
2||CR rπ
( )( )1 ||in ER r R rπ πβ= + +
out CR R=
( )1in ER r Rπ β= + +
2||out CR R rπ=
( )1 ERβ+
( )( )21 ||ER rπβ+
73 Department of Electronic Engineering, NTUT
/135
•
C1
1
C
v
E
m
R
A
R
g
= −
+
( )1in ER r Rπ β= + +
out CR R=
CR
outv
ER
inv
biasI
CCV
1C
C1 AC
CR
outv
CCV
inv
BR
1I
1R
2R 1C
CR
BR
1R
outv
inv
2R
( ) 21in BR R r Rπ β= + + +
1||out CR R R=
1
2
||
1
1
C
v
B
m
R R
A
R
R
g β
= −
+ +
+
• I/O (C1
)
74 Department of Electronic Engineering, NTUT
/135
• 1 k 2 mV 1
mA CE 40 mV ( RE = 4/gm β = 100)
1 kBR = Ω
1
26
mg =
Ω
40 mV
20
2 mV
vA = =
4
104E
m
R
g
= = Ω
1
2.8 k
1
B
C v E
m
R
R A R
g β
 
= ⋅ + + Ω 
+ 
≃
1
1
C
v
B
E
m
R
A
R
R
g β
−
+ +
+
≃
75 Department of Electronic Engineering, NTUT
/135
• ro Early Effect
ro
( BJT ) BJT
( )||x Ev i R rπ π= −
( )ro x m ov i g v rπ= −
( ) ( ) ( )|| ||x x m o x m x E o x Ev i g v r v i g i R r r i R rπ π π π= − − = + +  
( ) ( ) ( )( )1 || || 1 ||out m E o E o m o ER g R r r R r r g r R rπ π π= + + = + +  
( ) ( )|| 1 ||out o m o E o m ER r g r R r r g R rπ π+ +  ≃ ≃1m og r >>
( )1 ||m Eg R rπ+
rπ
+
−
vπ mg vπ
xi
ER
xv
P
xi
or
+
−
out o ER r R= +:
ix RE||rπ vπ 0
outR
ER
inv or
ER rπ>> [ ]1out o m oR r g r rπ β+≃ ≃
ER rπ<< ( )1out o m ER r g R+≃
76 Department of Electronic Engineering, NTUT
/135
• 1 mA 20 k BJT β =100
VA=10 V
• (C1 )
10 kA
o
C
V
r
I
= = Ω ER rπ<< ( )1 2m Eg R+ =
1
26E
m
R
g
= = Ω
2.6 k E
m
r R
g
π
β
= = Ω >>
outR
1R
2R 1CbV
+
−
1I
outR
2R
1R
( ){ }1 1 2 1|| 1 || ||out out o mR R R r g R r Rπ= = +  
( )1out o m ER r g R+≃
outR
1bV
+
−
2bV
+
−
outR
2or
( )1 1 2 11 ||out o m oR r g r rπ= +  
Cascode
77 Department of Electronic Engineering, NTUT
/135
CE (I)
• 100 CE
2.5 VCCV =
100 kΩ 1 kΩBR CR
X
OUTv
100
2.5 V 2.5 mV
100 k 100
XV
Ω
= ⋅
Ω + Ω
≃
RB VX ?
(1) RB
(2)
2.5 VCCV =
100 kΩ 1 kΩBR CR
X
OUTv1C
C1 AC
DC
78 Department of Electronic Engineering, NTUT
/135
CE (II)
CCV
BR CR
X
OUTv
1C
Y
1inR rπ=
CR
BR
CCV
BR CR
Y
X BR
CR
X
+
−
outv
inv
( ) ( )
outRCR
BR
CC BE
C
B
V V
I
R
β
−
=
CC BE
Y CC C BE
B
V V
V V R V
R
β
−
= − >
2 ||in BR r Rπ=
, ,m og r rπ
BJT
v m CA g R= −
( )||v m C oA g R r= −
out CR R=
||out C oR R r=
79 Department of Electronic Engineering, NTUT
/135
CE (III)
• 8
2.5 VCCV =
100 kΩ 1 kΩBR CR
X OUTv1C
2.5 VCCV =
100 kΩ 1 kΩBR CR
X1C
2C
8spR = Ω8spR = Ω
(AC 8 DC
1 )
VCE BJT
heavy saturation
AC DC
80 Department of Electronic Engineering, NTUT
/135
CE (IV)
•
2.5 VCCV =
100 kΩ 1 kΩBR CR
X1C
2C
BR
CR
+
−
outv
inv 100 kΩ
1 kΩ 8spR = Ω
VC 1.5 V
17
5 10 ASI −
= ×
1.5 VCV = 2.5 1.5 1 VRCV = − =
1 V
1 mA
1 k
CI = =
Ω
ln 796 mVC
BE T
S
I
V V
I
= =
17 µACC BE
B
B
V V
I
R
−
= = 58.8C
B
I
I
β = =
( )|| 0.31v m C spA g R R= =
CE
CE
CE (buffer)
8spR = Ω
, ,m og r rπ
81 Department of Electronic Engineering, NTUT
/135
CCV
1R CR
X1C
2R
+
−
inv
2R
+
−
inv 1R
CR
outv
1 2|| ||inR r R Rπ=
||out o CR r R=
( )||v m C oA g R r= −
CCV
1R CR
X1C
2R
+
−
inv
ER
2R
+
−
inv 1R
CR
outv
ER
CCV
1R CR
X1C
2R
+
−
inv
ER 2C
( )1
C
v
m E
R
A
g R
−
=
+
( ) 1 21 || ||in ER r R R Rπ β= + +  
out CR R=
v m CA g R= −
1 2|| ||inR r R Rπ=
out CR R=
Bypass AC RE
AC
82 Department of Electronic Engineering, NTUT
/135
• IC=1 mA RE VRE =400 mV
20 2 k
2.5 VCCV =
1R CR
X1C
2R
+
−
inv
ER 2C
1 mAC EI I= ≃ 400ER = Ω
1
26
mg =
Ω
20v m CA g R= = 512CR = Ω
400 mV ln 400 mV 736 mV 1.14 VC
X RE BE T
S
I
V V V V
I
= + = + = + =16
5 10 ASI −
= ×
100β =
400 mVREV =
1 µAC
B
I
I
β
= =
1 2
10CC
B
V
I
R R
>
+ 1 2 25 kR R+ < Ω
2
1 2
1.14 VX CC
R
V V
R R
= =
+ 2 11.4 kR = Ω
1 13.6 kR = Ω
1 2|| || 1.85 kinR r R Rπ= = Ω
RE R1 R2
1 2
5CC
B
V
I
R R
>
+ 1 2 50 kR R+ < Ω
2 22.4 kR = Ω
1 27.2 kR = Ω
1 2|| || 2.14 kinR r R Rπ= = Ω
83 Department of Electronic Engineering, NTUT
/135
CCV
1R CR
sR
1C 2R
+
−
inv
ER
2C LR
outv
+
−
inv
sR
1 2||R R
ER
||C LR R
outv
X
( )
( )
1 2
1 2
|| || 1
|| || 1
EX
in E s
R R r Rv
v R R r R R
π
π
β
β
+ +  =
+ + +  
( )
( )
1 2
1 2
|| || 1 ||
1|| || 1
Eout out C LX
in in X E s
E
m
R R r Rv v R Rv
v v v R R r R R R
g
π
π
β
β
+ +  = =
+ + +   +
R1 R2
DC AC
( )
DC
AC
84 Department of Electronic Engineering, NTUT
/135
(Common-Base Topology)
• E C B
CCV
CR
+
−
inv
+
−
bV
OUTv rπ
+
−
vπ mg vπ CR
outv
+
−
inv
v m CA g R= CE CB
RC
out
m
C
v
g v
R
π− = out
in
m C
v
v v
g R
π = − = − out
m C
in
v
g R
v
=
85 Department of Electronic Engineering, NTUT
/135
• CB IC=0.2 mA
600 mV
• VB
1.8 VCCV =
CR
+
inv
BV
outv
600 mV
600 mV ln 600 mV 1.354 VC
B BE T
S
I
v V V
I
= + = + =
RC
1.8 V 1.354 V 0.446 V− =
17.2C
v m C C
T
I
A g R R
V
= = =
17
5 10 ASI −
= ×
100β =
Vb
+
−
inv 600 mV
outv
CR
1.8 VCCV =
1R
2R
BI1I
100β =
17
5 10 ASI −
= ×
1
1 2
10 20 µA CC
B
V
I I
R R+
≃ ≃ ≃
1 2 90 kR R+ = Ω 2
1 2
1.354 VB CC
R
V V
R R
=
+
≃
2 67.7 kR = Ω
1 22.3 kR = Ω
0.2 mACI = 0.2 100 mA 2 µABI = =
β
86 Department of Electronic Engineering, NTUT
/135
•
CCV
CR
inR 1
in
m
R
g
=
VA=∞ CB
IC=1 mA 26
(CE β/gm)
CCV
CR
BV
XI
+
−
XV V∆
1X
in
X m m
V V
R
I g V g
∆ ∆
= = =
∆ ∆
•
CR
outRor 1outR
1 || ||out out C o CR R R r R= =
1out oR r=
out CR R=
CB Rin Rout
out
v m out
in
R
A g R
R
= =
1 || ||out out C o CR R R r R= =
87 Department of Electronic Engineering, NTUT
/135
CB
CR
CCV
+
−
inv
sR
1
mg
outv
X
X
1
mg
sR
+
−
inv
1
1
1 1
m
X in in
m s
s
m
g
v v v
g RR
g
= =
++
out
m C
X
v
g R
v
= CB
11
out m C C
in m s
s
m
v g R R
v g R R
g
= =
+ +
CE ( Rs
)
88 Department of Electronic Engineering, NTUT
/135
• CB 50 RF
50 CB 50
( )
CR
CCV
CR
CCV
BV
outv
50sR = Ω
outv
BV
+
−
inv
1
50in
m
R
g
= = Ω
0.52 mAC m TI g V= =
1
1 2
C
v
s
m
R
A
R
g
= =
+
CB 50
1
in
in
s
m
v
i
R
g
=
+
1
C in
out
s
m
R v
v
R
g
=
+
0.5C sR R≤
89 Department of Electronic Engineering, NTUT
/135
CB
CCV
CR
outv
BR
or
ER
BV
+
−
inv
ER
or
CR
1outR 2outR
1
50in
m
R
g
= = Ω
0BR =
( ) ( )1 1 || ||out m E o ER g R r r R rπ π= + +  
( ) ( ){ }|| 1 || ||out C m E o ER R g R r r R rπ π= + +  
90 Department of Electronic Engineering, NTUT
/135
RB ro
rπ
+
−
vπ mg vπ CR
outv
BR
ER+
inv
−
P
out
m
C
v
g v
R
π = − out
m C
v
v
g R
π = −
RB
out out
m C C
v v v
r g r R R
π
π π β
= − = −
( ) ( )out out
P B B
C C
v v
v R r R r
R R
π π
β β
−
= − + = +
P KCL P in
m
E
v v v
g v
r R
π
π
π
−
+ =
( )
1
out
B in
out C
m
m C E
v
R r v
v R
g
r g R R
π
π
β
+ −
  −
+ ⋅ = 
  ( )
( )
11
1
out C C
Bin E B
E
m
v R R
Rv R R r R
g
π
β
β
β
=
+ + + + +
+
≃
CE
RB RB
91 Department of Electronic Engineering, NTUT
/135
RB
CCV
CR
+
−
inv
ER
outv
BR
CB Stage
rπ
+
−
vπ mg vπ CR
outv
BR
+
−
Xv
Xi
X
B
r
v v
r R
π
π
π
= −
+
KCL m X
v
g v i
r
π
π
π
+ = −
1
m X X
B
r
g v i
r r R
π
π π
  −
+ = − 
+ 
1
1 1
X B B
X m
v r R R
i g
π
β β
+
= +
+ +
≃
RB=0, Rin=1/gm
BR
ER
AV = ∞AV = ∞
1
1
B
m
R
g β
+
+
( )1 Er Rπ β+ +
emitter base RB (1+β) Emitter
degeneration base emitter RE (1+β)
92 Department of Electronic Engineering, NTUT
/135
CR
CCV
BR
outv
CR
outv
CCV
1
1
1
B
m
R
g β
+
+
XR
eqR
XR
1
1
1
B
eq
m
R
R
g β
= +
+
2 2 1
1 1 1 1
1 1 1
eq B
X
m m m
R R
R
g g gβ β β
 
= + = + + 
+ + + 
• RX
93 Department of Electronic Engineering, NTUT
/135
CB (I)
•
CCV
CR
OUTv
+
−
inv
1C+
−
BV
CCV
CR
OUTv
+
−
inv
1C+
−
BV
CCV
CR
outv
+
−
inv
1C+
−
BV
1
mg
ER
ER
emitter DC path emitter DC path
AC
RE emitter DC path
1
||in E
m
R R
g
=
94 Department of Electronic Engineering, NTUT
/135
CB (II)
CCV
CR
outv
+
−
inv
1C+
−
BV X
inRER
sR
1
||in E
m
R R
g
=
Rin
( )
1
||
1
1 1 1||
E
X in m
in in s m E s
E s
m
R
v R g
v R R g R RR R
g
= = =
+ + ++
out
m C
X
v
g R
v
=
( )
1
1 1
out
m C
in m E s
v
g R
v g R R
=
+ +
CCV
CR
outv
+
−
inv
1C
+
−
bV
inR
ER
sR
ini
1i
2i
iin i1 RE(shunt ) i2 RC
RE
RC RE
RE 1/gm i2
1
E
m
R
g
>> C E TI R V>>
RE RE VT
95 Department of Electronic Engineering, NTUT
/135
CB (III) - Vb
• CE
CE CB bypass
AC CE bypass
( common AC
)
CCV
CR
ER
1R
2R
1C
inv
1I
CCV
CR
ER
thR
+
−
thV
CCV
CR
ER
1R
2R
BC
β I1 >> IB
2
1 2
b CC
R
V V
R R+
≃
Base
1 2||thR R R=
bypass CB base AC
ground
96 Department of Electronic Engineering, NTUT
/135
• CB 10 50
1E mR g>> 500ER = Ω
1 50in mR g = Ω≃ 0.52 mA, 899 mVC BEI V= =
bypass (AC )
500CR = Ω10v m CA g R= =
RE 0.52 mA 500 260 mVE E C E TI R I R V= × Ω = >>≃
1.16 Vb E E BEV I R V= + =
R1 R2 10 52 µABI =
1
1 2
1.16 Vb CC
R
V V
R R
=
+
≃
1 2
52 µACCV
R R
=
+
1 25.8 kR = Ω
2 22.3 kR = Ω
2.5 VCCV =
CR
ER
1R
2R
BC
OUTv
1C
inv
100β =
16
5 10 ASI −
= ×
AV = ∞
900 MHz
C1 CB
1
1
1
20
mg
j Cω
=
1
20 20
71 pF
2 900 MHz
m mg g
C
ω π
= = =
⋅
1
1 1
1 20
m
B
g
j Cβ ω
=
+
0.7 pFBC =
( 10 )
97 Department of Electronic Engineering, NTUT
/135
(Common Collector Topology)
• B E C
CCV
ER
INV
OUTV
1BEV
2BEV
1INV
1OUTV
1IN INV V+ ∆
1OUT OUTV V+ ∆
∆VOUT > ∆VIN VBE2 < VBE1
IE
IERE=VOUT
∆VOUT ∆VIN
1
rπ
+
−
vπ mg vπ
ER
inv
+
−
outv
out
m
E
v v
g v
r R
π
π
π
+ =
1
out
E
r v
v
R
π
π
β
=
+
in outv v vπ= +
1
1 1
1
1
out E
in
E
E m
v R
rv R
R g
π
β
=
+ +
+
≃
1
Early Effect
98 Department of Electronic Engineering, NTUT
/135
CC
• CC
CCV
inv
+
−
ER
CCV CCV
thR
inv
+
− inv
+
−
out inv v=
ER
1
th
m
R
g
=
outv
th inv v=
1
in
m
R
g
=
CC Rth=1/gm
CC
(CE CB
)
outv
99 Department of Electronic Engineering, NTUT
/135
•
•
CCV
INv
OUTv
1I
1vA ≃
VBE out in BEv v V= −
VBE vOUT vIN
CCV
ER
inv
+
−
outv
sR
sR
CCV
thR
th inv v=
+
−
1
1
s
m
R
g β
+
+
ER
1
1
out E
sin
E
m
v R
Rv R
gβ
=
+ +
+
outv
100 Department of Electronic Engineering, NTUT
/135
CC
rπ
+
−
vπ mg vπ
ER
Xv
+
−
Xi
inR
0CR →
CCV
ER
CCV
inR
ER
Xi v vπ π=
iX gmvπ RE ( )X m Ei g v Rπ+
( ) ( )X X m E X X m Ev v i g v R i r i g v Rπ π π π= + + = + +
( )1X
E
X
v
r R
i
π β= + +
Follower RE
buffer ( )
101 Department of Electronic Engineering, NTUT
/135
• CE 20 1 k
(a) 8 ?
(b) CC ? CC 5 mA
β=100 VA follower
CCV
1 kΩ CR
8spR = Ω
1C
1inR
inv
+
−
1I
CCV
( )20 ||8 0.159v CA R= ⋅ Ω = ( )1 2 1 1058in spR r Rπ β= + + = Ω
( )1||
20 10.28C in
v
C
R R
A
R
= ⋅ =
CCV
1 kΩ
inv
+
−
CR
1C
8spR = Ω
102 Department of Electronic Engineering, NTUT
/135
CCV
sR
ER
outR
sR
CCV
1
1
s
m
R
g β
+
+
ER
1
||
1
s
out E
m
R
R R
g β
 
= + 
+ 
Follower
driver follower
( ) ( )ER
inv
+
−
inv
+
−
CCV
sR
ER
or
sR
ER or
||
1
||
1
E o
v
s
E o
m
R r
A
R
R r
gβ
=
+ +
+
( )( )1 ||in E oR r R rπ β= + +
1
|| ||
1
s
out E o
m
R
R R r
gβ
 
= + 
+ 
103 Department of Electronic Engineering, NTUT
/135
CC
CCV
ER
X
OUTv
1R
2R
1C
inv
−
+
inv
−
+
1C
CCV
BR
BI
X
Y OUTv
ER
R1 R2 IB
β
VCC C VCC BJT
RB RE
β
104 Department of Electronic Engineering, NTUT
/135
• RB=10 k RE=1 k VCC=2.5 V
KVL B C
BE E C CC
R I
V R I V
β
+ + =
800 mVBEV ≃ 1.545 mACI =
ln 748 mVC
BE T
S
I
V V
I
= = 1.593 mACI =
159 mVB BI R =
1.593 VC EI R =
C E B BI R I R>>
inv
−
+
1C
CCV
BR
BI
X
Y OUTv
ER
16
5 10 ASI −
= ×
100β =
105 Department of Electronic Engineering, NTUT
/135
(I)
• 10 k 10 mV
0.1 W 8
12 V
2 2
, ,0.1 W 8L L rms L L rmsP i R i= = ⋅ = ⋅
, 0.112 AL rmsi =
, ,2 0.158 AL peak L rmsi i= =
, , 0.158 8 1.26 Vo peak L peak Lv i R= ⋅ = × ≃
1.26
126
0.01
vA = =
inv
−
+
10 ksR = Ω CC
8LR = Ω
outv
Li126vA =
1. 8 CE
2. 126 CC
3. 10 k CB
CE CC CB
106 Department of Electronic Engineering, NTUT
/135
(II)
•
inv
−
+
10 ksR = Ω CC
8LR = Ω
outv
1vA 2vA 3vA
1.
CE CE CC
2.
CC
3.
CE CE
2.
CE CE
3.
1.
CE CE CB
1.
CE CE CC
2.
CC
3.
CC
1 2 3v v v vA A A A= ⋅ ⋅
CC +CE +CC
107 Department of Electronic Engineering, NTUT
/135
• 8 CC ( )
Li
CC
8LR = Ω
ov
4ER
4BV
4BI
3ov
4inR 12 VCCV =
(III) –
, 0.158 AL peaki = , 1.26 Vo peakv =
4 50β =
4
12 6
20
0.3
CC CEQ
E
EQ
V V
R
I
− −
= = = Ω
50
0.3 0.294 A
1 51
CQ EQI I
β
β
= = ⋅ =
+
0.294 A
11.3
26 mV
C
m
T
I
g
V
= = = 4.42
m
r
g
π
β
= = Ω
( )( )
( )( )
( )
( )
1 || 51 20 ||8
0.985
1 || 4.42 51 20 ||8
E L
v
E L
R R
A
r R Rπ
β
β
+ ⋅
= = =
+ + + ⋅
1.26 V vo3
1.28 V
0.158 A
0.158 A
Ci
CQ EQI I≃
CEv
CEQV 12 VCCV =
1.26 V1.26 V
0.3 AEQI =
6 VCEV =
108 Department of Electronic Engineering, NTUT
/135
(IV) –
• 10 k CC
6 V, 1 mACEQ CQV I= =
1 2|| 100 kR R = Ω
1
12 6
6 k
0.001
CC CE
E
E
V V
R
I
− −
= = = Ω
1
0.0385
26
C
m
T
I
g
V
= = =
Ω
2.6 k
m
r
g
π
β
= = Ω
( )1 2|| || 1 85.9 kin ER R R r Rπ β= + + = Ω  
( )
( )
1
0.892
1
Ein
v
in s E
RR
A
R R r Rπ
β
β
+
= =
+ + + 8.92 mVov =
1 155 kR = Ω 2 282 kR = Ω
+
inv
−
sR
10 kΩ
12 VCCV =
1R
2R
1 100β =
1ov
1ER
( ) ( )1 1 2 1 1 1|| || 1in ER R R r Rπ β= + +  
CEv
12 VCCV =CEQV
Ci
CQ EQI I≃
Rs 10
1 mACQI =
6 VCEV =
608.6 kΩ
10 mVinv =
( )
109 Department of Electronic Engineering, NTUT
/135
(V) –
2 328.8, 5v vA A= =
3 4 4 4 6 0.7 6.7 VC B E BEV V V V= = + = + =
4
0.294
5.88 mA
50
BI = = 3
3 313 mA, 0.5C
C m
T
I
I g
V
= =≃
3 200
m
r
g
π
β
= = Ω
( )( )
( )
4 4 4 41 ||
4.42 51 20 ||8 296
in E LR r R Rπ β= + +
= + = Ω
( )
( )
3 3 4
3
3 3 3
||
5
1
C in
v
E
R R
A
r Rπ
β
β
= =
+ +
3 27.3ER Ω≃
, , , ,126 0.892 0.985v v in v gain v o v gainA A A A A= = ⋅ ⋅ = ⋅ ⋅
, 144v gainA ≃
VBE4
3
3
3 3
12 6.7
296 CC C
C
RC RC
V V
R
I I
− −
= Ω = = 3 18.9 mARCI =
( ) ( )3 5 6 3 3 3|| || 1 50 k || 200 101 27.3 2.8 kin ER R R r Rπ β= + + = Ω + ⋅ Ω   ≃
5 6|| 50 kR R = Ω ( ) 5 69.9 kR = Ω 6 176 kR = Ω
12 VCCV =
5R
6R
3R
4R
3CR
3ER
2CR
2ER
3inR2inR
1ov
2ov
3 4C BV V=
3 100β =2 100β =
2
2
12 6
1.2 k
5
CC C
C
CQ
V V
R
I
− −
= = = Ω 2
2
2
0.52 kT
CQ
V
r
I
π
β
= = Ω
( )
( )
2 2 3
2
2 2 2
||
28.8
1
C in
v
E
R R
A
r Rπ
β
β
= =
+ +
2 23.7ER Ω≃ 5 6|| 50 kR R = Ω ( ) 3 181 kR = Ω
4 69.1 kR = Ω
110 Department of Electronic Engineering, NTUT
/135
(VI) –
•
• ( )
headroom
•
• decouple
181 kΩ
23.7 Ω
1.2 kΩ
69.9 kΩ
176 kΩ
296 Ω
20 Ω 8 Ω27.3 Ω
155 kΩ
282 kΩ
69.1 kΩ6 kΩ
12 VCCV =
10 kΩ
−
+
sv
111 Department of Electronic Engineering, NTUT
/135112
/135
(I)
PSRR
DDV
SSV
INv +
INv − −
+
OUTv
offset
CMRR
( )
SR
0
(dB)
113 Department of Electronic Engineering, NTUT
/135
(II)
• OPA (DVCVS)
• OPA A OPA
vo
+
−
1v
2v
ov
+
−
− −
1v
2v
( )1 2 oA v v v− =−
−
A → ∞
1 2 0v v− =
1 2v v=
( )1 2ov A v v= −
v1 = v2 (virtual short)
(v1=0)
(v2≈0)
(virtual ground virtual earth)
non-inverting input
inverting input
+
+
+
+
114 Department of Electronic Engineering, NTUT
/135
(I)
•
•
Iv
Ov
1R
2R
−
+
2
1
O
v
I
v R
A
v R
= = −
0a bv v= =
1 2 1Ii i v R= =
av
0bv =
Iv
Ov
1R
2R
−
+
1i
2i
Zin
2
2 2
1
O I
R
v i R v
R
= − = −
2
1
1O
v
I
v R
A
v R
= = +
Ov
−
+Iv
1R
2R
Ov
−
+Iv
1R
2R
1i
2i
av
a Iv v=
1 2 1ai i v R= = −Zin
( ) 2
2 1 2
1
1O I
R
v i R R v
R
 
= − + = + 
 
KCL KVL ( )
v i i v
R2 5 k 25 k
R1
115 Department of Electronic Engineering, NTUT
/135
(II)
• (level shifting)
Iv
Ov
1R
2R
−
+
Iv
Ov
1R
2R
−
+
−
+
BIASV
2 2
1 1
1O I BIAS
R R
v v V
R R
 
= − + + 
 
Ov
−
+Iv
1R
2R
2 2
1 1
1O I BIAS
R R
v v V
R R
 
= + − 
 
2R
1R
Iv
Ov
+
−
−
+
BIASV
116 Department of Electronic Engineering, NTUT
/135
( )
•
•
Iv
Ov
1 1 kR = Ω
2 10 kR = Ω
−
+
2
1
O I
R
v v
R
= −
Iv
Ov
1 1 kR = Ω
2 10 kR = Ω
−
+
Iv
Ov
1 1 kR = Ω
2 10 kR = Ω
−
+
−
+
BIASV
2 2
1 1
1O I BIAS
R R
v v V
R R
 
= − + + 
 
+VCC
−−−−VSS
100 mV
1 V−
OPA
OK
+VCC
GND
1 V−
100 mV
OPA
0 V
100 mV 1 V 2.475 V= − +
Level shifting
AC
VCC/2
+VCC
GND
225 mV
117 Department of Electronic Engineering, NTUT
/135
(III)
• /
1v
Ov
1R fR
−
+
2v
nv
2R
nR
1 2
1 2
f f f
O n
n
R R R
v v v v
R R R
 
= − + + + 
 
⋯
1 2f nR R R R= = = =⋯
( )1 2O nv v v v= − + + +⋯
−
+1v
2v
bR
aR
aR
bR
Ov
( )1 2
b
O
a
R
v v v
R
= −
( v2=0 v1 vo1 v1=0 v2
vo2 vo= vo1 +vo2 )
v i i v
118 Department of Electronic Engineering, NTUT
/135
(IV)
•
−
+
1v
2v
aR
aR
3v
4v
aR
aR
bR
bR
ov
( )1 2 3 4
b
O
a
R
v v v v v
R
= + − −
119 Department of Electronic Engineering, NTUT
/135
(V)
•
•
0
iv
ov
R
C
−
+
( )0 0ov =
KCL 0i ov dv
C
R dt
+ =
0
1 t
o iv v dt
RC
= − ∫
iV
oV
R
1
sC
−
+
1
1
o i i
sCV V V
R sRC
= − = −
iv
ov
C
R
−
+
( )1o i i
R
V V sRC V
sC
= − = −
v i i v
120 Department of Electronic Engineering, NTUT
/135
(Voltage Follower)
• ( )
• (heavy load)
Iv
Ov
−
+
1O
v
I
v
A
v
= ≃
Iv
100 ksR = Ω
1 kLR = Ω
+
−
Ov
+
−
Source Load
1k
0.01
100k+1k
O Iv v= ≃
Iv
100 ksR = Ω
1 kLR = Ω+
−
Ov
+
−
Source Load
Buffer
O Iv v≃
121 Department of Electronic Engineering, NTUT
/135
• ZL
+
−
SV
1R
OV
ILZ
1SI V R=
122 Department of Electronic Engineering, NTUT
/135
• general
INv +
INv −
2R
1R
3R
4R
Ov
−
+
BIASV
( )
( )
( )
( )
4 1 2 3 1 22
1 3 4 1 1 3 4
O IN IN BIAS
R R R R R RR
v v v V
R R R R R R R
+ −
+ +
= − +
+ +
INv +
4
3 4
IN
R
v
R R
+
+
4 2
3 4 1
1 IN
R R
v
R R R
+
 
+ 
+  
INv −
2
1
IN
R
v
R
−−
3
3 4
BIAS
R
V
R R+BIASV 3 2
3 4 1
1 BIAS
R R
V
R R R
 
+ 
+  
31
2 4
RR
K
R R
= =
1 1
1
IN
K
v
K K
+
+ 
 
+  
2
1
IN
R
v
R
−−
( )
( )
1
1 1
1 1
BIASK V
K
+  +
( )2
1
O IN IN BIAS
R
v v v V
R
+ −= − +
123 Department of Electronic Engineering, NTUT
/135
( )
( )2 4
1 2
3
2
1O BIAS
G
R R
v v v V
R R
  
= + − +  
  
2v
1v
2R
4R
GR
Ov
−
+ BIASV
+
− 4R
3R
3R
2R
−
+ 1v
2
11
G
R
v
R
 
+ 
 
2v
2
21
G
R
v
R
 
+ 
 
3
3 4
BIAS
R
V
R R+BIASV 3 4
3 4 3
1 BIAS
R R
V
R R R
 
+ 
+  
2
1
G
R
v
R
 
− 
 
2
2
G
R
v
R
 
− 
 
2 2
1 21
G G
R R
v v
R R
   
− + +   
   
2 2
2 11
G G
R R
v v
R R
   
− + +   
   
4
3
R
R
 
× − + 
 
4 4
3 4 3
1
R R
R R R
   
× ⋅ + +   
+   
( )2 4
1 2
3
2
1 BIAS
G
R R
v v V
R R
  
= + − +  
  
124 Department of Electronic Engineering, NTUT
/135
OPA
• OPA ( )
1
oA
A s
sτ
=
+
1
2c cfω π
τ
= =
fall-off rate:
−6 dB/oct
f (Hz)
fc fT
Gain (dB)
f (Hz)
Phase (deg.)
0
90−
oA
oA
τ OPA ( )1 τ−
cf 3 dB
Tf 0 dB (1)
OPA fT OPA (GBW)
125 Department of Electronic Engineering, NTUT
/135
(Gain-Bandwidth Product)
•
• OPA
• =
1
2c cfω π
τ
= =
( )
1
o
c
A
A s
s
ω
=
+
( ) 2
1
o
c
A
A jω
ω
ω
=
 
+  
 
( ) 1TA jω =
2
1 T
o
c
A
ω
ω
 
+ = 
 
2
1T
c
ω
ω
 
>> 
 
T
o
c
A
ω
ω
≃
T o cAω ω=
3 dB
( )x x Tf A j fω⋅ =
OPA fx
( ) T
x
x
f
A j
f
ω =
126 Department of Electronic Engineering, NTUT
/135
OPA (I)
• (AOL)
OPA
•
Bipolar OPA Ri 150 k
FETs (Mega ) OPA
•
Bipolar OPA 100
OPA OPA
1 k 100 k 10 k
OPA
127 Department of Electronic Engineering, NTUT
/135
OPA (II)
• (Input offset voltage, VOS VIO)
OPA 0 V
AC
(VIO)
• (Input offset current, IOS IIO)
0
OPA
BJT
1 1O f BV R I=IB1 (IB2=0)
2 2 2
1
1 f
O B
R
V I R
R
 
= − + 
 
1 2 1 2 2
1
1 f
O O O B f B
R
V V V I R I R
R
 
= + = − + 
 
IB1 = IB2
IB2 (IB1=0)
2BI
1BI
fR
1R
OV
SV
2R −
+
128 Department of Electronic Engineering, NTUT
/135
OPA (III)
• (VIN)
OPA ( )
offset offset OPA
• (Vopp)
DC 0 V OPA
2 1iV V V− ≤ ≤
iV
1V
2V−
oV
1oV
2oV−
Vi
129 Department of Electronic Engineering, NTUT
/135
OPA (IV)
• Slew Rate (SR)
OPA (
OPA
) SR OPA step
(unit gain) zero crossing
• SR sino mv V tω=
coso
m
dv
V t
dt
ω ω=
0, ,2 ,
o
m
t
dv
V
dt ω π π
ω
=
=
⋯
mSR V ω≥ mV
SR
ω
≥
SR OPA
OPA
130 Department of Electronic Engineering, NTUT
/135
OPA (V)
• (Common-mode rejection ratio, CMRR)
OPA ( )
CMRR (dB)
CMRR 80 dB CMRR
• (Power supply sensitivity, ∆VIO/∆VGG)
∆VGG ∆VIO
•
OPA
• Ci
131 Department of Electronic Engineering, NTUT
/135
OPA (VI)
• (Full power response)
OPA
• (Gain-Bandwidth Product)
17 OPA
OPA
75 kHz
132 Department of Electronic Engineering, NTUT
/135
OPA (VII)
• (Rise time, tr)
OPA OPA 10% 90%
• (Power supply voltage)
• (Power supply current)
• ( )
•
( )
0.35r ct f× ≅
133 Department of Electronic Engineering, NTUT
/135
• OPA
• datasheet
AC
• 100
• Slew Rate
• OPA
OPA datasheet
• bypass
DC 1 MHz 1 µF
(10MHz MHz)
0.1 µF
OPA
134 Department of Electronic Engineering, NTUT
/135
•
• ( )
gm rπ
ro
• BJT
CE CB CB
CC CE CB CC
• OPA
135 Department of Electronic Engineering, NTUT

More Related Content

What's hot

電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路Simen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計Simen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理Simen Li
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析Simen Li
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計Simen Li
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律Simen Li
 

What's hot (20)

電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律
 

Viewers also liked

RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierSimen Li
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsSimen Li
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路Simen Li
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureSimen Li
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and LinearitiesSimen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesSimen Li
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 

Viewers also liked (20)

RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 

Similar to 射頻電子 - [實驗第一章] 基頻放大器設計

RN1418 PSpice Model (Free SPICE Model)
RN1418 PSpice Model  (Free SPICE Model)RN1418 PSpice Model  (Free SPICE Model)
RN1418 PSpice Model (Free SPICE Model)Tsuyoshi Horigome
 
RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)Tsuyoshi Horigome
 
DTA123EE LTspice Model (Free SPICE Model)
DTA123EE LTspice Model (Free SPICE Model)DTA123EE LTspice Model (Free SPICE Model)
DTA123EE LTspice Model (Free SPICE Model)Tsuyoshi Horigome
 
DTA123EE PSpice Model (Free SPICE Model)
 DTA123EE PSpice Model  (Free SPICE Model) DTA123EE PSpice Model  (Free SPICE Model)
DTA123EE PSpice Model (Free SPICE Model)Tsuyoshi Horigome
 
MBN600E45A PSpice Model (Free SPICE Model)
MBN600E45A PSpice Model (Free SPICE Model)MBN600E45A PSpice Model (Free SPICE Model)
MBN600E45A PSpice Model (Free SPICE Model)Tsuyoshi Horigome
 
DCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデルDCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデルTsuyoshi Horigome
 
DG1E60 PSpice Model (Free SPICE Model)
DG1E60  PSpice Model (Free SPICE Model)DG1E60  PSpice Model (Free SPICE Model)
DG1E60 PSpice Model (Free SPICE Model)Tsuyoshi Horigome
 
DG1E60 LTspice Model (Free SPICE Model)
DG1E60  LTspice Model (Free SPICE Model)DG1E60  LTspice Model (Free SPICE Model)
DG1E60 LTspice Model (Free SPICE Model)Tsuyoshi Horigome
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solAnkit Chaurasia
 
1SS272 PSpice Model (Free SPICE Model)
1SS272 PSpice Model (Free SPICE Model)1SS272 PSpice Model (Free SPICE Model)
1SS272 PSpice Model (Free SPICE Model)Tsuyoshi Horigome
 
1SS272 LTspice Model (Free SPICE Model)
1SS272 LTspice Model (Free SPICE Model)1SS272 LTspice Model (Free SPICE Model)
1SS272 LTspice Model (Free SPICE Model)Tsuyoshi Horigome
 
2N4416 PSpice Model (Free SPICE Model)
2N4416 PSpice Model  (Free SPICE Model)2N4416 PSpice Model  (Free SPICE Model)
2N4416 PSpice Model (Free SPICE Model)Tsuyoshi Horigome
 
2N4416 LTspice Model (Free SPICE Model)
2N4416 LTspice Model (Free SPICE Model)2N4416 LTspice Model (Free SPICE Model)
2N4416 LTspice Model (Free SPICE Model)Tsuyoshi Horigome
 
SSM3K15AMFV (Standard Model) PSpice Model (Free SPICE Model)
SSM3K15AMFV (Standard Model) PSpice Model (Free SPICE Model)SSM3K15AMFV (Standard Model) PSpice Model (Free SPICE Model)
SSM3K15AMFV (Standard Model) PSpice Model (Free SPICE Model)Tsuyoshi Horigome
 
Ciclotron tip5000 2 h ii
Ciclotron   tip5000 2 h iiCiclotron   tip5000 2 h ii
Ciclotron tip5000 2 h iiMuniz Rodrigues
 
SPICE Model of TC7USB221FT(TOSHIBA)
SPICE Model of TC7USB221FT(TOSHIBA)SPICE Model of TC7USB221FT(TOSHIBA)
SPICE Model of TC7USB221FT(TOSHIBA)Tsuyoshi Horigome
 
MBN600E45A LTspice Model (Free SPICE Model)
MBN600E45A LTspice Model (Free SPICE Model)MBN600E45A LTspice Model (Free SPICE Model)
MBN600E45A LTspice Model (Free SPICE Model)Tsuyoshi Horigome
 

Similar to 射頻電子 - [實驗第一章] 基頻放大器設計 (20)

RN1418 PSpice Model (Free SPICE Model)
RN1418 PSpice Model  (Free SPICE Model)RN1418 PSpice Model  (Free SPICE Model)
RN1418 PSpice Model (Free SPICE Model)
 
RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)
 
DTA123EE LTspice Model (Free SPICE Model)
DTA123EE LTspice Model (Free SPICE Model)DTA123EE LTspice Model (Free SPICE Model)
DTA123EE LTspice Model (Free SPICE Model)
 
DTA123EE PSpice Model (Free SPICE Model)
 DTA123EE PSpice Model  (Free SPICE Model) DTA123EE PSpice Model  (Free SPICE Model)
DTA123EE PSpice Model (Free SPICE Model)
 
MBN600E45A PSpice Model (Free SPICE Model)
MBN600E45A PSpice Model (Free SPICE Model)MBN600E45A PSpice Model (Free SPICE Model)
MBN600E45A PSpice Model (Free SPICE Model)
 
DCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデルDCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデル
 
DG1E60 PSpice Model (Free SPICE Model)
DG1E60  PSpice Model (Free SPICE Model)DG1E60  PSpice Model (Free SPICE Model)
DG1E60 PSpice Model (Free SPICE Model)
 
DG1E60 LTspice Model (Free SPICE Model)
DG1E60  LTspice Model (Free SPICE Model)DG1E60  LTspice Model (Free SPICE Model)
DG1E60 LTspice Model (Free SPICE Model)
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
1SS272 PSpice Model (Free SPICE Model)
1SS272 PSpice Model (Free SPICE Model)1SS272 PSpice Model (Free SPICE Model)
1SS272 PSpice Model (Free SPICE Model)
 
1SS272 LTspice Model (Free SPICE Model)
1SS272 LTspice Model (Free SPICE Model)1SS272 LTspice Model (Free SPICE Model)
1SS272 LTspice Model (Free SPICE Model)
 
2N4416 PSpice Model (Free SPICE Model)
2N4416 PSpice Model  (Free SPICE Model)2N4416 PSpice Model  (Free SPICE Model)
2N4416 PSpice Model (Free SPICE Model)
 
2N4416 LTspice Model (Free SPICE Model)
2N4416 LTspice Model (Free SPICE Model)2N4416 LTspice Model (Free SPICE Model)
2N4416 LTspice Model (Free SPICE Model)
 
SSM3K15AMFV (Standard Model) PSpice Model (Free SPICE Model)
SSM3K15AMFV (Standard Model) PSpice Model (Free SPICE Model)SSM3K15AMFV (Standard Model) PSpice Model (Free SPICE Model)
SSM3K15AMFV (Standard Model) PSpice Model (Free SPICE Model)
 
SPICE Model of TC7USB221WBG
SPICE Model of TC7USB221WBGSPICE Model of TC7USB221WBG
SPICE Model of TC7USB221WBG
 
Ciclotron tip5000 2 h ii
Ciclotron   tip5000 2 h iiCiclotron   tip5000 2 h ii
Ciclotron tip5000 2 h ii
 
SPICE Model of TC7USB31FK
SPICE Model of TC7USB31FKSPICE Model of TC7USB31FK
SPICE Model of TC7USB31FK
 
SPICE Model of TC7USB31WBG
SPICE Model of TC7USB31WBGSPICE Model of TC7USB31WBG
SPICE Model of TC7USB31WBG
 
SPICE Model of TC7USB221FT(TOSHIBA)
SPICE Model of TC7USB221FT(TOSHIBA)SPICE Model of TC7USB221FT(TOSHIBA)
SPICE Model of TC7USB221FT(TOSHIBA)
 
MBN600E45A LTspice Model (Free SPICE Model)
MBN600E45A LTspice Model (Free SPICE Model)MBN600E45A LTspice Model (Free SPICE Model)
MBN600E45A LTspice Model (Free SPICE Model)
 

More from Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 

More from Simen Li (15)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 

Recently uploaded

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm Systemirfanmechengr
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringJuanCarlosMorales19600
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 

Recently uploaded (20)

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm System
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineering
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 

射頻電子 - [實驗第一章] 基頻放大器設計

  • 1. /135 Department of Electronic Engineering National Taipei University of Technology
  • 2. /135 • PN BJT • • BJT ( ) • • (CE) (CB) (CC) • • 2 Department of Electronic Engineering, NTUT
  • 4. /135 PN • PN • PN PN Cathode Anodepn 0t = 1t t= t = ∞ pn pn pn (Depletion region) E 4 Department of Electronic Engineering, NTUT
  • 5. /135 PN • • 1F T V V tot SI I e   −    = +− FV pn 2 pn S i A n D p DD I Aqn N L N L   = +     26 mV@ 300T kT V T K q = =≃ F TV V> F T V V tot SI I e       ≃ F TV V<< tot SI I−≃ −+ RV pn DI DV D T V V SI e       ≃ SI− I/V 5 Department of Electronic Engineering, NTUT
  • 6. /135 (Reverse Breakdown) • PN IS PN • ( ) • PN (Zener effect) (Avalanche effect) DI DV BDV 6 Department of Electronic Engineering, NTUT
  • 7. /135 • ( 1V/µm) n −+ RV pn E • PN 3 ~ 8 V 7 Department of Electronic Engineering, NTUT
  • 8. /135 ( ) • PN • (impact ionization) −+ RV pn E• ( ) 8 Department of Electronic Engineering, NTUT
  • 9. /135 ( ) • ( ) 0 1s 2s 3s 4s t BEV 0 1s 2s 3s 4s t BE BE bev V v= + BEV bev ( ) BEv ( + ) beV phasor ( ) 0 1s 2s 3s 4s t bev 9 Department of Electronic Engineering, NTUT
  • 10. /135 • • • VCCS VCVS CCVS + - + - v1 v = mv1 + - v = gi1 i1 VCCS CCCS + - v1 i = gv1 i1 i = bi1 10 Department of Electronic Engineering, NTUT
  • 11. /135 (VCCS) • • VCCS RL RL vout + − inv 1 1i kv= 1kv1i LR L mkR V mV t tinv outv + − 1v + − inv + − 1v + − outv VCVS 1out L L inv kv R kR v= − = − kRL 1 VCCS 11 Department of Electronic Engineering, NTUT
  • 12. /135 • VCCS rin + − inv 1kv1i LR + − outv + − 1vinr 1 1 1 out L L L in in v kv R kv R kR v v v − − = = = − kRL 1 VCCS 12 Department of Electronic Engineering, NTUT
  • 13. /135 BJT • (bipolar-junction transistor, BJT) 1945 Shockley Brattain Bardeen • (BJT ) VBE ( ) VCE e− (−IE ) Collector Base Emitter (C) (B) (E) + − 0.8 VBEV = − + 1 VCEV = + − + − − + 13 Department of Electronic Engineering, NTUT
  • 14. /135 BJT I/V • IC VBE • IC VCE + − BEV CI + − CEV + − BEV CI + − CEV 2B T V V SI e 1B T V V SI e CEV CI 1BE BV V= 2BE BV V= BEV CI BE T V V C SI I e= ⋅ 14 Department of Electronic Engineering, NTUT
  • 15. /135 BJT VCCS • BJT exponential VCCS CBV + − + −BEV CEV + − (C) (B) (E) Collector Base Emitter BEV + − BE T V V sI e (C)(B) (E) BE T V V C sI I e= 15 Department of Electronic Engineering, NTUT
  • 16. /135 ( ) (I) BEV BEV BEV BEV CEV CEV CEV CEV CI BE T V V C SI I e= ⋅ CI VBE IC (VBE=0 V) VCE (VCE>VBE) IC (VCE=0 V) VCE VBE (VCE=VBE) IC VCE VBE (VCE<VBE) IC VCE IC CI 16 Department of Electronic Engineering, NTUT
  • 17. /135 ( ) (II) BEV + − CEV + − VCE VCE IC VBE1 VBE2 VBE3 BEV CEV BE T V V C SI I e= ⋅ BEV CEV CEV BEV BJT IC VCE VBE BEV + − CEV + − BE T V V SI e⋅ IC VCE CEV + − BJT 17 Department of Electronic Engineering, NTUT
  • 18. /135 • VOUT 16 5 10 ASI − = ⋅ 1.69 mA BE T V V C SI I e= ⋅ = ( )3 3 V 3 V 1.69 10 1000 1.31 VCE C LV I R − = − = − ⋅ ⋅ = 1.31 VOUTV = 750 mV 3 V + − + − CI LR OUTV + − 1 kΩ Q: VBE IC 3 V 2.155 VOUT C LV I R= − = 18 Department of Electronic Engineering, NTUT
  • 19. /135 C BI Iβ= 1 1 1 BE T V V E C B C SI I I I I e β β β   + = + = + = ⋅    BE T V V C SI I e= ⋅ 1 BE T V V B SI I e β = ⋅ 1 C E EI I I β α β = = + β IC IE + − BEV CEV + − CI BI EI IE IC IB IC C BI Iβ= IB IE ( )1E BI Iβ= + β IB IC β ( β ) VCCS ( )expC S BE TI I V V= ⋅ 19 Department of Electronic Engineering, NTUT
  • 20. /135 • BJT VBE 750 mV β 50~200 IB IE 1.685 mA BE T V V C SI I e= ⋅ = 200 50C B CI I I< < 8.43 A 33.7 ABIµ µ< < 1.005 1.02C E CI I I< < 1.693 mA 1.719 mAEI< < 16 5 10 ASI − = ⋅ 50 200 1.05 1.002β α< < ⇒ < < VBE( VCCS ) + − BEV BE T V V SI e BE T V VSI e β CB E 20 Department of Electronic Engineering, NTUT
  • 21. /135 − BJT RC • VBE = 800 mV β=100 BJT BJT RC X + − BEV CI CR500 Ω + 2 VCCV = − ( )VXV ( )CR Ω 2.0 1.424 0.800 500 1041 17 5 10 ASI − = ⋅ 1.153 mA BE T V V C SI I e= ⋅ = 1 11.53 µA BE T V V B SI I e β = ⋅ = 1 1.165 mA BE T V V E SI I e β β + = ⋅ = 1.424 VCC C C X XV R I V V= + ⇒ = 1.424 VCE X BEV V V= = > 800 mVCE XV V= = 1041CC X C C C V V R R I − = ⇒ = Ω RC VBE IC (VCE VBE ) 21 Department of Electronic Engineering, NTUT
  • 22. /135 • 10 VCCV = 2 kCR = Ω 220 kBR = Ω CI BI 4 VBBV = + − CEV + − BEV 4 0.7 15 µA 220k BB BE B B V V I R − − = = = 200 15 µA 3 mAC BI Iβ= = × = 200β = ( )1 3.015 mAE BI Iβ= + = 10 3 mA 2 k 4 VCE CC C CV V I R= − = − × Ω = 0.015 0.7 3 4 12 mWT B BE C CE C CEP I V I V I V= + = × + × =≃ (mA)Ci ,C satI ,CE satV (V)CEv0 2 4 6 8 10 1 2 3 4 5 6 (Cut-off) Q-point 5 µABi = 10 µA 15 µABQI = 20 µA 25 µA 30 µA CE CC C CV V I R= − CC CE C C V V I R − = y x 22 Department of Electronic Engineering, NTUT
  • 24. /135 gm (I) • + • VBE ( ) • + − BEV∆ CI∆ + CEV − 0BEas V C C BE BE I dI V dV ∆ → ∆ = ∆ C m BE dI g dV = BE T V V C SI I e= ⋅ 1BE BE T T V V V VC C m S S BE BE T T dI Id g I e I e dV dV V V   = = ⋅ = ⋅ =      gm gm IC !! IC = 1mA VT = 26mV 11 0.0385 0.0385 S 38.5 mS 26 mg − = = Ω = = Ω 24 Department of Electronic Engineering, NTUT
  • 25. /135 gm (II) • gm=dIC/dVBE IC-VBE IC0 VBE0 • IC-VCE IC1 IC2 mg V∆ BEV 0BEV 0CI CI V∆ 2BE BV V V= + ∆ 2BE BV V= 1BE BV V= 1BE BV V V= + ∆ CI 2CI 1CI 2mg V∆ 1mg V∆ CEV VBE0 ∆V IC0 gm∆V gm= IC0/VT gm IC0 IC0 ( ) VBE ∆V IC2 IC1 IC gm2 > gm1 m C BEg dI dV= 25 Department of Electronic Engineering, NTUT
  • 26. /135 BJT • BJT + − BEV∆ + CEV − BI∆ EI∆ CI∆ rπ rπ E CB vπ − + mg vπrπ mr gπ β= BE BE beV V v∆ = + + − B B bI I i∆ = + BEV∆ + − BE T V V SI e ∆ C C cI I i∆ = + b ci i β= + CEV − ! CB E bev − + c m bei g v= bi ib B-E b c m bei i g vβ β= = be b m v r i g π β = = BJT m C Tg I V= 26 Department of Electronic Engineering, NTUT
  • 27. /135 • v1 Q1 (a) (b) 1 mV C B ? 16 5 10 ASI − = ⋅ 100β = 1 3.75 C m T I g V = = Ω 6.92 mA BE T V V C SI I e= = 800 mVBEV = 375 m r g π β = = Ω + − 1v + ci − bi rπ vπ mg vπ 1v vπ = 1 1 mV 0.267 mA 3.75 c m mi g v g vπ= = = = Ω 1 1 mV 26.7 µA= 375 c b v i i rπ β = = = Ω + − 1v + 1.8 V − CI − + 800 mV (1) (2) gm rπ (3) VBE IC 27 Department of Electronic Engineering, NTUT
  • 28. /135 v.s. • + − 1v + CR− rπ vπ mg vπ + − outv + − 1v + 3.6 VCCV = − 200CR = Ω − + 800 mV + − OUT OUT outv V v= +3.6 6.92 mA 200 2.216 VCV = − × Ω = (>VBE, ) 1out m C m Cv g v R g R vπ= − = − 1 out v m C v A g R v = = − 1 3.75 mg = Ω 200CR = Ω 53.4vA = − RC BJT 800 mVBEV = 6.92 mA BE T V V C SI I e= = 28 Department of Electronic Engineering, NTUT
  • 29. /135 (Early Effect) • (VA ) BJT IC VBE VCE ( ) VBE IC VCE IC 1 BE T V V CE C S A V I I e V   +    ≃ 1 1 1 BE BE T T V V V VC CE C S S CE CE A A A o I d V I I e I e V dV V V V r   ∂ = + = ⋅ =   ∂     ≃ CI BE T V VSI e β w/ Early Effect w/o Early Effect CEV 1 BE T V VS CE A I V e Vβ   +    BJT ro CI CEV AV− CdI CEdV 1 or 29 Department of Electronic Engineering, NTUT
  • 30. /135 1 BE BE T T V V V VCE ce ce C C c S C S A A V v v I I i I e I I e V V  + ∆ = + = + = +    BE T V V ce c S A v i I e V = BE T ce A A o V c CV S v V V r i I I e = = ≃ + − BEV C C cI I i∆ = + CE CE ceV V v∆ = + rπ + − vπ mg vπ or B C E Early effect BJT BJT (gm, vπ, ro) mr gπ β= m C Tg I V= o A Cr V I= IC 30 Department of Electronic Engineering, NTUT
  • 31. /135 • BJT IC = 1 mA β = 100 VA=15 V + − BEV CI∆ V∆ rπ + − vπ mg vπ or B C E 1 26 C m T I g V = = Ω 2600 m r g π β = = Ω 15 kA o C V r I = = Ω 31 Department of Electronic Engineering, NTUT
  • 32. /135 PNP • PNP NPN BEV + − CEV + −BI EI CI EB T V V C sI I e= EB T V Vs B I I e β = 1 EB T V V E sI I e β β + = 1 EB T V V EC C s A V I I e V   = +    + − vπ mg vπ orrπ cibi ei B C E + − vπ mg vπ orrπ cibi ei B C E npn ( ) 32 Department of Electronic Engineering, NTUT
  • 33. /135 BJT • BJT B-C 2 VA + − Xv Xi rπ + − vπ mg vπ X m X v g v i r π π + = 1mg rπ β= >> 1 1 1X T X m m C v V i g r g Iπ − = = + ≃ BC diode IC=1 mA ? 33 Department of Electronic Engineering, NTUT
  • 34. /135 (I) – + − INv CR CCV + − OUTv + − inv rπ + − vπ mg vπ or CR + − outv + − INv CR CCV + − OUTv + − inv rπ − + vπ mg vπ or CR + − outv + − inv rπ + − vπ mg vπ or CR + − outv VCCS NPN 34 Department of Electronic Engineering, NTUT
  • 35. /135 (II) – − + INv CR CCV + − OUTv − + inv rπ − + vπ mg vπ or CR + − outv + − inv rπ + − vπ mg vπ or CR + − outv + − INv 1CR CCV + − OUTv 2CR 1Q 2Q − + inv 1rπ − + 1vπ 1 1mg vπ 1or 1CR + − outv 2rπ − + 2vπ 2 2mg vπ 2or 2CR 35 Department of Electronic Engineering, NTUT
  • 36. /135 • MOSFET MOSFET IV ( ) ( )2 21 2 2 2 D n ox GS TH DS DS n GS TH DS DS W I C V V V V K V V V V L µ    = − ⋅ − = − ⋅ −    ( ) ( ) ( ) ( ) 2 21 1 1 2 D n ox GS TH DS n GS TH DS W I C V V V K V V V L µ λ λ= − + = − + ,DS sat GS THv v V= − Di 0GSv DSv 1GSv 2GSv 3GSv 4GSv 5GSv 2GS THv V− ( ) ( ) 2 2 1D n GS TH DSi K v V vλ= − + (Triode Region) (Saturated Region) + − GSV D G S + − DSV DI DSV( ) 1 2 DS D n GS TH V R I K V V = = − 36 Department of Electronic Engineering, NTUT
  • 37. /135 MOSFET • • • ( ) ( ) 2 2 2 D n D m GS TH n ox GS TH n ox D GS GS TH I K W W W I g V V C V V C I V L L L V V µ µ ∂ = = − = − = = ∂ − ( ) ( ) 2 21 2 D n ox GS TH n GS TH W I C V V K V V L µ= − = − gm ID !! ( ) ( ) ( ) 2 2 1 1D n GS TH DS n GS TH D DS DS o I d K V V V K V V I V dV r λ λ λ ∂  = − + = − = =  ∂ MOS ro CI CEV 1AV λ− = − DdI DSdV 1 or ( ) ( ) 2 1D n GS TH DSI K V V Vλ= − + 1 o D r Iλ = + − gsv DG S m gsg v or BJT ! 37 Department of Electronic Engineering, NTUT
  • 39. /135 • • − + inv out inv v= sR + − ( ) − + inv L out in s L R v v R R = + sR + − LR vin 39 Department of Electronic Engineering, NTUT
  • 40. /135 / • − + thv ocv thR + − ocv + − − + thv sR LR + outv − LR + outv − th outR R= outR th inR R= inR 40 Department of Electronic Engineering, NTUT
  • 41. /135 • 10 10-mV 200 8 (a) 2 k 500 (b) 10 2 10vA = 10 mV + − mv 200 Ω 8 Ω 200 Ω 8 Ω outRinR in in m in s R v v R R = + 2 k 0.91in in mR v v= Ω ⇒ = 500 0.71in in mR v v= Ω ⇒ = L out amp L o R v v R R = + 2 0.8o out ampR v v= Ω ⇒ = 10 0.44o out ampR v v= Ω ⇒ = 41 Department of Electronic Engineering, NTUT
  • 43. /135 • (a) a-b (b) Rth v +− b a V + − v Rth v V2i1 i−i1 6 Ω4 Ω i1 + − i a b 3 Ω 16v i= ( )1 1 16 2 4i i i i= + − 1 0.5 , 3i i v i= = ( )3th v R i = = Ω +− a b(a) 6 Ω V2i1 i1 4 Ω 43 Department of Electronic Engineering, NTUT
  • 44. /135 • B ( ) + − xv rπ + − vπ mg vπ or CR xi x in x v R r i π= = T m C V r g I π β β = = 1. β ( IC IB ) 2. (CE ) RC ( BJT ) B B inv CR CCV outv 44 Department of Electronic Engineering, NTUT
  • 45. /135 • C ( ) rπ + − vπ mg vπ or inv outR outR 0vπ = 0mg vπ = out oR r= (CE ) C C outv 45 Department of Electronic Engineering, NTUT
  • 46. /135 • E ( Early Effect) rπ + − vπ mg vπ xv v r π π inv outR xi CCV xv vπ = − m x v g v i r π π π + = − 1 1 1 x out x m m v R i gg rπ = = + ≃ 1 m m m g r g g r π π β β = → = << C E ( vbe ) 46 Department of Electronic Engineering, NTUT
  • 47. /135 • E AC rπ • E AC ro • B AC 1/gm m r g π β = AC A o C V r I = AC 1 T m C V g I = AV = ∞ AC 47 Department of Electronic Engineering, NTUT
  • 49. /135 (I) • (B-E B-C ) BJT VCCS • BJT gm rπ ro IC • ( ) T m C V r g I π β β= = A o C V r I =C m T I g V = rπ = ∞ 1A o D D V r I Iλ = = 2 D m GS TH I g V V = − BJT MOSFET 49 Department of Electronic Engineering, NTUT
  • 50. /135 (II) • β VBE IC IB ( β) IB RB VBE BR CR CCV 1R CR 2R CCV 1R CR 2R ERREV − + CCV BR CR CCV VBE IC ( ) R1 R2 RE BJT (thermal runaway) RB BJT BJT 50 Department of Electronic Engineering, NTUT
  • 52. /135 • BJT BR CR CCV BI CI X Y B B BE CCR I V V+ = CC BE B B V V I R − = CC BE C B B V V I I R β β − = = CC BE CE CC C C CC C B V V V V I R V R R β − = − = − RB RC VCE RB RC ( )CC BE CE CC C C CC C BE B V V V V I R V R V R β − = − = − > + − BEV (1) (2) VBE VBE 700 mV 800 mV ( 800 mV) VBE IC=ISexp(VBE/VT) VBE VBE IC=ISexp(VBE/VT) VCC−IBRB VBE 52 Department of Electronic Engineering, NTUT
  • 53. /135 • BJT BR CR BI CI X Y 2.5 VCCV = 100 kΩ 0.5 kΩ 17 10 ASI − = 100β = 17 µACC BE B B V V I R − = ≃ 1.675 VCE CC C C BEV V I R V= − = > ( ) 800 mVBEV = 17 µA 100 1.7 mACI = × = IC VBE ln 852 mVC BE T S I V V I = = 16.5 µACC BE B B V V I R − = = 17 µA 100 1.65 mACI = × =VBE VBE 850 mV IC 1.65 mA IB (VCC−VBE) VBE VCC IB IC (1) VBE IB IC (2) 52 mV ? ln 851.2 mVC BE T S I V V I = = ( ) 53 Department of Electronic Engineering, NTUT
  • 54. /135 − BJT VBE • ( IB ) 1R CR CCV CI X Y 2R 2 1 2 BE X CC R V V V R R = = + BE T V V C SI I e= IC VBE VBE R1 R2 1R CR CI X Y 2.5 VCCV = 17 kΩ 5 kΩ 2R8 kΩ 100β = 17 10 ASI − = 231 µA BE T V V C SI I e= =2 1 2 800 mVX CC R V V R R = = + 2.31 µABI = 1 1 2 100 µA 43CC B V I I R R = = + ≃ (IB ) 1.345 VCE CC C C BEV V I R V= − = > ( ) 1I IB IC/β β IB IB I1 R1 VBE IC 1I 54 Department of Electronic Engineering, NTUT
  • 55. /135 IB 1R 2R CCV CR CI Y X 1R 2R thR thV X CI CCV CR BI 1R + − 2RCCV + − + − 2 1 2 th CC R V V R R = + 1 2||thR R R= X th B thV V I R= − th B th T V I R V C SI I e − = 1 ln C B th T S th I I V V I R   = − ⋅    VBE ln C BE T B C BE B C S I V V I I V I I I = → → → → → →⋯ R1 R2 IB VX IB IC R1 R2 I1>10IB 1I 55 Department of Electronic Engineering, NTUT
  • 56. /135 • R1 R2 VBE β ( R1 R2 IB ) VBE R2 1% VX 1% exp(0.01VBE/VT)=1.36 1% 36% 1R 2R CR CI Y X EI ER P CCV 1 1 2 1 E P E CC BE C E R I V R V V I R R R   = = −  +  ≃ VX RE VBE ( β >> 1) • 56 Department of Electronic Engineering, NTUT
  • 57. /135 • (1) I1 >> IB β (I1 10IB ) ( ) (2) VRE (~100 mV) VX VBE ( RE ) (3) RC RC BJT 1R 2R CR CIY X BI ER P CCV 1I 1 BI I>> + − REV RC BJT VRE VX VBE I1 IB 10 β 57 Department of Electronic Engineering, NTUT
  • 58. /135 • gm=1/(52 ) RC 3 k 1 52 C m T I g V = = Ω 0.5 mACI = 778 mVBEV = 200 mVRE E CV R I =≃ 400ER = Ω 2 1 2 978 mVX BE E C CC R V V R I V R R = + = = + 5 µABI = 1 1 2 10 50 µACC B V I I R R = > = + 1 2 2.5 V 50 k 50 µA R R+ = = Ω 1 30.45 kR = Ω 2 19.55 kR = Ω CC C C XV R I V− > 1.522 VC CR I < 3.044 kCR < Ω 17 5 10 ASI − = × 100β = 1R 2R CR CI Y X EI ER P 2.5 VCCV = VX 1I BJT 58 Department of Electronic Engineering, NTUT
  • 59. /135 • 500 mVREV = 1 100 BI I≥ 500 mV 0.5 mA 1 kER = = Ω 2 1 2 1.278 VX BE E C CC R V V R I V R R + = = + ≃ 1 2 100CC B V I R R ≥ + 1 2 5 kR R+ ≤ Ω 1 1.45 kR = Ω 2 3.55 kR = Ω 1.044 kCC X C C V V R I − < = Ω VRE VX RC BJT RC I1 IB R1 R2 R1 R2 17 5 10 ASI − = × 100β = 1R 2R CR CIY X EI ER P 2.5 VCCV = 1 52 C m T I g V = = Ω 0.5 mACI = 778 mVBEV = 5 µABI = BJT RC 1 k 59 Department of Electronic Engineering, NTUT
  • 60. /135 ( ) • IC BR CR CCV BI X Y CI X Y B BV V R I= − RC B CI I<< B C Y CC C C B B BE BE R I V V R I R I V V β = − = + = + CC BE C B C V V I R R β − = + VBE IC ln C BE T S I V V I = RC 60 Department of Electronic Engineering, NTUT
  • 61. /135 • IC 2 kCR = Ω 800 mVBEV = ln 807.6 mVC BE T S I V V I = = 154.5 mVB BR I = 0.955 VY B B BEV R I V= + ≃ ln 791 mVC BE T S I V V I = = 81 mVB BR I = 0.881 VYV ≃ 100β = 17 5 10 ASI − = × 1 kCR = Ω10 kBR = Ω 2.5 VCCV = BI X Y CI 1.545 mACC BE C B C V V I R R β − = = + 800 mVBEV = 0.81 mACC BE C B C V V I R R β − = = + 61 Department of Electronic Engineering, NTUT
  • 62. /135 (1) VBE ( VBE ) (2) RC β • CC BE C C V V I R − ≃ Y CC C C BEV V R I V= − ≃ ( )CC BEV V− BR β 10C BR R β= 1.1 CC BE C C V V I R − = ln C BE T S I V V I = 1.1 CC BE C C V V R I − = 10 C B R R β = CC BE C B C V V I R R β − = + 1.8 VCCV = 1 13 mg = Ω BR CR CCV BI X Y CI 17 5 10 ASI − = × 100β = 1 13 C m T I g V = = Ω 2 mACI = 754 mVBEV = 475 1.1 CC BE C C V V R I − Ω≃ ≃ 4.75 k 10 C B R R β = = Ω 95 mVB BI R = 754 mV 95 mV 849 mVCV = + = 62 Department of Electronic Engineering, NTUT
  • 64. /135 BJT • / 6 + − inv outv outv outv + − inv + − inv B-E VCCS CE CB CC base ( ) CE CC CB 64 Department of Electronic Engineering, NTUT
  • 65. /135 (Common-Emitter Topology) • B C E + − inv outv CCV CR inv rπ + − vπ mg vπ CR outv out C v R − Early Effect ( ro) out m Cv g v Rπ= − out v m C in v A g R v = = −inv vπ = (1) (2) gm IC C m T I g V = C C RC v T T I R V A V V = = RC CC BEV V V≤ − CC v T V A V ≤ BJT CC BE v T V V A V − < (3) RC RC RC BJT RC VCC VCC BJT VCC 65 Department of Electronic Engineering, NTUT
  • 66. /135 800 mV 1.8 VCCV = CR pp2 mV t pp77 mV 800 mV t • RC 1 k 21.7v m CA g R= − −≃ 1 mWC CCP I V= = 0.556 mACI = CC C C BEV I R V− = 800 mVBEV ≃ 1.798 kCC BE C C V V R I − ≤ = Ω 39v m CA g R= − −≃ 0.02173mg = VCC 38.46CC BE v T V V A V − < = 1 mW 2 mW 2 mWC CCP I V= = 1.1111 mACI = 0.04273mg = 900CC BE C C V V R I − ≤ = Ω 38.45v m CA g R= − −≃ • RC 1 k 0.4 mA 27.66C v m C C T I A g R R V = − = − −≃ 66 Department of Electronic Engineering, NTUT
  • 67. /135 CE • rπ + − vπ mg vπ CR Xi Xv Xi rπ + − vπ mg vπ CRXv + − + − X T in X m C v V R r i g I π ββ = = = = IC (IB ) 0vπ = X out C X v R R i = = • out v m C in R A g R R β= − = − CE I/O Early Effect 67 Department of Electronic Engineering, NTUT
  • 68. /135 CE • RC ( VCC BJT ) • CE IC=1 mA RC 1 k β=100 VA=10 V ? inv rπ + − vπ mg vπ or CR outv ( )||v m C oA g R r= − inR rπ= ||out C oR R r= 1 26m C Tg I V= = Ω 10 ko A Cr V I= = Ω ( )|| 35v m C oA g R r= − ≃ 2.6 kin mR r gπ β= = = Ω || 0.91 kout C oR R r= = Ω VAV = ∞ 38vA ≃ RC CR = ∞ Ω 384vA ≃ 68 Department of Electronic Engineering, NTUT
  • 69. /135 CE • RC • • • CE VCC = 3 V VA = 5 V ? VCC 10 V ? CR → ∞ v m oA g r= − (intrinsic gain) ( ) C m T I g V = A o C V r I = A v T V A V = intrinsic gain VA 5 V intrinsic gain 200 CC BE v T V V A V − < VCC BJT VCC _3 84.6v VCC V A = 192.3v VA A = _10 353.8v VCC V A = max 84.6vA = 192.3v VA A = max 192.3vA = 69 Department of Electronic Engineering, NTUT
  • 70. /135 CE • • CCV CR OUTv V∆ ER + − + − 0ER = mV g V∆ → ∆ 0ER ≠ m smallV g V∆ → ∆ RE ( CE ) ( )1in ER r Rπ β= + + + − inv rπ + − vπ mg vπ outv CR ER RE m E v v g v R r π π π   = +    1 1in RE m E m E v v v v v g v R v g R r r π π π π π π π      = + = + + = + +          1 111 1 mg r out m C m C C v in m E Em E m v g R g R R A v g R Rg R gr π π >> − − = = = − +  ++ +    ≃ ( CE ) 1 m Eg R+ bev REv vbe ( CE ) ic ib ( CE ) ( )in mR r gπ β> = + − REv C E 70 Department of Electronic Engineering, NTUT
  • 71. /135 CE • • Xv i rπ π= RE ( ) ( )1X m X Xi g r i iπ β+ = + ( )1X X E Xv r i R iπ β= + + ( )1X in E X v R r R i π β= = + + + − Xv rπ + − vπ mg vπ CR outv ER + REv − P + − Xv rπ + vπ Xi inR ( )1 ERβ+ − rπ ib RE ib+βib ib (1+β)RE emitter ground base (1+β) + − Xvrπ + − vπ mg vπ CR Xi ER + REv − 0vπ = 0in m E v v v g v R r π π π π   = = + +    0vπ = 0mg vπ = X out C X v R R i = = Xi Early Effect 71 Department of Electronic Engineering, NTUT
  • 72. /135 • CE • BR rπ ( )1 ERβ+ A gm 1m Eg R >> out A out in in A v v v v v v = ( ) ( ) 1 1 EA in E B r Rv v r R R π π β β + + = + + + ( ) ( ) ( ) 1 1 1 E m C E B E r R g r R r R R r R π π π π β β β + + − = ⋅ + + + + + 1 1 C v B E m R A R R g β − + + + ≃ ( )1in B ER R r Rπ β= + + + out CR R= 1 1 m Eg R m C C v m E E g R R A g R R >> − = − + ≃ ( ) ( ) 1 1 1 1 Eout m C in E B m E r Rv g R v r R R g R r π π π β β + + − = ⋅ + + +   + +    ( )1 C E B R r R Rπ β β − = + + + CR outv ER inv BR A CCV 1 BR β+ 1 mg 72 Department of Electronic Engineering, NTUT
  • 73. /135 ( ) CCV CR outv ER inv 2rπ CCV CCV CR outv ER inv 2rπ • 2||ER rπ 2 1 || C v E m R A R r g π = − + CCV CR outv ER inv CCV CCV CR outv ER inv 2rπ 2|| 1 C v E m R r A R g π = − + 2||CR rπ ( )( )1 ||in ER r R rπ πβ= + + out CR R= ( )1in ER r Rπ β= + + 2||out CR R rπ= ( )1 ERβ+ ( )( )21 ||ER rπβ+ 73 Department of Electronic Engineering, NTUT
  • 74. /135 • C1 1 C v E m R A R g = − + ( )1in ER r Rπ β= + + out CR R= CR outv ER inv biasI CCV 1C C1 AC CR outv CCV inv BR 1I 1R 2R 1C CR BR 1R outv inv 2R ( ) 21in BR R r Rπ β= + + + 1||out CR R R= 1 2 || 1 1 C v B m R R A R R g β = − + + + • I/O (C1 ) 74 Department of Electronic Engineering, NTUT
  • 75. /135 • 1 k 2 mV 1 mA CE 40 mV ( RE = 4/gm β = 100) 1 kBR = Ω 1 26 mg = Ω 40 mV 20 2 mV vA = = 4 104E m R g = = Ω 1 2.8 k 1 B C v E m R R A R g β   = ⋅ + + Ω  +  ≃ 1 1 C v B E m R A R R g β − + + + ≃ 75 Department of Electronic Engineering, NTUT
  • 76. /135 • ro Early Effect ro ( BJT ) BJT ( )||x Ev i R rπ π= − ( )ro x m ov i g v rπ= − ( ) ( ) ( )|| ||x x m o x m x E o x Ev i g v r v i g i R r r i R rπ π π π= − − = + +   ( ) ( ) ( )( )1 || || 1 ||out m E o E o m o ER g R r r R r r g r R rπ π π= + + = + +   ( ) ( )|| 1 ||out o m o E o m ER r g r R r r g R rπ π+ +  ≃ ≃1m og r >> ( )1 ||m Eg R rπ+ rπ + − vπ mg vπ xi ER xv P xi or + − out o ER r R= +: ix RE||rπ vπ 0 outR ER inv or ER rπ>> [ ]1out o m oR r g r rπ β+≃ ≃ ER rπ<< ( )1out o m ER r g R+≃ 76 Department of Electronic Engineering, NTUT
  • 77. /135 • 1 mA 20 k BJT β =100 VA=10 V • (C1 ) 10 kA o C V r I = = Ω ER rπ<< ( )1 2m Eg R+ = 1 26E m R g = = Ω 2.6 k E m r R g π β = = Ω >> outR 1R 2R 1CbV + − 1I outR 2R 1R ( ){ }1 1 2 1|| 1 || ||out out o mR R R r g R r Rπ= = +   ( )1out o m ER r g R+≃ outR 1bV + − 2bV + − outR 2or ( )1 1 2 11 ||out o m oR r g r rπ= +   Cascode 77 Department of Electronic Engineering, NTUT
  • 78. /135 CE (I) • 100 CE 2.5 VCCV = 100 kΩ 1 kΩBR CR X OUTv 100 2.5 V 2.5 mV 100 k 100 XV Ω = ⋅ Ω + Ω ≃ RB VX ? (1) RB (2) 2.5 VCCV = 100 kΩ 1 kΩBR CR X OUTv1C C1 AC DC 78 Department of Electronic Engineering, NTUT
  • 79. /135 CE (II) CCV BR CR X OUTv 1C Y 1inR rπ= CR BR CCV BR CR Y X BR CR X + − outv inv ( ) ( ) outRCR BR CC BE C B V V I R β − = CC BE Y CC C BE B V V V V R V R β − = − > 2 ||in BR r Rπ= , ,m og r rπ BJT v m CA g R= − ( )||v m C oA g R r= − out CR R= ||out C oR R r= 79 Department of Electronic Engineering, NTUT
  • 80. /135 CE (III) • 8 2.5 VCCV = 100 kΩ 1 kΩBR CR X OUTv1C 2.5 VCCV = 100 kΩ 1 kΩBR CR X1C 2C 8spR = Ω8spR = Ω (AC 8 DC 1 ) VCE BJT heavy saturation AC DC 80 Department of Electronic Engineering, NTUT
  • 81. /135 CE (IV) • 2.5 VCCV = 100 kΩ 1 kΩBR CR X1C 2C BR CR + − outv inv 100 kΩ 1 kΩ 8spR = Ω VC 1.5 V 17 5 10 ASI − = × 1.5 VCV = 2.5 1.5 1 VRCV = − = 1 V 1 mA 1 k CI = = Ω ln 796 mVC BE T S I V V I = = 17 µACC BE B B V V I R − = = 58.8C B I I β = = ( )|| 0.31v m C spA g R R= = CE CE CE (buffer) 8spR = Ω , ,m og r rπ 81 Department of Electronic Engineering, NTUT
  • 82. /135 CCV 1R CR X1C 2R + − inv 2R + − inv 1R CR outv 1 2|| ||inR r R Rπ= ||out o CR r R= ( )||v m C oA g R r= − CCV 1R CR X1C 2R + − inv ER 2R + − inv 1R CR outv ER CCV 1R CR X1C 2R + − inv ER 2C ( )1 C v m E R A g R − = + ( ) 1 21 || ||in ER r R R Rπ β= + +   out CR R= v m CA g R= − 1 2|| ||inR r R Rπ= out CR R= Bypass AC RE AC 82 Department of Electronic Engineering, NTUT
  • 83. /135 • IC=1 mA RE VRE =400 mV 20 2 k 2.5 VCCV = 1R CR X1C 2R + − inv ER 2C 1 mAC EI I= ≃ 400ER = Ω 1 26 mg = Ω 20v m CA g R= = 512CR = Ω 400 mV ln 400 mV 736 mV 1.14 VC X RE BE T S I V V V V I = + = + = + =16 5 10 ASI − = × 100β = 400 mVREV = 1 µAC B I I β = = 1 2 10CC B V I R R > + 1 2 25 kR R+ < Ω 2 1 2 1.14 VX CC R V V R R = = + 2 11.4 kR = Ω 1 13.6 kR = Ω 1 2|| || 1.85 kinR r R Rπ= = Ω RE R1 R2 1 2 5CC B V I R R > + 1 2 50 kR R+ < Ω 2 22.4 kR = Ω 1 27.2 kR = Ω 1 2|| || 2.14 kinR r R Rπ= = Ω 83 Department of Electronic Engineering, NTUT
  • 84. /135 CCV 1R CR sR 1C 2R + − inv ER 2C LR outv + − inv sR 1 2||R R ER ||C LR R outv X ( ) ( ) 1 2 1 2 || || 1 || || 1 EX in E s R R r Rv v R R r R R π π β β + +  = + + +   ( ) ( ) 1 2 1 2 || || 1 || 1|| || 1 Eout out C LX in in X E s E m R R r Rv v R Rv v v v R R r R R R g π π β β + +  = = + + +   + R1 R2 DC AC ( ) DC AC 84 Department of Electronic Engineering, NTUT
  • 85. /135 (Common-Base Topology) • E C B CCV CR + − inv + − bV OUTv rπ + − vπ mg vπ CR outv + − inv v m CA g R= CE CB RC out m C v g v R π− = out in m C v v v g R π = − = − out m C in v g R v = 85 Department of Electronic Engineering, NTUT
  • 86. /135 • CB IC=0.2 mA 600 mV • VB 1.8 VCCV = CR + inv BV outv 600 mV 600 mV ln 600 mV 1.354 VC B BE T S I v V V I = + = + = RC 1.8 V 1.354 V 0.446 V− = 17.2C v m C C T I A g R R V = = = 17 5 10 ASI − = × 100β = Vb + − inv 600 mV outv CR 1.8 VCCV = 1R 2R BI1I 100β = 17 5 10 ASI − = × 1 1 2 10 20 µA CC B V I I R R+ ≃ ≃ ≃ 1 2 90 kR R+ = Ω 2 1 2 1.354 VB CC R V V R R = + ≃ 2 67.7 kR = Ω 1 22.3 kR = Ω 0.2 mACI = 0.2 100 mA 2 µABI = = β 86 Department of Electronic Engineering, NTUT
  • 87. /135 • CCV CR inR 1 in m R g = VA=∞ CB IC=1 mA 26 (CE β/gm) CCV CR BV XI + − XV V∆ 1X in X m m V V R I g V g ∆ ∆ = = = ∆ ∆ • CR outRor 1outR 1 || ||out out C o CR R R r R= = 1out oR r= out CR R= CB Rin Rout out v m out in R A g R R = = 1 || ||out out C o CR R R r R= = 87 Department of Electronic Engineering, NTUT
  • 88. /135 CB CR CCV + − inv sR 1 mg outv X X 1 mg sR + − inv 1 1 1 1 m X in in m s s m g v v v g RR g = = ++ out m C X v g R v = CB 11 out m C C in m s s m v g R R v g R R g = = + + CE ( Rs ) 88 Department of Electronic Engineering, NTUT
  • 89. /135 • CB 50 RF 50 CB 50 ( ) CR CCV CR CCV BV outv 50sR = Ω outv BV + − inv 1 50in m R g = = Ω 0.52 mAC m TI g V= = 1 1 2 C v s m R A R g = = + CB 50 1 in in s m v i R g = + 1 C in out s m R v v R g = + 0.5C sR R≤ 89 Department of Electronic Engineering, NTUT
  • 90. /135 CB CCV CR outv BR or ER BV + − inv ER or CR 1outR 2outR 1 50in m R g = = Ω 0BR = ( ) ( )1 1 || ||out m E o ER g R r r R rπ π= + +   ( ) ( ){ }|| 1 || ||out C m E o ER R g R r r R rπ π= + +   90 Department of Electronic Engineering, NTUT
  • 91. /135 RB ro rπ + − vπ mg vπ CR outv BR ER+ inv − P out m C v g v R π = − out m C v v g R π = − RB out out m C C v v v r g r R R π π π β = − = − ( ) ( )out out P B B C C v v v R r R r R R π π β β − = − + = + P KCL P in m E v v v g v r R π π π − + = ( ) 1 out B in out C m m C E v R r v v R g r g R R π π β + −   − + ⋅ =    ( ) ( ) 11 1 out C C Bin E B E m v R R Rv R R r R g π β β β = + + + + + + ≃ CE RB RB 91 Department of Electronic Engineering, NTUT
  • 92. /135 RB CCV CR + − inv ER outv BR CB Stage rπ + − vπ mg vπ CR outv BR + − Xv Xi X B r v v r R π π π = − + KCL m X v g v i r π π π + = − 1 m X X B r g v i r r R π π π   − + = −  +  1 1 1 X B B X m v r R R i g π β β + = + + + ≃ RB=0, Rin=1/gm BR ER AV = ∞AV = ∞ 1 1 B m R g β + + ( )1 Er Rπ β+ + emitter base RB (1+β) Emitter degeneration base emitter RE (1+β) 92 Department of Electronic Engineering, NTUT
  • 93. /135 CR CCV BR outv CR outv CCV 1 1 1 B m R g β + + XR eqR XR 1 1 1 B eq m R R g β = + + 2 2 1 1 1 1 1 1 1 1 eq B X m m m R R R g g gβ β β   = + = + +  + + +  • RX 93 Department of Electronic Engineering, NTUT
  • 94. /135 CB (I) • CCV CR OUTv + − inv 1C+ − BV CCV CR OUTv + − inv 1C+ − BV CCV CR outv + − inv 1C+ − BV 1 mg ER ER emitter DC path emitter DC path AC RE emitter DC path 1 ||in E m R R g = 94 Department of Electronic Engineering, NTUT
  • 95. /135 CB (II) CCV CR outv + − inv 1C+ − BV X inRER sR 1 ||in E m R R g = Rin ( ) 1 || 1 1 1 1|| E X in m in in s m E s E s m R v R g v R R g R RR R g = = = + + ++ out m C X v g R v = ( ) 1 1 1 out m C in m E s v g R v g R R = + + CCV CR outv + − inv 1C + − bV inR ER sR ini 1i 2i iin i1 RE(shunt ) i2 RC RE RC RE RE 1/gm i2 1 E m R g >> C E TI R V>> RE RE VT 95 Department of Electronic Engineering, NTUT
  • 96. /135 CB (III) - Vb • CE CE CB bypass AC CE bypass ( common AC ) CCV CR ER 1R 2R 1C inv 1I CCV CR ER thR + − thV CCV CR ER 1R 2R BC β I1 >> IB 2 1 2 b CC R V V R R+ ≃ Base 1 2||thR R R= bypass CB base AC ground 96 Department of Electronic Engineering, NTUT
  • 97. /135 • CB 10 50 1E mR g>> 500ER = Ω 1 50in mR g = Ω≃ 0.52 mA, 899 mVC BEI V= = bypass (AC ) 500CR = Ω10v m CA g R= = RE 0.52 mA 500 260 mVE E C E TI R I R V= × Ω = >>≃ 1.16 Vb E E BEV I R V= + = R1 R2 10 52 µABI = 1 1 2 1.16 Vb CC R V V R R = + ≃ 1 2 52 µACCV R R = + 1 25.8 kR = Ω 2 22.3 kR = Ω 2.5 VCCV = CR ER 1R 2R BC OUTv 1C inv 100β = 16 5 10 ASI − = × AV = ∞ 900 MHz C1 CB 1 1 1 20 mg j Cω = 1 20 20 71 pF 2 900 MHz m mg g C ω π = = = ⋅ 1 1 1 1 20 m B g j Cβ ω = + 0.7 pFBC = ( 10 ) 97 Department of Electronic Engineering, NTUT
  • 98. /135 (Common Collector Topology) • B E C CCV ER INV OUTV 1BEV 2BEV 1INV 1OUTV 1IN INV V+ ∆ 1OUT OUTV V+ ∆ ∆VOUT > ∆VIN VBE2 < VBE1 IE IERE=VOUT ∆VOUT ∆VIN 1 rπ + − vπ mg vπ ER inv + − outv out m E v v g v r R π π π + = 1 out E r v v R π π β = + in outv v vπ= + 1 1 1 1 1 out E in E E m v R rv R R g π β = + + + ≃ 1 Early Effect 98 Department of Electronic Engineering, NTUT
  • 99. /135 CC • CC CCV inv + − ER CCV CCV thR inv + − inv + − out inv v= ER 1 th m R g = outv th inv v= 1 in m R g = CC Rth=1/gm CC (CE CB ) outv 99 Department of Electronic Engineering, NTUT
  • 100. /135 • • CCV INv OUTv 1I 1vA ≃ VBE out in BEv v V= − VBE vOUT vIN CCV ER inv + − outv sR sR CCV thR th inv v= + − 1 1 s m R g β + + ER 1 1 out E sin E m v R Rv R gβ = + + + outv 100 Department of Electronic Engineering, NTUT
  • 101. /135 CC rπ + − vπ mg vπ ER Xv + − Xi inR 0CR → CCV ER CCV inR ER Xi v vπ π= iX gmvπ RE ( )X m Ei g v Rπ+ ( ) ( )X X m E X X m Ev v i g v R i r i g v Rπ π π π= + + = + + ( )1X E X v r R i π β= + + Follower RE buffer ( ) 101 Department of Electronic Engineering, NTUT
  • 102. /135 • CE 20 1 k (a) 8 ? (b) CC ? CC 5 mA β=100 VA follower CCV 1 kΩ CR 8spR = Ω 1C 1inR inv + − 1I CCV ( )20 ||8 0.159v CA R= ⋅ Ω = ( )1 2 1 1058in spR r Rπ β= + + = Ω ( )1|| 20 10.28C in v C R R A R = ⋅ = CCV 1 kΩ inv + − CR 1C 8spR = Ω 102 Department of Electronic Engineering, NTUT
  • 103. /135 CCV sR ER outR sR CCV 1 1 s m R g β + + ER 1 || 1 s out E m R R R g β   = +  +  Follower driver follower ( ) ( )ER inv + − inv + − CCV sR ER or sR ER or || 1 || 1 E o v s E o m R r A R R r gβ = + + + ( )( )1 ||in E oR r R rπ β= + + 1 || || 1 s out E o m R R R r gβ   = +  +  103 Department of Electronic Engineering, NTUT
  • 104. /135 CC CCV ER X OUTv 1R 2R 1C inv − + inv − + 1C CCV BR BI X Y OUTv ER R1 R2 IB β VCC C VCC BJT RB RE β 104 Department of Electronic Engineering, NTUT
  • 105. /135 • RB=10 k RE=1 k VCC=2.5 V KVL B C BE E C CC R I V R I V β + + = 800 mVBEV ≃ 1.545 mACI = ln 748 mVC BE T S I V V I = = 1.593 mACI = 159 mVB BI R = 1.593 VC EI R = C E B BI R I R>> inv − + 1C CCV BR BI X Y OUTv ER 16 5 10 ASI − = × 100β = 105 Department of Electronic Engineering, NTUT
  • 106. /135 (I) • 10 k 10 mV 0.1 W 8 12 V 2 2 , ,0.1 W 8L L rms L L rmsP i R i= = ⋅ = ⋅ , 0.112 AL rmsi = , ,2 0.158 AL peak L rmsi i= = , , 0.158 8 1.26 Vo peak L peak Lv i R= ⋅ = × ≃ 1.26 126 0.01 vA = = inv − + 10 ksR = Ω CC 8LR = Ω outv Li126vA = 1. 8 CE 2. 126 CC 3. 10 k CB CE CC CB 106 Department of Electronic Engineering, NTUT
  • 107. /135 (II) • inv − + 10 ksR = Ω CC 8LR = Ω outv 1vA 2vA 3vA 1. CE CE CC 2. CC 3. CE CE 2. CE CE 3. 1. CE CE CB 1. CE CE CC 2. CC 3. CC 1 2 3v v v vA A A A= ⋅ ⋅ CC +CE +CC 107 Department of Electronic Engineering, NTUT
  • 108. /135 • 8 CC ( ) Li CC 8LR = Ω ov 4ER 4BV 4BI 3ov 4inR 12 VCCV = (III) – , 0.158 AL peaki = , 1.26 Vo peakv = 4 50β = 4 12 6 20 0.3 CC CEQ E EQ V V R I − − = = = Ω 50 0.3 0.294 A 1 51 CQ EQI I β β = = ⋅ = + 0.294 A 11.3 26 mV C m T I g V = = = 4.42 m r g π β = = Ω ( )( ) ( )( ) ( ) ( ) 1 || 51 20 ||8 0.985 1 || 4.42 51 20 ||8 E L v E L R R A r R Rπ β β + ⋅ = = = + + + ⋅ 1.26 V vo3 1.28 V 0.158 A 0.158 A Ci CQ EQI I≃ CEv CEQV 12 VCCV = 1.26 V1.26 V 0.3 AEQI = 6 VCEV = 108 Department of Electronic Engineering, NTUT
  • 109. /135 (IV) – • 10 k CC 6 V, 1 mACEQ CQV I= = 1 2|| 100 kR R = Ω 1 12 6 6 k 0.001 CC CE E E V V R I − − = = = Ω 1 0.0385 26 C m T I g V = = = Ω 2.6 k m r g π β = = Ω ( )1 2|| || 1 85.9 kin ER R R r Rπ β= + + = Ω   ( ) ( ) 1 0.892 1 Ein v in s E RR A R R r Rπ β β + = = + + + 8.92 mVov = 1 155 kR = Ω 2 282 kR = Ω + inv − sR 10 kΩ 12 VCCV = 1R 2R 1 100β = 1ov 1ER ( ) ( )1 1 2 1 1 1|| || 1in ER R R r Rπ β= + +   CEv 12 VCCV =CEQV Ci CQ EQI I≃ Rs 10 1 mACQI = 6 VCEV = 608.6 kΩ 10 mVinv = ( ) 109 Department of Electronic Engineering, NTUT
  • 110. /135 (V) – 2 328.8, 5v vA A= = 3 4 4 4 6 0.7 6.7 VC B E BEV V V V= = + = + = 4 0.294 5.88 mA 50 BI = = 3 3 313 mA, 0.5C C m T I I g V = =≃ 3 200 m r g π β = = Ω ( )( ) ( ) 4 4 4 41 || 4.42 51 20 ||8 296 in E LR r R Rπ β= + + = + = Ω ( ) ( ) 3 3 4 3 3 3 3 || 5 1 C in v E R R A r Rπ β β = = + + 3 27.3ER Ω≃ , , , ,126 0.892 0.985v v in v gain v o v gainA A A A A= = ⋅ ⋅ = ⋅ ⋅ , 144v gainA ≃ VBE4 3 3 3 3 12 6.7 296 CC C C RC RC V V R I I − − = Ω = = 3 18.9 mARCI = ( ) ( )3 5 6 3 3 3|| || 1 50 k || 200 101 27.3 2.8 kin ER R R r Rπ β= + + = Ω + ⋅ Ω   ≃ 5 6|| 50 kR R = Ω ( ) 5 69.9 kR = Ω 6 176 kR = Ω 12 VCCV = 5R 6R 3R 4R 3CR 3ER 2CR 2ER 3inR2inR 1ov 2ov 3 4C BV V= 3 100β =2 100β = 2 2 12 6 1.2 k 5 CC C C CQ V V R I − − = = = Ω 2 2 2 0.52 kT CQ V r I π β = = Ω ( ) ( ) 2 2 3 2 2 2 2 || 28.8 1 C in v E R R A r Rπ β β = = + + 2 23.7ER Ω≃ 5 6|| 50 kR R = Ω ( ) 3 181 kR = Ω 4 69.1 kR = Ω 110 Department of Electronic Engineering, NTUT
  • 111. /135 (VI) – • • ( ) headroom • • decouple 181 kΩ 23.7 Ω 1.2 kΩ 69.9 kΩ 176 kΩ 296 Ω 20 Ω 8 Ω27.3 Ω 155 kΩ 282 kΩ 69.1 kΩ6 kΩ 12 VCCV = 10 kΩ − + sv 111 Department of Electronic Engineering, NTUT
  • 113. /135 (I) PSRR DDV SSV INv + INv − − + OUTv offset CMRR ( ) SR 0 (dB) 113 Department of Electronic Engineering, NTUT
  • 114. /135 (II) • OPA (DVCVS) • OPA A OPA vo + − 1v 2v ov + − − − 1v 2v ( )1 2 oA v v v− =− − A → ∞ 1 2 0v v− = 1 2v v= ( )1 2ov A v v= − v1 = v2 (virtual short) (v1=0) (v2≈0) (virtual ground virtual earth) non-inverting input inverting input + + + + 114 Department of Electronic Engineering, NTUT
  • 115. /135 (I) • • Iv Ov 1R 2R − + 2 1 O v I v R A v R = = − 0a bv v= = 1 2 1Ii i v R= = av 0bv = Iv Ov 1R 2R − + 1i 2i Zin 2 2 2 1 O I R v i R v R = − = − 2 1 1O v I v R A v R = = + Ov − +Iv 1R 2R Ov − +Iv 1R 2R 1i 2i av a Iv v= 1 2 1ai i v R= = −Zin ( ) 2 2 1 2 1 1O I R v i R R v R   = − + = +    KCL KVL ( ) v i i v R2 5 k 25 k R1 115 Department of Electronic Engineering, NTUT
  • 116. /135 (II) • (level shifting) Iv Ov 1R 2R − + Iv Ov 1R 2R − + − + BIASV 2 2 1 1 1O I BIAS R R v v V R R   = − + +    Ov − +Iv 1R 2R 2 2 1 1 1O I BIAS R R v v V R R   = + −    2R 1R Iv Ov + − − + BIASV 116 Department of Electronic Engineering, NTUT
  • 117. /135 ( ) • • Iv Ov 1 1 kR = Ω 2 10 kR = Ω − + 2 1 O I R v v R = − Iv Ov 1 1 kR = Ω 2 10 kR = Ω − + Iv Ov 1 1 kR = Ω 2 10 kR = Ω − + − + BIASV 2 2 1 1 1O I BIAS R R v v V R R   = − + +    +VCC −−−−VSS 100 mV 1 V− OPA OK +VCC GND 1 V− 100 mV OPA 0 V 100 mV 1 V 2.475 V= − + Level shifting AC VCC/2 +VCC GND 225 mV 117 Department of Electronic Engineering, NTUT
  • 118. /135 (III) • / 1v Ov 1R fR − + 2v nv 2R nR 1 2 1 2 f f f O n n R R R v v v v R R R   = − + + +    ⋯ 1 2f nR R R R= = = =⋯ ( )1 2O nv v v v= − + + +⋯ − +1v 2v bR aR aR bR Ov ( )1 2 b O a R v v v R = − ( v2=0 v1 vo1 v1=0 v2 vo2 vo= vo1 +vo2 ) v i i v 118 Department of Electronic Engineering, NTUT
  • 119. /135 (IV) • − + 1v 2v aR aR 3v 4v aR aR bR bR ov ( )1 2 3 4 b O a R v v v v v R = + − − 119 Department of Electronic Engineering, NTUT
  • 120. /135 (V) • • 0 iv ov R C − + ( )0 0ov = KCL 0i ov dv C R dt + = 0 1 t o iv v dt RC = − ∫ iV oV R 1 sC − + 1 1 o i i sCV V V R sRC = − = − iv ov C R − + ( )1o i i R V V sRC V sC = − = − v i i v 120 Department of Electronic Engineering, NTUT
  • 121. /135 (Voltage Follower) • ( ) • (heavy load) Iv Ov − + 1O v I v A v = ≃ Iv 100 ksR = Ω 1 kLR = Ω + − Ov + − Source Load 1k 0.01 100k+1k O Iv v= ≃ Iv 100 ksR = Ω 1 kLR = Ω+ − Ov + − Source Load Buffer O Iv v≃ 121 Department of Electronic Engineering, NTUT
  • 122. /135 • ZL + − SV 1R OV ILZ 1SI V R= 122 Department of Electronic Engineering, NTUT
  • 123. /135 • general INv + INv − 2R 1R 3R 4R Ov − + BIASV ( ) ( ) ( ) ( ) 4 1 2 3 1 22 1 3 4 1 1 3 4 O IN IN BIAS R R R R R RR v v v V R R R R R R R + − + + = − + + + INv + 4 3 4 IN R v R R + + 4 2 3 4 1 1 IN R R v R R R +   +  +   INv − 2 1 IN R v R −− 3 3 4 BIAS R V R R+BIASV 3 2 3 4 1 1 BIAS R R V R R R   +  +   31 2 4 RR K R R = = 1 1 1 IN K v K K + +    +   2 1 IN R v R −− ( ) ( ) 1 1 1 1 1 BIASK V K +  + ( )2 1 O IN IN BIAS R v v v V R + −= − + 123 Department of Electronic Engineering, NTUT
  • 124. /135 ( ) ( )2 4 1 2 3 2 1O BIAS G R R v v v V R R    = + − +      2v 1v 2R 4R GR Ov − + BIASV + − 4R 3R 3R 2R − + 1v 2 11 G R v R   +    2v 2 21 G R v R   +    3 3 4 BIAS R V R R+BIASV 3 4 3 4 3 1 BIAS R R V R R R   +  +   2 1 G R v R   −    2 2 G R v R   −    2 2 1 21 G G R R v v R R     − + +        2 2 2 11 G G R R v v R R     − + +        4 3 R R   × − +    4 4 3 4 3 1 R R R R R     × ⋅ + +    +    ( )2 4 1 2 3 2 1 BIAS G R R v v V R R    = + − +      124 Department of Electronic Engineering, NTUT
  • 125. /135 OPA • OPA ( ) 1 oA A s sτ = + 1 2c cfω π τ = = fall-off rate: −6 dB/oct f (Hz) fc fT Gain (dB) f (Hz) Phase (deg.) 0 90− oA oA τ OPA ( )1 τ− cf 3 dB Tf 0 dB (1) OPA fT OPA (GBW) 125 Department of Electronic Engineering, NTUT
  • 126. /135 (Gain-Bandwidth Product) • • OPA • = 1 2c cfω π τ = = ( ) 1 o c A A s s ω = + ( ) 2 1 o c A A jω ω ω =   +     ( ) 1TA jω = 2 1 T o c A ω ω   + =    2 1T c ω ω   >>    T o c A ω ω ≃ T o cAω ω= 3 dB ( )x x Tf A j fω⋅ = OPA fx ( ) T x x f A j f ω = 126 Department of Electronic Engineering, NTUT
  • 127. /135 OPA (I) • (AOL) OPA • Bipolar OPA Ri 150 k FETs (Mega ) OPA • Bipolar OPA 100 OPA OPA 1 k 100 k 10 k OPA 127 Department of Electronic Engineering, NTUT
  • 128. /135 OPA (II) • (Input offset voltage, VOS VIO) OPA 0 V AC (VIO) • (Input offset current, IOS IIO) 0 OPA BJT 1 1O f BV R I=IB1 (IB2=0) 2 2 2 1 1 f O B R V I R R   = − +    1 2 1 2 2 1 1 f O O O B f B R V V V I R I R R   = + = − +    IB1 = IB2 IB2 (IB1=0) 2BI 1BI fR 1R OV SV 2R − + 128 Department of Electronic Engineering, NTUT
  • 129. /135 OPA (III) • (VIN) OPA ( ) offset offset OPA • (Vopp) DC 0 V OPA 2 1iV V V− ≤ ≤ iV 1V 2V− oV 1oV 2oV− Vi 129 Department of Electronic Engineering, NTUT
  • 130. /135 OPA (IV) • Slew Rate (SR) OPA ( OPA ) SR OPA step (unit gain) zero crossing • SR sino mv V tω= coso m dv V t dt ω ω= 0, ,2 , o m t dv V dt ω π π ω = = ⋯ mSR V ω≥ mV SR ω ≥ SR OPA OPA 130 Department of Electronic Engineering, NTUT
  • 131. /135 OPA (V) • (Common-mode rejection ratio, CMRR) OPA ( ) CMRR (dB) CMRR 80 dB CMRR • (Power supply sensitivity, ∆VIO/∆VGG) ∆VGG ∆VIO • OPA • Ci 131 Department of Electronic Engineering, NTUT
  • 132. /135 OPA (VI) • (Full power response) OPA • (Gain-Bandwidth Product) 17 OPA OPA 75 kHz 132 Department of Electronic Engineering, NTUT
  • 133. /135 OPA (VII) • (Rise time, tr) OPA OPA 10% 90% • (Power supply voltage) • (Power supply current) • ( ) • ( ) 0.35r ct f× ≅ 133 Department of Electronic Engineering, NTUT
  • 134. /135 • OPA • datasheet AC • 100 • Slew Rate • OPA OPA datasheet • bypass DC 1 MHz 1 µF (10MHz MHz) 0.1 µF OPA 134 Department of Electronic Engineering, NTUT
  • 135. /135 • • ( ) gm rπ ro • BJT CE CB CB CC CE CB CC • OPA 135 Department of Electronic Engineering, NTUT